
Minivosc - a minimal virtual oscillator driver for ALSA (Advanced
Linux Sound Architecture)

Smilen Dimitrov and Stefania Serafin
Medialogy, Aalborg University Copenhagen

Lautrupvang 15
DK-2750 Ballerup,

Denmark,
{sd, sts}@create.aau.dk

Abstract
Understanding the construction and implementation
of sound cards (as examples of digital audio hardware)
can be a demanding task, requiring insight into both
hardware and software issues. An important step to-
wards this goal, is the understanding of audio drivers
- and how they fit in the flow of execution of software
instructions of the entire operating system.

The contribution of this project is in providing sam-
ple open-source code, and an online tutorial [1] for a
mono, capture-only, audio driver - which is completely
virtual; and as such, does not require any soundcard
hardware. Thus, it may represent the simplest form of
an audio driver under ALSA, available for introductory
study; which can hopefully assist with a gradual, sys-
tematic understanding of ALSA drivers’ architecture -
and audio drivers in general.

Keywords
Sound card, audio, driver, ALSA, Linux

1 Introduction
Prospective students of digital audio hardware,
could choose the sound card as a topic of study:
on one hand, it has a clear, singular task of
managing the PC’s analog interface for playback
and capture of digital audio data - as well as
well-established expectations by consumer users
in terms of its role; on the other hand, its un-
derstanding can be said to be cross-disciplinary,
as it encompasses several (not necessarily overlap-
ping) areas of design: analog and digital electron-
ics related to soundcard hardware and PC bus
interface implementation; PC operating system
drivers; and high-level PC audio software.
Gaining a sufficient understanding of the inter-

play between these different domains in a work-
ing implementation can be an overwhelming task;
thus, not surprisingly, the area of digital audio
hardware design and implementation (including

soundcards) is currently dominated by industry.
Recent developments in open source software and
hardware may lower the bar for entry of newcomer
DIY enthusiast - however, the existence of many
open source drivers for commercial cards doesn’t
necessarily ease the introductory study of a po-
tential student.
In essence, an implementation of a soundcard

will eventually demand dealing with the issue of
an operating system driver. In the current sit-
uation, a prospective student is then faced with
a ’chicken-and-egg’ problem: proper understand-
ing of drivers requires knowledge of the hardware
(which the drivers were written for); and yet un-
derstanding the hardware, involves understanding
of how the drivers are supposed to interface with
it1. A straightforward way out, would be to study
a ’virtual’ driver - that is, a driver not related to
an actual hardware; in that case, a student would
be able to focus solely on the software interac-
tion between the driver, and the high-level audio
program that calls it. Unfortunately, in the case
of the ALSA driver architecture for Linux, pre-
existing examples of virtual drivers are in fact not
trivial2 - and, just as existing ALSA driver tutori-
als, assume previous knowledge of bus interfaces
(and thus hardware).
The minivosc driver source code with the cor-

responding tutorial (on the ALSA website [1]) rep-
resents the simplest possible virtual ALSA driver,
that does not require additional hardware. It has
already led to the development of the driver used
in the (possibly first) demonstration of an open
soundcard system in AudioArduino [2] (and fur-

1and the lack of open card hardware designs for study
makes this problem more difficult

2and may require existence of real soundcards on the
system



ther used in [3]) - and as it limits the discussion
to only the software interaction between driver
and high-level software, disregarding issues in bus
interfacing and hardware - it would represent a
conceptually simpler entry level for a prospective
student of sound card drivers.

2 Premise
Personal computer users working with audio typ-
ically rely on high-level audio software (from
media players such as VLC, to more special-
ized software like Pure Data, or the wave editor
Audacity3) to perform their needed tasks – and
the sound card (as hardware) to provide an analog
interface to and from audio equipment. This nec-
essarily puts demands on the operating system of
the PC, to provide a standardized way to access
(what could be different types of) audio hardware.
An operating system, in turn, would provide an
audio or soundcard driver API (application pro-
gramming interface), which should allow for pro-
gramming of a driver that: abstracts some of the
’inner details’ of the soundcard implementation;
and exposes a standardized interface to the high-
level audio software (that may want to utilize this
driver). This, in principle, allows interfacing be-
tween software and hardware released by different
vendors/publishers.
Earlier work like [4] attempts to provide a sys-

tematic approach to soundcard implementation;
however, one clear conclusion from such a naïve
approach is that: regardless of the capabilities
of the hardware - one cannot achieve a fine con-
trol of timing required for audio, by using what
corresponds to a simple ’user space’ C program.
Problems like these are typically solved within the
driver programming framework of a given oper-
ating system - and as such, acquaintance with
driver programming becomes a necessity for any-
one aiming to understand development of digital
audio hardware for personal computers. In terms
of FLOSS4 GNU/Linux- based operating systems,
the current driver programming framework - as it

3Note that software like JACK - while it can be con-
sidered more ’low-level’ than consumer audio software - is
still intended to route data between ’devices’. Since it is the
driver that provides this ’device’ (as a OS construct that
software can interface with) in the first place - drivers lay in
a lower architectural layer than even software like JACK,
and so involve different development considerations.

4free/libre/open source software

relates to soundcards and audio - is provided by
the Advanced Linux Sound Architecture (ALSA).
ALSA supersedes the previous OSS (Open Sound
System) as the default audio/soundcard driver
framework for Linux (since version 2.6 of the ker-
nel [5]), and it is the focus of this paper, and the
eponymous minivosc driver (and tutorial). The
minivosc driver was developed on Ubuntu 10.04
(Lucid), utilizing the 2.6.32 version of the Linux
kernel; the code has been released as open source
on Sourceforge, and it can be found by referring
to the tutorial page [1].

2.1 Initial project issues
The minivosc project starts from the few read-
ily available (and ’human-readable’) resources re-
lated to introductory ALSA driver development:
[8], [9], [10], and [11]. Most of these resources
base their discussions on conceptual or undis-
closed hardware, making them difficult to read
for novices. On the other hand, there are few
examples of virtual soundcard drivers, such as
the driver source files dummy.c (in the Linux
kernel source tree [12]) and aloop-kernel.c (in
the ALSA source tree [13]); however, these drivers
don’t have much documentation, and can present
a challenge for novices5. All these resources [8;
9; 10; 11; 12; 13] have been used as a basis
here, to develop an example of a minimal virtual
oscillator (minivosc) driver.

3 Architectural overview of PC audio
Even if the minivosc driver is a virtual one, one
still needs an overview of the corresponding hard-
ware architecture - also for understanding in what
sense is this driver ’virtual’. As a simplified illus-
tration, consider Fig. 1.
A driver will typically control transfers of data

between the soundcard and the PC, based on in-
structions from high-level software. The direction
from the soundcard to the PC is the capture direc-
tion; the opposite direction (from the PC to the
soundcard) is the playback direction; a soundcard
capable of delivering both data transfer directions

5the ’dummy’ driver doesn’t actually perform any mem-
ory transfers (which is, arguably, a key task for a driver),
so it cannot be used as a basis for study – the ’loopback’
driver is somewhat more complex than a basic introductory
example, as it is intended to redirect streams between de-
vices, and as such assumes some preexisting acquaintance
with the ALSA architecture



Bus Interface

Soundcard

PC

B
U

S

BUS

CPU

DAC

DAC

ADC

ADC

Audio
OUT

Audio
IN

MIDI

High-level 
Software

driver

RAM

B
U

S

B
U

S

Hard
Disk

BUS

Figure 1: Simplified overview of the con-
text of a PC soundcard driver (portions
used from Open Clip Art library).

simultaneously can be said to be a full-duplex de-
vice.
While Fig. 1 shows the hard disk as (ultimately)

both the source for the playback direction, and
the destination for the capture direction - within
this process, the CPU may use RAM memory
at its discretion. In fact, the driver is typically
exposed to pointers to byte arrays (buffers) in
memory (in ALSA known as PCM (sub)streams [7,
’PCM (digital audio) interface’], and named dma_
area), that represent streams in each direction.

In terms of audio streams, Fig. 1 demonstrates
a device capable of two mono (or one stereo) in-
puts, and two mono (or one stereo) outputs. Since
audio devices like microphones (or amplifiers for
speakers) typically interface through analog elec-
tronic signals - this implies that for each ’digi-
tal’ input [or output] audio stream, a correspond-
ing analog-to-digital (ADC) [or digital-to-analog
(DAC)] converter hardware needs to be present
on the soundcard6.
As the main role of the soundcard is to provide

an analog electronic audio interface to the PC -
the role of the ADC and DAC hardware is, of
course, central. However, the PC will typically in-
terface to external hardware through a dedicated
bus for this purpose7. This means, that some bus
interfacing electronics - that will decode the sig-

6Note, however, that this correspondence could, in
principle, be solved by a single ADC or DAC element -
along with a (de)multiplexer which would implement time-
sharing of the element (for multiple channels)

7noting that, in principle, the buses used for hard-
disks (such as Integrated Drive Electronics (IDE)) or RAM
(known as ’Memory Interconnect’) can be distinct

nals from the PC, and provide signals that will
drive (at the very least) the ADC/DAC converters
- needs to be present on the soundcard as well8.

An ALSA driver uses a particular terminology
when addressing these architectural surroundings.
The ’soundcard’ on Fig. 1 will be considered to
be a card by the driver9. One level deeper,
things can get a bit more complicated: assum-
ing that Fig. 1 represents a stereo soundcard, it
would have one input stereo connector (attached
to two ADCs), and one output stereo connector
(attached to two DACs); an ALSA driver would
correspondingly be informed about a card, that
has one stereo input device (consisting of two
subdevices) - and one stereo output device (con-
sisting, likewise, of two subdevices). Note that:
“..we use subdevices mainly for hardware which
can mix several streams together [14]” and “typ-
ically, specifying a sound card and device will be
sufficient to determine on which connector or set
of connectors your audio signal will come out, or
from which it is read... Subdevices are the most
fine-grained objects ALSA can distinguish. The
most frequently encountered cases are that a de-
vice has a separate subdevice for each channel or
that there is only one subdevice altogether [15]”
The ALSA driver is informed about such a hi-

erarchical relationship (between card, devices and
subdevices) through structures (C structs, written
by the driver author in the driver source files) -
defined mostly through use of other structures,
predefined by the ALSA framework (alias the ALSA
’middle layer’). The driver code, additionally, es-
tablishes a relationship between these structs, and
the PCM stream data that will be assigned to
each in memory; and connects these to predefined
ALSA framework driver functions, which define the
driver (and the corresponding hardware) behavior
at runtime. Finally, Fig. 1 shows that other types
of devices, such as a MIDI interface, can also be
present on the soundcard. The ALSA framework

8For example, [4] describes a device that interfaces
through the Industry Standard Architecture (ISA) bus -
and uses standard TTL components (such as 74LS08,
74LS688, 74LS244, etc) to implement a bus interface;
[2] describes a device that interfaces through the Universal
Serial Bus (USB) - and uses the FT232 chip by FTDI to
implement a bus interface

9noting that, in principle, the driver should be able to
handle multiple cards; and be able to individually address
each one



has facilities to address such needs too - as well as
having a so-called mixer interface10 - which will
not be discussed here.
Application level From the PC perspective,
a high-level audio software (audio application) is
used, in first instance, to issue start and stop of
audio playback or capture. When such a high-
level command is issued by the user, the audio
application communicates to the driver through
the application-level API and: obtains a han-
dle to the relevant structures; initializes and al-
locates variables; opens the PCM device; speci-
fies hardware parameters11 and type of access (in-
terleaved or not) - and then starts with reading
from (for capture) or writing to (for playback) the
PCM device, by using ALSA API functions (such
as snd_pcm_writei/snd_pcm_writen or snd_pcm_readi
/snd_pcm_readn) [16]. The PCM device is repre-
sentation of a source (or destination) of an audio
stream12. The kernel responds to the application
API calls by calling the respective code in the
kernel driver, implemented using the kernel (ALSA
driver) API [8].13

4 Concept of minivosc
A user would, arguably, expect to hear actual re-
produced sound upon clicking ’play’; while record-
ing, in principle, doesn’t involve user sensations
other than indication by the audio software (e.g.
rendering of captured audio waveform). Taking
this into account, it becomes clear that the stated
purpose of minivosc - to be a ’virtual’ driver
(independent of any actual additional soundcard
hardware) - can only be demonstrated in the cap-
ture direction14: as the driver simply has refer-

10which allows for, say, individual volume control di-
rectly from the main OS volume applet

11access type, sample format, sample rate, number of
channels, number of periods and period size

12and it can have: "plughw" or "hw" interface; play-
back or capture direction; and standard (blocking), non-
blocking and asynchronous modes (see also [7, ’PCM (dig-
ital audio) interface’])

13Note that the application doesn’t have to talk to the
driver directly; there could be intermediate layers, forming
a Linux audio software stack (see [17]). However, in this
paper, we focus solely on the perspective of the ALSA kernel
driver.

14however, note that aloop-kernel.c[13], is also a ’vir-
tual’ driver, and yet works in both directions; however,
since it is intended to ’loop back’ audio data between ap-
plications and devices[18], the virtual setups possible can
be reduced to the case when the ’loopback’ driver routes

ences to data arrays in memory, the effect of play-
ing back (i.e., copying) data to non-existing hard-
ware will be pretty much undetectable15. How-
ever, even with non-existing hardware, we can al-
ways write some sort of predefined or random data
to the capture buffers in memory - which would
result with visible incoming data in the high-level
audio software (like when performing ’record’ in
Audacity).
To avoid the conceptualization problems of

ALSA devices vs. subdevices, the minivosc driver
is deliberately defined as a mono, 8-bit, capture-
only driver, working at 8 kHz (the next-lowest16

rate ALSA supports). The 8-bit resolution al-
lows also for direct correspondence between: the
digital representation of a single analog sample;
and the storage unit of the corresponding arrays
(buffers) in memory, which are defined as char*.
Hence, one byte in memory buffer represents one
analog sample, the next byte represents the next
analog sample, etc. This allows for simplification
of the process of wrapping data in a ring buffer,
and thus easier grasping of the remaining key is-
sues in ALSA driver implementation.

5 Driver structures
The minivosc driver contains four key structures
- three of which are required by (and based on
predefined types in) the ALSA framework:

• struct variable of type snd_pcm_hardware (re-
quired) - sets the allowed sample formats, sampling
rates, number of channels, and buffering properties

• struct variable of type snd_pcm_ops (required) -
assigns the actual functions, that should respond to
predefined ALSA callbacks

• struct variable of type platform_driver (re-
quired) - named minivosc_driver, it describes the
driver, and at the same time, determines the bus
interface type

• struct variable of type minivosc_device - custom
structure that contains all other parameters related

one audio application’s data written to its playback inter-
face, back to its capture interface; and another audio ap-
plication grabs data from the ’loopback’ capture interface
and writes it to disk.

15similar to, in Linux parlance, ’piping’ data to /dev/
null. While a specific consumer of such data could be
programmed, that alone complicates the understanding of
interaction between typical audio software and drivers

16The lowest ALSA rate being 5512 Hz, see
include/sound/pcm.h in Linux source [19]



to the soundcard, as well as pointers to the digital
audio (PCM) data in memory

The minivosc_driver struct variable defines the
_probe and _remove functions, required for any
Linux driver; however, by choosing the struct
type, we also determine the type of bus this driver
is supposed to interface through. For instance, a
PCI soundcard driver would be of type struct pci
_driver; whereas a USB soundcard driver would
be of type struct usb_driver (see [1]). However,
minivosc is defined as platform_driver, where
“platform devices are devices that typically appear
as autonomous entities in the system [20, ’plat-
form.txt’]” - and as such, it will not need actual
hardware present on any bus on the PC, in order
for the driver to be loaded completely17.
The snd_pcm_ops type variable simply points to

the actual functions that are to be executed as the
predefined ALSA callbacks, which are discussed in
the next section. The different fields in snd_pcm
_hardware allow the device capabilities in terms
of sampling resolution (i.e., analog sample for-
mat) and sampling rate to be specified. For this
purpose, there are predefined bit-masks in ALSA’s
pcm.h [19], such as SNDRV_PCM_RATE_8000 or SNDRV_
PCM_FMTBIT_U8 (for 8 kHz rate, or for sample for-
mat of 8-bit treated as unsigned byte, respec-
tively). One should be aware that audio soft-
ware may treat these specifications differently:
for instance, having arecord capture from the
minivosc driver, will result with an 8-bit, 8 kHz
audio file - simply because that is the default for-
mat for arecord. On the other hand, Audacity
in the same situation - while acknowledging the
driver specifications - will also internally convert
all captures to the default ’project settings’, for
which the minimum possible values are 8000 Hz
and 16-bit [21].18

One of the most important structures is what
we could call the ’main’ device structure, here
minivosc_device. It can also be a bit difficult to
understand, especially since it is - in large part -
up to the driver authors themselves to set up the
structure, and its relationships to built-in ALSA

17which is not the default behavior for actual hardware
drivers - they will simply not run some of their predefined
callbacks, if the hardware is not present on the bus

18While these captures can be exported from Audacity
as 8-bit, 8 kHz audio files - that process implies an addi-
tional conversion from the internal 16-bit format.

structures. These relationships are of central in-
terest, because a driver author must know the lo-
cation of memory representing the digital audio
streams (snd_pcm_runtime->dma_area in Fig. 2), in
order to implement any digital audio functionality
of the driver. And finding this memory location
is not trivial - which is maybe best presented in
graphical manner, as in Fig. 2, which shows a par-
tial scope of the ’main’ structure minivosc_device
and its relationships.
On Fig. 2, only minivosc_device has been

written as part of the driver code - all other
structs (with darker backgrounds) are built-ins,
provided by ALSA. Pointers are shown on left edge
of boxes; self-contained struct variables are on
the bottom edge19. Some relationships (such as
snd_pcm_substream->runtime to snd_pcm_runtime
pointing) are set up internally by ALSA; the
relationships to the ’main device’ structure
(minivosc_device) have to be coded by the driver
author. Further complication is that the au-
thored relationships can not be established at the
same spot in the driver code - as some structures
become available only in specific ALSA callbacks.
This is a conceptual departure from the typ-

ical basic understanding of program execution -
where a predetermined sequential execution of
commands is assumed. Instead, driver program-
ming may conceptually be closer to GUI program-
ming, where the author typically writes callback
functions that run whenever a user performs some
action. Additionally, we can expect to encounter
different amount of instances of some of these
structs! For example, snd_pcm_substream can carry
data for a given output connector, which could be
stereo. So, if a stereo file is loaded in audio soft-
ware, and ’play’ is clicked - we could expect ALSA
to pass a single snd_pcm_substream, carrying data
for both channels, to our driver. However, if we
are trying to play a 5.1 surround file, which em-

19Note, the ALSA struct boxes show only a small selec-
tion of the structs’ actual members; while the ’main de-
vice’ struct still contains some unused variables, leftover
from starting example code. Connections are colored for
legibility.
Unlike a more detailed UML diagram, a map like Fig. 2

helps only in a specific context: e.g., the driver is supposed
to write to the dma_area when the _timer_function runs,
however this function provides a reference to minivosc_
device; the map then allows for a quick overview of struc-
ture field relationship, so a direct pointer to the dma_area
can be obtained for use within the function.



minivosc_device

card
pcm
timer_ops

substream

cab
le_

lo
ck

p
cm

_
p
erio

d
_
size

p
cm

_
b
p
s

v
alid

ru
n
n
in
g

p
erio

d
_
u
p
d
ate_

p
en
d
in
g

irq
_
p
o
s

p
erio

d
_
size_

frac

last_
jiffies

tim
er

p
cm

_
b
u
ffer_

size

b
u
f_
p
o
s

silen
t_
size

w
v
f_
p
o
s

w
v
f_
lift

snd_card
private_data

snd_pcm private_data

d
ev
ice

snd_pcm_substream

private_data

pcm
runtime

snd_pcm_runtime
private_data

dma_area

d
m
a_
b
y
tes

0 1 2 3 4 5 6 7 8 9 ..

Figure 2: Partial ’structure relationship map’ of the minivosc driver.

ploys 2 stereo and one mono connector - we should
expect three snd_pcm_substreams to be passed to our
driver. This could further confuse high-level pro-
grammer newcomers, that might expect to receive
something like an array of substreams in such
a case: instead, ALSA may call certain callbacks
multiple times - and it is up to the driver author
to store references to these substreams.

minivosc avoids these problems as a mono-
only driver - thus within the code, we can expect
only one instance of each struct shown on Fig. 2;
and the reference to the only snd_pcm_substream
can be found directly on the main ’device’ struct,
minivosc_device. This allows us easier focus on
another important aspect of ALSA - the timing
of execution of callbacks, which is necessary for
understanding the driver initialization process in
general.

6 Execution flow and driver functions
The device driver architecture of Linux specifies
a driver model [20], and within that, certain call-
back functions that a driver should expose. In
the case of minivosc, first the __init and __exit
macros ([22, Chapter 2.4]) are implemented, as
functions named alsa_card_minivosc_init and alsa
_card_minivosc_exit. These functions run when a
driver module is loaded and unloaded: the ker-
nel will automatically load modules, built in the
kernel, at boot time - while modules built ’out
of tree’ have to be loaded manually by the user,
through the use of the insmod program. The _
init function in minivosc registers the driver, and
attempts to iterate through the attached sound-
cards. As minivosc is a ’platform’ driver, and
there is no actual hardware - the _init, in this
case, is made to always result with detecting a
single (virtual) ’card’. Next in line of predefined
callbacks are _probe and _remove [20, ’driver.txt’],

in minivosc implemented as minivosc_probe and
minivosc_remove. In principle, they would run
when a (soundcard) hardware device is attached
to/disconnected from the PC bus: for instance,
_probe would run when the user connects a USB
soundcard to the PC by inserting the USB connec-
tor - if the driver is already loaded in memory. For
permanently attached devices (think PCI sound-
cards), _probe would run immediately after _init
detects the cards; thus, in the case of minivosc,
_probe will run immediately after _init, at the mo-
ment when the driver is loaded (by using insmod).

The minivosc driver code informs the system
about which are its init/exit functions, by use
of module_init/module_exit facility (see [23, ’Chap-
ter 2’]); while it specifies which are its probe/re-
move functions through use of the platform_driver
structure. Finally, last in line of predefined call-
backs are the ALSA specific callbacks; the driver
code tells the system which are these functions,
through the predefined ALSA struct snd_pcm_ops.20

While ALSA may define more snd_pcm_ops call-
backs [9], there are 8 of them being used
in minivosc, by assigning them to functions:
one, snd_pcm_lib_ioctl, being defined by ALSA
– and seven snd_pcm_ops functions written as
part of minivosc: minivosc_pcm_open, minivosc_hw_
params, minivosc_pcm_prepare, minivosc_pcm_trigger,
minivosc_hw_free, minivosc_pcm_close, minivosc_pcm_
pointer. As clarification - here is the order of exe-
cution of above callbacks for the minivosc driver,
for some common events:
• driver loading: _init, then _probe
• start of recording: _open, then _hw_params, then

20Note that the term ’PCM’ is used in ALSA to refer
generally to aspects related to digital audio - and not to
the particular ’Pulse Code Modulation’ method as known
from electronics (although that is where the term derives
from [7, ’PCM (digital audio) interface’]).



_prepare, then _trigger
• end of recording: _trigger, then _hw_free,

then _close
• driver unloading: _exit, then _remove

We already mentioned that for the minivosc
driver, loading/unloading events happen when
the insmod/rmmod commands are executed. ’Start
of recording’ event would be the moment when
the ’record’ button has been pressed in Audacity;
or the moment when we run arecord from the
command line – correspondingly, ’end of record-
ing’ event is when we hit the ’stop’ button in
Audacity; or when arecord exits (if, for instance,
it has been set to capture for only a certain
amount of time). However, note that – even with
all of this in place – the actual performance of
the driver in respect to digital audio is still not
defined; memory buffer handling is also needed.

6.1 Audio data in memory (buffers) and
related execution flow

As noted in Sec. 5 ’Driver structures’, one of the
central issues in ALSA driver programming is the
location in memory, where audio PCM data for
each substream is kept - the dma_area field being
a pointer to it. In principle, each substream can
carry multi-channel data: for instance, a 16-bit
sample would be represented as two consecutive
bytes in the dma_area; while stereo samples could
be interleaved [24]. Thus ALSA introduces the con-
cept of frames [25], where a frame represents the
size of one analog sample for all channels carried
by a substream. As minivosc is specified as a
mono 8-bit driver, we can be certain that each
byte in its dma_area will represent a single sample
- and that one frame will correspond to exactly
one byte.
The approach to implementing the sampling

rate that minivosc has (taken from [13]), is to
use the Linux system timer ([26, ’Kernel Mech-
anisms’], [23, ’Chapter 6’]). Note that standard
Linux system timers are “only supported at a res-
olution of 1 jiffy. The length of a jiffy is dependent
on the value of HZ in the Linux kernel, and is 1
millisecond on i386 [27]”. However, there also ex-
ist so-called high-resolution timers [28] (for their
basic use in ALSA, see [12]).

6.2 The sound of minivosc - Driver
execution modes

The driver writes in the dma_area capture buffer
repeatedly (as controlled by timers), within the
_xfer_buf function - or more precisely, within the
minivosc_fill_capture_buf function called by it. In
the minivosc code, three different variants can
be chosen (at compile time), for copying a small
predefined ’waveform grain’ array repeatedly in
the capture buffer, which results in an audible os-
cillation when the capture is played back (hence
oscillator in the name). Note the need to ’wrap’
the writing to the capture buffer array, since in
ALSA, it is defined as a circular or ring buffer
[24]. Finally, all of the three ’audio generation’
algorithms can be commented, in which case the
minivosc driver will simply write a constant value
in the buffer. There is an additional facility, called
’buffermarks’, which indicate the start and end of
the current chunk, as well as the start and end
of the dma_area - which can be used to visualize
buffer sizes.
7 Conclusions
The main intent of minivosc is to serve as a basic
introduction to one of the most difficult issues in
soundcard driver programming: handling of digi-
tal audio. Given that many newcomers may have
previous acquaintance with ’userland’ program-
ming, the conceptual differences from user-space
to kernel programming (including debugging [1])
can be a major stumbling block. While a focus on
capture only, 8-bit / 8 kHz mono driver leaves out
many of the issues that are encountered in work-
ing with real soundcards, it can also be seen as
a basis for discussion of [2], which demonstrates
full-duplex mono @ 8-bit / 44.1 kHz (and can in-
terface with stereo, 16-bit playback). Thus, the
main contribution of this paper, driver code and
tutorial would be in easing the learning curve of
newcomers, interested in ALSA soundcard drivers,
and digital audio in general.
8 Acknowledgments
The authors would like to thank the Medial-
ogy department at Aalborg University in Copen-
hagen, for the support of this work as a part of a
currently ongoing PhD project.

References
[1] S. Dimitrov, “Minivosc homepage,” WWW:

http://www.alsa-project.org/main/index.php/

http://www.alsa-project.org/main/index.php/Minivosc


Minivosc / http://imi.aau.dk/~sd/phd/index.
php?title=Minivosc, 21 Dec 2010.

[2] S. Dimitrov and S. Serafin, “Audio Arduino - an
ALSA (Advanced Linux Sound Architecture) au-
dio driver for FTDI-based Arduinos,” in Proceed-
ings of the 2011 conference on New interfaces for
musical expression, 2011.

[3] ——, “Towards an open sound card — a bare-
bones FPGA board in context of PC-based digital
audio,” in Proceedings of the 2011 Audio Mostly
conference, 2011.

[4] S. Dimitrov, “Extending the soundcard for use
with generic DC sensors,” in NIME++ 2010:
Proceedings of the International Conference on
New Instruments for Musical Expression, 2010,
pp. 303–308.

[5] D. Phillips, “A User’s Guide to ALSA | Linux
Journal,” WWW: http://www.linuxjournal.com/
node/8234/print, 2005.

[6] git.alsa project.org, “alsa-kernel.git/tree - Docu-
mentation/,” WWW: http://git.alsa-project.org/
?p=alsa-kernel.git;a=tree;f=Documentation.

[7] J. Kysela, A. Bagnara, T. Iwai, and F. van de
Pol, “ALSA project - the C library ref-
erence,” WWW: http://www.alsa-project.org/
alsa-doc/alsa-lib/index.html, 22 Dec 2010.

[8] T. Iwai, “The ALSA Driver API,”
WWW: http://www.alsa-project.org/~tiwai/
alsa-driver-api/index.html, 21 Dec 2010.

[9] ——, “Writing an ALSA Driver,” WWW:
http://www.alsa-project.org/~tiwai/
writing-an-alsa-driver/, 21 Dec 2010.

[10] B. Collins, “Writing an ALSA driver,” WWW:
http://ben-collins.blogspot.com/2010/04/
writing-alsa-driver.html, 21 Dec 2010.

[11] S. K., “HowTo Asynchronous Playback -
ALSA wiki,” WWW: http://alsa.opensrc.org/
index.php/HowTo_Asynchronous_Playback

[12] J. Kysela, “sound/drivers/dummy.c,” WWW:
http://git.kernel.org/?p=linux/kernel/git/
stable/linux-2.6.32.y.git;a=blob;f=sound/
drivers/dummy.c, 22 Dec 2010.

[13] J. Kysela, A. İnan, and T. Iwai,
“drivers/aloop-kernel.c,” WWW: http:
//git.alsa-project.org/?p=alsa-driver.git;a=
blob_plain;f=drivers/aloop-kernel.c;hb=
e0570c46e3c4563f38e44a25cfac1f07ff5a02a8, 2010.

[14] www.alsa project.org, “Asoundrc - AlsaProject,”
WWW: http://www.alsa-project.org/main/
index.php/Asoundrc, 22 Dec 2010.

[15] V. Schatz, “A close look at ALSA,” WWW: http:
//www.volkerschatz.com/noise/alsa.html, 2010.

[16] M. Nagorni, “ALSA Programming HOWTO
v.0.0.8,” WWW: http://www.suse.de/~mana/
alsa090_howto.html, 15 May, 2011.

[17] G. Morrison, “Linux audio uncovered,” Linux
Format magazine, no. 130, pp. 52–55, April
2010, URL: http://www.tuxradar.com/content/
how-it-works-linux-audio-explained.

[18] J. Kysela, “snd-aloop and alsaloop notes,”
WWW: http://people.redhat.com/~jkysela/
RHEL5/loop/BACKGROUND, 22 Dec 2010.

[19] J. Kysela and A. Bagnara, “git.kernel.org - in-
clude/sound/pcm.h,” WWW: http://git.kernel.
org/?p=linux/kernel/git/stable/linux-2.6.32.y.
git;a=blob;f=include/sound/pcm.h;, 2010.

[20] git.kernel.org, “Documentation/driver-model,”
WWW: http://git.kernel.org/?p=linux/
kernel/git/stable/linux-2.6.32.y.git;a=tree;f=
Documentation/driver-model, 22 Dec 2010.

[21] wiki.audacityteam.org, “Bit Depth - Audac-
ity Wiki,” WWW: http://wiki.audacityteam.org/
wiki/Bit_Depth, 22 Dec 2010.

[22] P. J. Salzman, M. Burian, and O. Pomerantz,
The Linux Kernel Module Programming Guide.
CreateSpace, 2009, URL: http://linux.die.net/
lkmpg.

[23] A. Rubini and J. Corbet, Linux device drivers.
O’Reilly Media, 2001, URL: http://www.xml.
com/ldd/chapter/book.

[24] J. Tranter, “Introduction to Sound Programming
with ALSA | Linux Journal,” 2004, WWW: http:
//www.linuxjournal.com/article/6735?page=0,1.

[25] www.alsa project.org, “FramesPeriods - AlsaPro-
ject,” WWW: http://www.alsa-project.org/
main/index.php/FramesPeriods, 28 Dec 2010.

[26] D. Rusling, “The linux kernel,” The Linux Docu-
mentation Project, 1996, URL: http://www.tldp.
org/LDP/tlk/.

[27] elinux.org, “High Resolution Timers -
eLinux.org,” WWW: http://elinux.org/High_
Resolution_Timers, 28 Dec 2010.

[28] T. Gleixner and D. Niehaus, “Hrtimers and
beyond: Transforming the linux time subsys-
tems,” in Proceedings of the Ottawa Linux
Symposium, Ottawa, Ontario, Canada, 2006,
URL: http://www.kernel.org/doc/ols/2006/
ols2006v1-pages-333-346.pdf.

[29] M. Johnson et al., Linux Kernel Hackers’ Guide.
Johnson, 1993, URL: http://www.tldp.org/LDP/
khg/HyperNews/get.

http://www.alsa-project.org/main/index.php/Minivosc
http://imi.aau.dk/~sd/phd/index.php?title=Minivosc
http://imi.aau.dk/~sd/phd/index.php?title=Minivosc
http://www.linuxjournal.com/node/8234/print
http://www.linuxjournal.com/node/8234/print
http://git.alsa-project.org/?p=alsa-kernel.git;a=tree;f=Documentation
http://git.alsa-project.org/?p=alsa-kernel.git;a=tree;f=Documentation
http://www.alsa-project.org/alsa-doc/alsa-lib/index.html
http://www.alsa-project.org/alsa-doc/alsa-lib/index.html
http://www.alsa-project.org/~tiwai/alsa-driver-api/index.html
http://www.alsa-project.org/~tiwai/alsa-driver-api/index.html
http://www.alsa-project.org/~tiwai/writing-an-alsa-driver/
http://www.alsa-project.org/~tiwai/writing-an-alsa-driver/
http://ben-collins.blogspot.com/2010/04/writing-alsa-driver.html
http://ben-collins.blogspot.com/2010/04/writing-alsa-driver.html
http://alsa.opensrc.org/index.php/HowTo_Asynchronous_Playback
http://alsa.opensrc.org/index.php/HowTo_Asynchronous_Playback
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6.32.y.git;a=blob;f=sound/drivers/dummy.c
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6.32.y.git;a=blob;f=sound/drivers/dummy.c
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6.32.y.git;a=blob;f=sound/drivers/dummy.c
http://git.alsa-project.org/?p=alsa-driver.git;a=blob_plain;f=drivers/aloop-kernel.c;hb=e0570c46e3c4563f38e44a25cfac1f07ff5a02a8
http://git.alsa-project.org/?p=alsa-driver.git;a=blob_plain;f=drivers/aloop-kernel.c;hb=e0570c46e3c4563f38e44a25cfac1f07ff5a02a8
http://git.alsa-project.org/?p=alsa-driver.git;a=blob_plain;f=drivers/aloop-kernel.c;hb=e0570c46e3c4563f38e44a25cfac1f07ff5a02a8
http://git.alsa-project.org/?p=alsa-driver.git;a=blob_plain;f=drivers/aloop-kernel.c;hb=e0570c46e3c4563f38e44a25cfac1f07ff5a02a8
http://www.alsa-project.org/main/index.php/Asoundrc
http://www.alsa-project.org/main/index.php/Asoundrc
http://www.volkerschatz.com/noise/alsa.html
http://www.volkerschatz.com/noise/alsa.html
http://www.suse.de/~mana/alsa090_howto.html
http://www.suse.de/~mana/alsa090_howto.html
http://www.tuxradar.com/content/how-it-works-linux-audio-explained
http://www.tuxradar.com/content/how-it-works-linux-audio-explained
http://people.redhat.com/~jkysela/RHEL5/loop/BACKGROUND
http://people.redhat.com/~jkysela/RHEL5/loop/BACKGROUND
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6.32.y.git;a=blob;f=include/sound/pcm.h;
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6.32.y.git;a=blob;f=include/sound/pcm.h;
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6.32.y.git;a=blob;f=include/sound/pcm.h;
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6.32.y.git;a=tree;f=Documentation/driver-model
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6.32.y.git;a=tree;f=Documentation/driver-model
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6.32.y.git;a=tree;f=Documentation/driver-model
http://wiki.audacityteam.org/wiki/Bit_Depth
http://wiki.audacityteam.org/wiki/Bit_Depth
http://linux.die.net/lkmpg
http://linux.die.net/lkmpg
http://www.xml.com/ldd/chapter/book
http://www.xml.com/ldd/chapter/book
http://www.linuxjournal.com/article/6735?page=0,1
http://www.linuxjournal.com/article/6735?page=0,1
http://www.alsa-project.org/main/index.php/FramesPeriods
http://www.alsa-project.org/main/index.php/FramesPeriods
http://www.tldp.org/LDP/tlk/
http://www.tldp.org/LDP/tlk/
http://elinux.org/High_Resolution_Timers
http://elinux.org/High_Resolution_Timers
http://www.kernel.org/doc/ols/2006/ols2006v1-pages-333-346.pdf
http://www.kernel.org/doc/ols/2006/ols2006v1-pages-333-346.pdf
http://www.tldp.org/LDP/khg/HyperNews/get
http://www.tldp.org/LDP/khg/HyperNews/get

	Introduction
	Premise
	Initial project issues

	Architectural overview of PC audio
	Concept of minivosc
	Driver structures
	Execution flow and driver functions
	Audio data in memory (buffers) and related execution flow
	The sound of minivosc - Driver execution modes

	Conclusions
	Acknowledgments

