
An Open-Source C++ Framework for Multithreaded Realtime
Multichannel Audio Applications

Matthias GEIER1, Torben HOHN2 and Sascha SPORS1

1Quality & Usability Lab, TU Berlin
Ernst-Reuter-Platz 7
10587 Berlin, Germany

matthias.geier@tu-berlin.de
sascha.spors@tu-berlin.de

2Linutronix GmbH
Auf dem Berg 3

88690 Uhldingen, Germany
torbenh@linutronix.de

Abstract

An open-source C++ framework is introduced which fa-
cilitates the implementation of multithreaded realtime
audio applications, especially ones with many input
and output channels. Block-based audio processing is
used.

The framework is platform-independent and differ-
ent low-level audio backends can be used for both real-
time and non-realtime operation. Support for further
backends can be added easily.

Keywords

MIMO, realtime, multithreading, C++

1 Introduction

Most realtime audio processing applications
which have to handle a high number of input and
output channels are bound to a specific realtime
audio framework. This is not a problem in itself,
because there are several very good frameworks
available. Some of them can be used on several
platforms and some of them even have the possi-
bility to switch between different audio backends.

Such frameworks are perfectly suitable to cre-
ate stand-alone applications. But what if you
want to compare the audio output of your pro-
gram with the prototype algorithm you realized
in your favorite software for numerical process-
ing? Wouldn’t it be nice to create a shared library
for this software directly from your realtime C++
code? And while we are at it, wouldn’t it be nice
to use the same source code to create a plugin for
your favorite graphical patching software?

Multichannel applications often have an em-
barrassingly high potential for parallel compu-
tation on multi-processor/multi-core computers,
especially if they have many output channels.
Wouldn’t it be nice if parallel processing would be

automatically provided in all the aforementioned
scenarios?

To tackle these challenges, this paper presents
a new C++ framework for interactive multiple-
input/multiple-output (MIMO) audio applica-
tions. It is part of the Audio Processing Frame-
work (APF)1, which is free software released un-
der the GNU General Public License (GPL)2.

Applications created with this framework are
automatically capable of multithreading. The
number of audio threads is chosen by the user and
does not change during runtime. The scheduling
mechanism is simple and static, yet effective (see
section 5). Applications are not bound to a spe-
cific audio driver. Audio backends for both real-
time and non-realtime operation can be switched
easily (at compile time) and new backends can be
added by the user. This way, it is possible to im-
plement audio algorithms for a realtime applica-
tion, but the algorithms can nevertheless be eval-
uated block-by-block in a non-realtime manner.
For more information about the audio backends
and their usage see section 4.6.

2 Target Applications

The presented framework can be used for any
block-based audio application with many input
and output channels. The overall topology of
the audio processing graph should not change too
much during runtime, but the number of chan-
nels and other system parameters may change dy-
namically. Typical applications are sound field
synthesis, multichannel echo cancelling and loud-
speaker/microphone beamforming. The target
systems range from stereo processing on a sim-
ple laptop to dedicated computer systems driv-

1http://tu-berlin.de/?id=apf
2http://gnu.org/copyleft/gpl.html

mailto:matthias.geier@tu-berlin.de
mailto:sascha.spors@tu-berlin.de
mailto:torbenh@linutronix.de
http://tu-berlin.de/?id=apf
http://gnu.org/copyleft/gpl.html


ing tens or even hundreds of loudspeaker chan-
nels with as many input channels. The first ap-
plication using the framework is the SoundScape
Renderer (SSR)3, a tool for object-based spatial
audio reproduction providing a variety of render-
ing algorithms [Geier et al., 2008].

3 Realtime & Non-Realtime Threads

An application based on the presented framework
uses two different kinds of threads. The actual au-
dio processing is mostly done in a callback func-
tion which is called successively – for every au-
dio block – from the audio backend. The thread
running this callback function is called realtime
thread because only a given time period is avail-
able for the computation of each audio block.
Therefore, only a certain fixed amount of calcula-
tions may be done, depending on block size, sam-
pling rate, processor speed and other factors. Ad-
ditionally, no blocking functions may be called in
the realtime thread. Especially operations like al-
locating memory, reading and writing of files and
sockets, creating and joining threads and waiting
for mutexes have to be avoided. If processing of
an audio block is not finished at the required time,
the output data is not ready on time and has to be
discarded, leading to errors in the output signal.

The other kind of thread is simply called non-
realtime thread. Threads of this kind handle input
from the user interface, read and write files, re-
serve and free memory, communicate via network
and do anything else which is not related to audio
processing.

The timing of the audio callback function is
normally bound to the soundcard, which imposes
the mentioned realtime constraints. However, –
as described in section 4.6 – there is a special au-
dio backend which can be used for offline process-
ing. In this case, realtime-safety would not be
needed anymore. The thread running the audio
callback function should nevertheless be consid-
ered as realtime thread. Audio algorithms should
be backend-agnostic and assume to be potentially
used in a realtime context.

In interactive applications, information must be
transferred from the non-realtime thread to the
realtime thread. This should not be done by writ-
ing to and reading from the same memory loca-
tion in both threads, respectively, because this

3http://tu-berlin.de/?id=ssr

can lead to data corruption. A mutex cannot
be used either, because this would be realtime-
unsafe. Instead, a lock-free queue is used (see
section 4.3).

If more memory is needed for audio processing
or if unused memory shall be freed, this may not
be done in the realtime thread. Therefore, if new
memory is needed, it is allocated and initialized
in the non-realtime thread and then a pointer to
the new data is transferred to the realtime thread
in a realtime-safe way. This is realized by means
of the realtime-safe list described in section 4.4.

4 Components

The framework is implemented in C++ using the
Standard Template Library (STL). Many struc-
tural decisions are made at compile time to avoid
unnecessary runtime overhead. In most cases,
generic programming is preferred over classic
object-oriented programming. Dynamic polymor-
phism is only used where actually needed.

The framework does not define a special data
type for audio data, only the audio backends (see
section 4.6) define a sample type (in most cases
– but not necessarily – float). Within the audio
algorithms themselves, arbitrary data types can
be used.

The following sections describe the main com-
ponents of the framework.

4.1 Lock-free Ringbuffer

The key component to make the framework
both realtime-safe and thread-safe is a lock-
free ringbuffer. It is available as the class
LockFreeFifo<Command*> and it is only thread-
safe for single-reader/single-writer access. This
means that only one single thread is allowed to
use the push() function to write data to the ring-
buffer and only one other thread is allowed to use
the pop() function to retrieve data from the ring-
buffer. It has to be ensured by the programmer
that each function is only used in the appropriate
thread.

4.2 Command Queue

Two instances of the lock-free ringbuffer are
used in the CommandQueue, a lock-free queue for
arbitrary user-defined commands which can be
defined by implementing the member functions
execute() and cleanup().

http://tu-berlin.de/?id=ssr


Every command object is created and initial-
ized in a non-realtime thread, all necessary mem-
ory is allocated at this time. A pointer to the fully
constructed command object is pushed to an in-
stance of LockFreeFifo<Command*>. The main
realtime thread periodically (usually once per au-
dio block) processes all items from this queue
with the function process_commands(), which in
turn invokes the virtual execute() function on
each command object. Of course, the execute()
function is not allowed to use any realtime-unsafe
functions. After execution, it is not safe to deal-
locate the memory used by the command object
within the realtime thread. Therefore, the com-
mand object is pushed into another instance of
LockFreeFifo<Command*> to be deallocated in
the non-realtime thread. Before that, the vir-
tual cleanup() function is called from the non-
realtime thread.

To add a command to the CommandQueue, the
member function push() is used, the function
wait() can be used to wait until the command is
actually executed and cleaned up. No actual com-
mands are defined by the CommandQueue, only the
abstract base class Command from which arbitrary
commands can be derived as long as they pro-
vide an implementation for the execute() and
cleanup() member functions.

The transport of information from the realtime
thread to the non-realtime thread also has to be
triggered by the latter. For that, commands can
be defined which query the information in the
execute() function and provide it to the non-
realtime thread in the cleanup() function.

Typically, an application holds exactly one in-
stance of CommandQueue which is responsible for
all the communication to and from the realtime
thread. If there are several non-realtime threads
– for example for a graphical user interface and
a network interface which work in parallel – ac-
cess to the CommandQueue has to be locked with a
mutex. This is not done automatically.

4.3 Thread-safe Data Access

To avoid parallel writing and reading at the
same memory location from a realtime and
a non-realtime thread, respectively, the class
SharedData<T> can be used. It wraps a single
variable of any standard or user-defined type. In-
ternally, it uses a reference to a CommandQueue to

push a custom Command which holds a copy of the
value that is assigned to the actual variable in the
execute() function.

4.4 Realtime-safe List

To handle a dynamic number of audio channels,
the realtime-safe data structure RtList<Item*> is
used. In the non-realtime thread, list elements are
created, initialized and added to the list with the
add() function and elements are removed with the
rem() function, whereby the deallocation of any
memory also happens in the non-realtime thread.
Communication between threads is again handled
by means of the CommandQueue. In the realtime
thread, the relevant functions of a std::list can
be used, namely begin(), end(), empty() and
size().

When adding items to the RtList, ownership is
passed to the list. That means the responsibility
to destroy the object at an appropriate time is
transferred to the list and user code may not call
delete on an object owned by an RtList.

4.5 MIMO Processor

The class MimoProcessor is the base class for
the signal processing part of an application.
When deriving from MimoProcessor, several tem-
plate arguments have to be used. The first
one is the deriving class itself. This C++ id-
iom is called Curiously Recurring Template Pat-
tern (CRTP) [Coplien, 1995] and it is used to
achieve compile-time polymorphism. The rest
of the template arguments are so-called policy
classes. The user can choose from a given set
of policies and even implement new ones. This
programming strategy is called policy-based class
design [Alexandrescu, 2001]. One of the policies
selects the audio backend which is described in
section 4.6.

The MimoProcessor incorporates one instance
of CommandQueue for all realtime-safe and thread-
safe operations. Instances of RtList and
SharedData can be used with this queue.

4.6 Audio Backends

The MimoProcessor base class is not limited to
a specific audio backend. By means of policy-
based design, the audio backend can be specified
as template argument at compile time.

Currently, the JACK Audio Connection Kit



(JACK)4 is supported (jack_policy), support
for PortAudio5 is underway and further audio
backends can be added easily.

A special policy class is the pointer_policy,
which can be used with any C or C++ program;
in this case, the audio callback function has to
be called explicitly. This can be used in a re-
altime context, for example in an External for
Pure Data6 and Max 7 (utilizing the flext library).
However, it can also be used in a non-realtime
context for offline processing, for example in a
MEX-file (shared library) for Matlab8 and GNU
octave9 or in an application which reads all inputs
from a multichannel audio file and writes all out-
puts to another multichannel file. Example code
is available for all mentioned applications.

4.7 Crossfade

When doing block-based processing, the input sig-
nal is divided into consecutive blocks of audio
data and it is assumed that all parameters of the
algorithm are constant during one audio block.

Parameter changes only happen between blocks
and this can very often lead to audible artifacts
due to discontinuities in the resulting output sig-
nal. One way to reduce these errors is to calcu-
late each block two times – once with the param-
eters of the previous block and once with the cur-
rent parameters – and make a crossfade between
the two resulting blocks. With large parameter
changes and small blocksizes there may still be
audible artifacts, but in most cases the transitions
become inaudible.

The described crossfade functionality is built
into the MimoProcessor. Only if parameters
change – as noticed by the CommandQueue – the
specified audio algorithm is processed twice and
a crossfade is done automatically. In static sce-
narios the overhead of crossfading may not be
wanted. Therefore, the whole functionality can
be switched off at compile time.

5 Parallel Processing

The desired audio processing algorithm has to be
organized in several lists of type RtList<Item*>.

4http://jackaudio.org
5http://portaudio.com
6http://puredata.info
7http://cycling74.com/products/max
8http://mathworks.com/products/matlab
9http://gnu.org/software/octave

These lists hold polymorphic base class pointers
and allow the execution of the virtual function
Item::process() on each list item. To do the
actual signal processing, item classes have to be
defined – derived from the class Item – and they
have to implement their signal processing algo-
rithms in the process() function. By implement-
ing the list items and assembling them into lists,
the programmer can establish the overall audio
processing graph. The different lists can be seen
as stages of the algorithm. Lists are processed
one after each other, items within one list are pro-
cessed in parallel by several threads.

The process() function is called from a real-
time thread and has to fulfill the following con-
straints. It may write data only to places where
the item has exclusive access, either in mem-
ber variables of the object itself or in dedicated
memory areas elsewhere. It may read data from
any of the RtLists except the list where its ob-
ject belongs to, because other list elements could
be written to at the same time by another real-
time thread. The amount of memory used by a
list item may not change during its lifetime. It
must be allocated in the non-realtime thread and
when the item is removed, its memory must also
be deallocated in the non-realtime thread. This
happens automatically if the add() and rem()
functions of the RtList are called from the non-
realtime thread.

Especially in applications with a dynamic num-
ber of channels, RtLists can be iterated over by
means of the begin() and end() functions which
reflect possible changes in the length of the list.
In less dynamic scenarios, references to other ob-
jects – as long as they will not be removed during
runtime – can also be specified at initialization of
the list item.

Parallel processing is achieved by automatically
executing different process() functions in differ-
ent realtime threads which can run in parallel on
multi-processor/multi-core computers. The num-
ber of realtime threads can be specified by the
user, according to the available resources, and this
number does not change during runtime. If N
threads are requested, N−1 worker threads are
created. The main audio thread – the one where
the audio callback function is called from – is nor-
mally created and controlled by the audio back-
end.

http://jackaudio.org
http://portaudio.com
http://puredata.info
http://cycling74.com/products/max
http://mathworks.com/products/matlab
http://gnu.org/software/octave


The distribution of list elements to the audio
threads is very simple. The main audio thread
gets every N -th item starting with the first, the
first worker thread gets every N -th item start-
ing with the second and so on until the (N−1)th
worker thread, which gets every N -th item start-
ing with the N -th. This very basic scheduling
mechanism may not be the best choice for arbi-
trary audio processing graphs, but it works quite
well for the targeted application areas. It works
best if the length of the lists is much bigger than
the number of threads and if the amount of work
done in the process() function is not too differ-
ent in all items of a given list.

The main audio thread and the worker threads
are synchronized with semaphores. Each worker
thread does a very simple cycle of operations re-
peatedly. It waits until signaled from the main
audio thread by a semaphore and then processes
all items of the current list which are chosen by
the aforementioned scheduling algorithm. When
finished, it signals to the main audio thread and
waits again until the next iteration. The cycle of
the main audio thread can be defined by the user.
Typically, several lists are processed one after
each other with the function _process_list().
Within this function, the specified list is set as
current list, the worker threads are signaled via
their semaphores to start processing and the main
audio thread itself then also processes the appro-
priate items of the current list. Afterwards, the
main audio thread waits until all worker threads
have signaled that they are done with their parts
of the list.

6 Additional Components

As mentioned in the introduction, all presented
components are part of the Audio Processing
Framework (APF). Additionally, several other
components are included in the APF, among them
a delay line, a partitioned convolution engine (us-
ing the FFTW library10), several specialized iter-
ator classes, math operations and many helper
functions. For a full list of features and more
detailed information see the online documenta-
tion11.

10http://fftw.org
11http://dev.qu.tu-berlin.de/projects/apf

h1,1(t)

h1,2(t)

h1,3(t)

h1,4(t)

input 1

h2,1(t)

h2,2(t)

h2,3(t)

h2,4(t)

input 2

+ output 1

+ output 2

+ output 3

+ output 4

Figure 1: Example MIMO system with 2 input chan-
nels and 4 output channels. In the general case of N
inputs and M outputs, N×M filters are needed.

7 An Example

Figure 1 shows a generic MIMO system with a
filter between each input and each output. The
main objective of the programmer is to identify
which parts of the algorithm shall form separate
objects, how they depend on other objects and
which of these objects can be processed in paral-
lel. In the example, three kinds of objects come to
mind – the input channels, the filters and the ad-
ditions (which can be combined with the output
channels).

To implement the filter class, the convolver
which was mentioned in the previous section can
be used. A filter object is always bound to one
specific input channel, so a reference can be spec-
ified at initialization and stored within the filter
object. Because of that, the process() function
of the filter object does not need to iterate over
the whole list of inputs but can rather get the
input data directly via the internal reference to
the corresponding input channel. Input data is
processed by the convolver and the result is writ-
ten to a member variable inside the filter object.
Apart from these processing instructions, the fil-
ter object must also provide means for the fol-
lowing stages of the algorithm to read the output
data of the filter. This is normally done by pro-
viding (read-only) begin() and end() functions
which return iterators to the data. Of course, the
filter class has to be derived from the class Item

http://fftw.org
http://dev.qu.tu-berlin.de/projects/apf


so that all filter objects can be added to a list of
type RtList<Item*>. Having a dynamic number
of inputs is no problem. Whenever an input is
added, a whole set of filter objects – one for each
output channel – has to be created an added to
the list at once. To safely switch filter coefficients
during runtime, the CommandQueue is used.

The other class which has to be defined in this
example is for the addition, which can be com-
bined with the output channels. Each addition
corresponds to one unique output channel. The
process() function of the addition object must
iterate over all filter objects and find out which of
the filter outputs must be added. Therefore, each
filter object must contain a flag of some kind to be
associated with a certain output channel. If the
number of inputs is supposed to change dynam-
ically, this information cannot be stored in the
addition object itself because this would require
dynamic memory allocation which is not allowed
in a realtime context. Once all relevant filter data
is added, the result can be written directly to the
corresponding output.

Most of the work is done in the process()

functions. The only thing left to do is to call
_process_list() for each of the defined lists in
the main audio callback function.

8 Acknowledgements

Thanks to Till Rettberg for many helpful sug-
gestions and discussions. This work was partly
funded by German Research Foundation (DFG)
grant FOR 1557.

References

Andrei Alexandrescu. 2001. Modern C++ De-
sign: Generic Programming and Design Pat-
terns Applied. Addison-Wesley.

James O. Coplien. 1995. The column without
a name: Curiously recurring template patterns.
C++ Report, 7(2):24–27.

Matthias Geier, Jens Ahrens, and Sascha Spors.
2008. The SoundScape Renderer: A unified
spatial audio reproduction framework for arbi-
trary rendering methods. In 124th Convention
of the Audio Engineering Society.


	Introduction
	Target Applications
	Realtime & Non-Realtime Threads
	Components
	Lock-free Ringbuffer
	Command Queue
	Thread-safe Data Access
	Realtime-safe List
	MIMO Processor
	Audio Backends
	Crossfade

	Parallel Processing
	Additional Components
	An Example
	Acknowledgements

