Ardour3 - Video Integration

Robin Gareus
gareus.org, linuxaudio.org, CiTu.fr
Paris, France
robin@gareus.org

Abstract

This article describes video-integration in the Ardour3
Digital Audio Workstation to facilitate sound-track
creation and film post-production.

It aims to lay a foundation for users and developers,
towards establishing a maintainable tool-set for using
free-software in A/V soundtrack production.

To that end a client-server interface for communi-
cation between non-linear editing systems is specified.
The paper describes the reference implementation and
documents the current state of video integration into
Ardour3 and future planned development. In the final
sections a user-manual and setup/install information
is presented.

Keywords

Ardour, Video, A/V, post-production, sound-track,
film

1 Introduction

The idea of combining motion pictures with sound
is nearly as old as the concept of cinema itself.

Ever since the invention of the moving pic-
ture, films have entailed sound and music. Be
it mechanical music-boxes accompanying candle-
light projections, the Kinetoscope in the late 19th
century; live-music supporting silent-films in the
early 20th century to completely digital special
effects in the 2000s.

Charlie Chaplin composed his own music for
City Lights (1931) and many of his later movies.
He was not clear whose job was to score the sound-
tracks [Scaruffi, 2007]. That was the exception,
and few film-makers would imitate him. In the
1930s, after a few years of experimentation, scor-
ing film soundtracks became an art in earnest. By
the mid-1940s, cinema’s composers had become a
well-established category.

Apart from the film-score (music), a film’s
soundtrack usually includes dialogue and sound
effects.

One goal is to synchronize dramatic events hap-
pening on screen with musical events in the score
- but there are many different (artistic) methods
for syncing music to picture. With only a few ex-
ceptions - namely song or dance scenes - music
composition and sound-design usually takes place
after recording and editing the video [Wikipedia,
2011).

Major problems persisted, leading to motion
pictures and sound recording largely taking sep-
arate paths for a generation. The primary is-
sue was - and is - synchronization: pictures and
sound are recorded and played back by separate
devices, which were difficult to start and main-
tain in tandem. This stigma still prevails for most
professional audio/video recordings for both cre-
ative and technical: ie. there is too much gear
on camera already, more (budgetary) choices are
available, unions define different job functions. ...

Post-production requires to synchronize the
original audio recorded on the set (on-camera
voice) with the edited video. In the analog days
visual cues (slate) have been used towards that
end. With the advent of digital technology time-
code (most commonly SMPTE produced by the
camera) is commonly recorded along with the
sound to allow reconstructing the audio-tracks af-
ter the video has been cut.

As you can imagine, the technical skills and de-
tails involved can become quite complex and nei-
ther composers nor sound-designers do want to
concern themselves with that task. Creative tech-
nicians have come up with various tools to aid the
process.

These days many Digital Audio Workstations

provide features to import EDL (edit decision
lists) or variants thereof (AAF: Advanced Author-
ing Format, MXF: Material eXchange Format,
BWF: Broadcast Wave Format, OMF+OMEFTI:
Open Media Framework Interchange,...) and
display a film-clip in sync with the audio in or-
der to facilitate soundtrack creation.

There are very few to none free-software solu-
tions for this process. However, Ardour [Davis
and others, 1999 2012] provides nearly all rele-
vant features for composition, recording as well
as mastering. The underlying JACK audio con-
nection kit allows for inter-application synchro-
nization [Davis and others, 2001 2012] and sug-
gests itself to be used in the context of film post-
production.

Figure 1: Ardour 3.0-betal with video-timeline
patch and video-monitor

2 Design

Other FLOSS projects are tackling the process of
video production (NLE: non-linear editing), most
notably Blender [Foundation, 1999 2012], lives
[Finch, 2004 2012] and cinelerra [Ltd, 2002 2011];
however these emphasize on the visuals and often
significantly lack on the audio side.

Other free-software digital audio workstations
(DAWSs) capable of the job include musescore
[Schweer and others, 1999 2012] and qtractor
[Capela, 2005 2011] amongst others, however
with MIDI support arriving in Ardour3, contin-
ued cross-platform support and available high-end
professional derivatives (Mixbus, Harrison) it is
currently the most suitable and promising DAW
from a developer’s perspective.

2.1 Design-goals and use-cases

The aim is to provide an easy-to-use, professional
workflow for film-sound production using free-
software. More specifically: Integration of video-
elements into the Ardour Digital Audio Worksta-
tion.

The resulting interface must not be limited to
the software at hand (Ardour, Xjadeo, icsd) but
allow for further adaption or interoperability.

2.1.1 General

An important aspect of the envisaged project is
modular design. This is a prerequisite to allow the
project to be developed gradually and maintained
long-term. With Interface definitions in place, the
building blocks can be implemented individually.
It is also crucial to cope with the current situation
of video-codec licensing: Depending on the avail-
ability of licenses and user preferences, it should
be possible to en/disable certain parts of the sys-
tem without breaking overall functionality.

The utter minimum for both composing as well
as producing sound-tracks is a video-player that
synchronizes to an external time-source provided
by the DAW.

To navigate around in larger projects a time-
line becomes very valuable.

Session-management as well as archiving is im-
portant as soon as one works on more than one
project. Project-revisions or snapshots come in
handy.

Import, export and inter-operability with other
software: Those are likely going to be the hardest
part, yet also the most important.

Transcoding the video on import is neces-
sary to provide smooth response times for for-
ward/backward seeking. It may also be re-
quired for inter-operability (codecs). Demuxing is
needed to import edited video-tracks along with
the original set of audio tracks, aligned to time-
code.

Exporting the soundtrack means aligning the
materials and multiplexing the original video with
the audio or to provide exact information on how
to do that. Various formats - both proprietary
and free - are in use which complicates the pro-
cess.

Sometimes you (or the director) notices dur-
ing sound-design, that some video edit decisions
were not optimal; or that there is just a video
frame missing for proper alignment. With digital

technology incremental updates of the video are
not only feasible but relatively simple. Empower-
ing the audio-engineer to quickly do minor video
editing is a very useful but also dangerous feature.

2.1.2 Short-Term

Increase the usability of existing tools with fo-
cus on soundtrack creation (video-timeline, video-
monitor).

In particular the learnability and efficiency
for the workflow should be streamlined: video-
transcoding, video-monitor and A/V-session
management functionality should be accessible
from a single application. The complexity of the
whole process should be abstracted and focus on
the use-case at hand while not limiting the actual
system.

Practically this is mapped to adding support
into Ardour3 to communicate with and control
the Xjadeo [Gareus and Garrido, 2006 2012b]
video-monitor. Furthermore a video-timeline axis
is aligned to the Ardour-canvas. Lastly, the pos-
sibility to invoke ffmpeg from within Ardour’s
GUI to import and export audio/video is im-
plemented. The user-interaction is kept to a
minimum: Import Video, Show/Hide Timeline,
Show/Hide video-monitor.

2.1.3 Mid-Term

Improve system integration. Configuration pre-
sets for multi-host setups. Streamline video-
export, MUX /codec/format presets.

Stabilize video-session and edit API. Add in-
teroperability with external video-editors. Import
various EDL dialects.

2.1.4 Long-Term

Top Notch client-server distributed A/V non-
linear editor, using Ardour3 for the sound, dedi-
cated GUI for the video. Seamless integration.

2.2 Architecture

Ardour itself is separated in two main parts: the
back-end (audio-engine, libardour) which man-
ages audio-tracks, audio-routes and session-state
and the front-end (gtk2-ardour) which provides a
stateless graphical user interface to the back-end.

The idea is to construct the system such than
intrusion in Ardour itself is minimal: Only Ar-
dour’s front-end GUI should be aware of video-
elements.

The video-decoding and video-session manage-
ment is done in a separate application. A client-
server model is used to partition tasks. Ardour as
client does not share any of its resources, but re-
quests video-content from the server. The overall
outline is depicted in figure 2.

Ardour
— DAW :
& = !
1| R N S
L olE o8 3 (unless synced via MTC
o #H3s =z o —Trans
3 g Z I é g or JACK-Transport)
= =~ @] il
=l K-]
=|8
LV
&=

1csd

Xjadeo

(video—monitor)

(image—decoder)

Figure 2: Overview of the client-server architec-
ture

The video-server itself is a modular system.
The essential and minimum system comprises
a video-decoder and video-frame cache. Video-
frames are referenced by frame-number. Time-
code mapping is optional and can be done on
the client and server-side (using server-side ses-
sions). However, the server must provide infor-
mation about the file’s (or session’s) frame-rate,
aspect-ratio and start-time-offset. Furthermore,
the server must be able to present server-side ses-
sions as single file to the client.

Minimal configuration that needs to be shared
by the server and client is the server’s access URL
and document-root.

Even though tight integration is planned,
the prototype architecture leaves room for side-
chains. In particular this concerns extraction of
audio-tracks from video files as well as final mul-
tiplexing and mastering the final video. While
interfaces are specified to handle these on the
server-side, tight user-interface integration and
rapid prototyping motivates a client-side imple-
mentation. This is accomplished by sharing the
underlying file-system storage.

3 Interface

For read-only (no video-editing) access to video
information, all communication between the
client (here: Ardour) and the video-server is via
HTTP.

This is motivated by:

e HTTP is a well supported protocol with ex-
isting infrastructure.

e with client-side caching: throughput is more
important than low latency. HTTP overhead
is reasonably small!

e web-interface possibility
e persistent HT'TP connections are possible

e possibility to make use of established proxy
and load-balancing systems

3.1 Protocol: Request Parameters

HTTP verbs can be taken into account for spe-
cific requests e.g. HEAD: query file-information,
DELETE: remove assets, regions, files. The vast
majority will bet GET and POST requests.

The server URL must conform to RFC3986
specifications. It must be possible to have
the server in a sub-path on the server’s
root (e.g. http://example.org/my /server/).
The URI must allow path and file-
names to be added below that path (e.g.
http://example.org/my /server/status.html). A
default endpoint handler needs to catch access to
the doc-root and provide service for the following
requests URLs, which are described in further
detail below:

/status print server-status (user-readable, ver-
sion, etc) must return 200 OK if the server is
running.

/info return file or session info
/frame query image-frame data

/ generic handler to above according to request-
parameters

/admin/flush_cache (optional, POST) reset
cache

/admin/shutdown (optional, POST) request
clean shutdown of server

/stream (optional) server-side rendering of
video chunks - export and preview

'RGB24 frame sizes, thumbnail 160x90: 337kiB,
768x576/PAL:10.1MiB, 1920x1080/full-HD: 47.5MiB.
HTTP request/response headers are typically between 200
and 800 bytes.

/index/* (optional) file and directory index

/session/* (optional) server-side project and
session management

The file extension defines the format of the re-
turned data. For textual (non-binary) data, valid
requests include .html, .htm, . json, .xml, .raw,
.edl, .null. Valid image file extensions are . jpg,
.jpeg, .png, .ppm, .yuv, .rgb, .rgba. For video
streaming, the extension defines the container for-
mat e.g. .avi, dv, .rm, .ogg, .ogv, .mpg, .mpeg,
.flv, .mov, .mp4, .webm, .mkv, .vob, The
extension is case-insensitive.

Alternatively the format can be specified using
the format=FMT query parameter which overrides
the extension, if any.

3.1.1 File and Session information

The /info handler returns basic information
about the file or session.
Request parameters:

file file-name relative to the server’s document
root.

Reply:

version reply-format version. Currently 1, may
change in the future

framerate a double floating point value of video
frames-per-second

duration long integer count of video-frames

start-offset double precision - time of first video-
frame; specified in (fractional) seconds

aspect-ratio floating point value of the
width/height geometry ratio including
pixel and display-aspect ratio multipliers

width (optional) integer video width in pixels
height (optional) integer video height in pixels
length (optional) video-duration in seconds
size (optional) video-size in bytes

The raw (un-formatted) reply concatenates the
values above in order, separated by unix-newlines
("\n’, ASCII 0x0a). Optional values require all
previous values to be given: i.e. length requires
width and height.

json or xml formatted replies must return an
associative array with the key-name as specified

#curl -d file=tmp/test.avi \
http://localhost:1554/info

1

25.000

15262

0.0

1.833333

Figure 3: Example request of file information

in the reply format list. html or txt replies are
intended for user readability and may differ in
formatting, but should include the required in-
formation.

3.1.2 Image (preview, thumbnails)
Request parameters:

file file-name relative to the server’s document
root.

frame the frame-number (starting at zero for the
first frame).

w (optional) width in pixels - default -1: auto
h (optional) height in pixels - default -1: auto
format (optional) image format and/or encoding

If neither width or height are specified, the
original size (in pixels, not scaled with pixel or
display-aspect ratio) must be used. If both width
and height are given, the image must be scaled
disregarding the aspect-ratio. If either width or
height are specified, the returned image must be
scaled according to the movie’s real aspect ratio.

The default format is raw RGB, 24 bits per pix-
els.

3.1.3 Request video export, rendering
The /stream handler is used to encode a video on
the server.

Request parameters:

file file-name relative to the server’s document
root or session-id.

frame (optional) the frame-number (starting at
zero for the first frame) where to start encod-
ing. the default is 0, start at the beginning.

duration (optional) number of frames to en-
code (minus one), negative values indicate no
limit. A value of 0 (zero) must encode exactly

one video frame. the default value is -1: until
the end.

w (optional) width in pixels; default -1: auto
h (optional) height in pixels; default -1: auto
container (optional) video format; default : avi

nosound (optional) if set (1) only video is en-
coded - default: unset, 0

3.1.4 Server administration

Since the only way to communicate with the
server is HT'TP, specific interfaces are needed for
administrative requests. The current standard de-
fines only two; namely re-start (or cache-flush)
and shutdown.

These commands are mostly for debugging and
development purposes: The clean shutdown was
motivated to check for memory-leaks; but comes
in handy to launch temporary servers with each
Ardour-session.

Cache-flush is useful if the video-file changes.
Cached images must be cleaned and the de-
coders must release open file-descriptor and re-
read the updated video-file. Future implementa-
tions should actually monitor the file for modifi-
cation and do this automatically.

3.1.5 The Session API

Session API replicates /info, /frame and
/stream request-URLs below the /session/
namespace. Each request to those handlers must
specify a session query parameter. The file pa-
rameter - if given - can be used to identify chunks
inside a session.

Additional request handlers are needed to pro-
vide access to editing functionality, in particular
asset-management and clip arrangement.

The detailed description of the session API is
beyond the scope of this paper and will be pub-
lished separately 2.

3.2 Extensions
3.2.1 Web GUI
The /gui/ namespace is reserved for an end-user
web-interface which is out of the scope of this

paper. Currently a prototype using XSLT and
icsd2’s XML function is prototyped in XHTML

2A prototype of the session API for research
is implemented in 1libs/libsodan/jvsession.c and
src/ics_sessionhandler.c

and JavaScript and available with the source-code
(see figures 4, 7).

Bl Edt Vew Go Bookmaks Took Tabs Help

R] €

src-in src-out | rec-in rec-out
00:00:13:10 00:00:21:04 | 00:00:13:00 00:00:20:19
00:00:04:10 00:00:08:24 | 00:00:20:19 (00:00:25:08
00:00:19:07 00:00:28:19 | (00:00:25:08 00:00:34:20
00:00:42:18 00:00:5L:13 | 00:00:34:20 00:00:43:15
00:01:16:24 00:0L:19:15 | (00:00:43:15 (00:00:46:06
00:00:28:07 00:00:34:03 | (00:00:46:06 00:00:52:02
00:00:38:10 00:00:41:12 | 00:00:52:02 00:00:55:04
00:00:44:04 00:00:46:10 | (00:00:55:04 00:00:57:10
00:00:03:19 00:00:12:0L | 00:00:57:10 00:0L:05:17
00:00:05:19 00:00:13:21 | 00:0L:05:17 [IGOHGINISHIS]
00:01:55:20 00:02:0L:18 | 00:01:22:13 00:0L:28:11
00:04:04:06 00:04:15:04 | 00:0L:28:11 (00:0L:39:09
00:10:16:08 00:10:21:08 | (00:01:39:09 00:0L:44:09
00:06:21:23 00:06:27:07 | 00:0L:44:09 00:0L:49:18
00:00:37:07 00:00:41:0L | 00:0L:49:18 00:0L:53:12
00:06:27:07 00:06:30:06 | 00:0L:53:12 00:0L:56:11
00:22:07:00 00:22:09:08 | 00:0L:56:11 00:0L:58:19
00:14:38:08 00:14:40:24 | (00:0L:58:19 00:02:0L:10
00:06:07:06 00:06:10:15 | 00:02:0L:10 00:02:04:19
00:14:44:08 00:14:54112 | (00:02:04119 00:02:14:23
00:06:15:20 00:06:19:10 | 00:02:14:23 00:02:18:13
00:14:55:19 00:15:10:21 | 00:02:18:13 00:02:33:15
00:05:49:24 00:05:54i12 | 00:02:33:15 00:02:38:03
00:11:10:23 00:11:22:04 | 00:02:38:03 00:02:49:09
00:18:02:00 00:18:31:23 | 00:02:49:09 00:03:19:07
00:13:52:21 00:14:12:24 | 00:03:19:07 00:03:39:10
00:21:49:17 00:21:56:23 | 00:03:39:10 00:03:46:16
00:13:33:09 00:13:36:20 | 00:03:46:16 00:03:50:02
00:04:15:07 00:04:26:08 | (00:03:50:02 00:04:0L:03
00:04:41:24 00:04:46:06 | (00:04:0L:03 00:04:05:10
00:18:31:02 00:18:47:18 | 00:04:05:10 00:04:22:0]

duration _srcID srchiane
00:00:07:19 1 CO0L9_2

00:00:04:14 Co020_2

00:00:09:12 o012 2

00: 00:08: 20 Co005_2

00:00:02:16 Co005_2

00:00:05:21 Co006_2

00:00:03:02
00: 00:02:06
00: 00:08:07
00: 00: 08: 02
00:00:05:23
00:00:10:23
00: 00:05:00
00: 00:05:09
00:00:03:19
00:00:02:24
00: 00:02: 08
00:00:02:16
00:00:03:09
00: 00:10: 04
00:00:03:15
00:00:15:02
00:00:04:13
00:00:11:06
00:00:29:23
00:00:20:03
00:00:07:06
00:00:03:11
00:00:11:01
00: 00:04:07
00:00:16:16

C0006_2
C0006_2
C0007_2
0029 2
wicked_vTo02
wicked_vT002
wicked_vT002
Untitled

Untitledl
Untitled
wicked_vT002
wicked_vT002
Untitled
wicked_vT002
Untitled
wicked_vT002
Untitled
wicked_vT002
wicked_vT002
wicked_vT002
wicked_vT002
wicked_vT002
Untitled
Untitled

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| wicked_vT002 =l

Figure 4: icsd2: JavaScript+XHTML EDL editor

3.2.2 Out-of-band notifications

Since it is not possible to use HT'TP to send out-
of-band notifications, it is not a suitable protocol
for concurrent editing.

Both XMPP (Extensible Messaging and Pres-
ence Protocol) and OSC (OpenSoundControl) are
options.

OSC has less overhead, yet only OSC over
TCP provides reliable transport. XMPP has
the advantage that by spec processing between
any two entities at the server must be in order.
Furthermore XMPP is a protocol intended for
publish/subscribe, and capable to notify multiple
clients. Authentication methods have also been
defined for XMPP, whereas both authentication
and Pub/Sub would require custom development
on top of OSC.

3.2.3 Authentication and Access Control

Both HTTP as well as XML offer means of au-
thentication below the application layer.

While some requests motivate access-control as
part of the protocol - e.g. user-specific read-only
access to certain frame-ranges or chunks - these
can in general be handled by URI filtering, much
as a .htaccess files does in apache.

3.3 Server Internal API

This section covers the planned interface for
server-side sessions and non-linear video-editing.
The back-end is partially implemented in icsd2
and there is a basic web-interface to it.

3.3.1 Database and persistent session
information storage

The server keeps a database for each session. A
session consists of one or more chunks (audio or
video sources) and a map how to combine them.
Furthermore the session-database includes config-
uration and session-properties in a generic key-
value store.

An extended EDL table is used to for map-
ping the chunks. It provides for (track) layer-
ing of chunk-excerpts (in-point, out-point). The
data-model does not yet provide for per edit or
per chunk attributes (zoom, effect automation)
but transitions between chunks can be specified
in EDL style. The current database schema can
be found in source-code.

3.3.2 Server-side video monitoring

An important feature is to be able to to physi-
cally separate audio (Ardour) and video (server
and monitor). This is motivated by various fac-
tors: All video-outputs of the client computer
may be needed for audio, leaving none available
for a full-screen video projector. It also preempts
resource conflicts between audio processing and
video-decoding.

To provide server-side video monitoring (video-
display), two approaches are currently proto-
typed:

e monolithic approach: share the decoder and
frame-cache back-end between the HTTP-
server and the video-monitor using shared-
memory.

e modular approach: share the source-
code/libraries: ~ HTTP-server and video-
monitor are independent applications.

The former obviously requires less resource and
puts less strain on the server (memory and CPU
usage) at the cost of potential instability (resource
conflicts) since maintaining cache-coherence com-
plicates the code.

A middle-ground - building a video-monitor on
top of the existing HTTP frame/ interface - is
unsuitable for low-latency seeks. Even though it
performs nicely in linear playback it effectively
purges the cache and introduces a penalty for
time-line use.

With computing resources being easily avail-
able (and cheap compared to video-production in

general), a modular approach - using independent
video-monitor software - is the way to follow.

3.3.3 Server to Server communication

A cache-coherence protocol MOESI (Modified,
Owned, Exclusive, Shared, Invalid) is envisaged
to distribute load among servers. An algorithm
based on file-id and frame-number can be used to
dispatch requests to servers in a pool. This can
be done directly in the client implementation or
by a proxy-server (http load balancer).

Server-to-server communication will use pub-
lish/subscribe to synchronize and distribute up-
dates among servers in the pool.

4 Implementation

Historically things went a bit backwards. Af-
ter the groundwork (Xjadeo, Ardourl) had been
laid, different endeavours (gjvidtimline, xj-five)
culminated in the video-editing-server software
(vesd) for Ardour3. The recurring need to fo-
cus on movie-soundtracks motivated the short-
term goals of the current implementation: Ar-
dour3 [Davis and others, 1999 2012] provides the
DAW as well as the GUI. The video-server (icsd)
project is named Sodankyld [Gareus, 2008 2012]
after its place of birth.

4.1 client — Ardour3

The patch® can be broken out into small parts.
e Video-timeline display
e HTTP interaction with the video-server
e Xjadeo remote control

e ffmpeg interaction

Dialogs (the largest part)

e Support and helper functions

The implementation is completely additive?, and
all video related code is separated by #ifdefs.

4.1.1 Video timeline

gtk2_ardour/video_timeline.cc defines the
timing and alignment of the video-frames depend-
ing on the current scroll-position and zoom-level
of the Ardour canvas.

3http://gareus.org/gitweb/?p=ardour3.git;a=
commitdiff_plain;hp=master;h=videotl

4No existing code is removed or changed, however the
build-script and some of the documentation is modified.

The video-timeline is a wunique “ruler”
in Ardour (similar to bar/beat or
markers) and globally accessible via
ARDOUR_UI: :instance()->video_timeline.

The video-timeline contains video-frame images:
gtk2_ardour/video_image_frame.cc.

The timeline is populated by aligning the first
video-frame. The zoom-level (audio-frames per
pixel) and timeline-height * aspect-ratio (video-
frame width in pixels) define the spacing of video-
frames after the first frame. Images on the current
page of the canvas as well as the next and previous
page are requested and cached locally to allow
smooth scrolling.

VideoTimeLine and VideoImageFrame are the
only two classes that communicate with the video-
server. The former is used to request video-session
information (frame-rate, duration, aspect-ratio),
the latter handles (raw RGB) image-data. The
actual curl_http_get () function is defined in the
file video_image frame.cc which also includes a
threaded handler for async replies of image-data.

The GET request-parameters to query infor-
mation about the video-file are:
SERVER-URL/info7file=f1%leURI&format=plain
The GET request-parameters for image data are
as follows:

SERVER-URL/7frame=frame-number
&w=width&h=height
&file=fileURI&format=rgb

The width and height are calculated by us-
ing the video’s aspect-ratio and the height of the
timeline-ruler. Current options are defined in
editor_rulers.cc and include:

e “Small”: 3H;
e “Normal”: 4H,;
e “Large”: 6H;

with H; = Editor::timebar_height = 15.0;
pixels defined in editor.cc.

4.1.2 system-exec

Starting an external application with bi-
directional communication over standard-IO,
requires dedicated code.
gtk2_ardour/system_exec.cc implements a
cross-platform compatible (POSIX, windows)
API to launch, terminate and pipe data to/from
child processes.

It is used to communicate with Xjadeo ° as well
as to launch ffmpeg and the video-server (on lo-
calhost).

4.1.3 transcoding

gtk2_ardour/transcode_ffmpeg.cc includes
low-level interaction with ffmpeg. It is concerned
with locating and starting ffmpeg and ffprobe
executables as well as parsing output and
progress information. The command-parameters
(presets, options) as well as progress-bar display
is part of the transcode_video_dialog.cc.

4.1.4 Dialogs

The vast majority of the code contributed to Ar-
dour consists of dialogs to interact with the user.

gtk2_ardour/video_server_dialog.cc asks to
start the video-server on localhost. It is
shown on video-import if the configured
video-server can not be reached.

gtk2_ardour/add video_dialog.cc Called from
Session-menu — Import — Video, asks which
file to import. The file-selection dialog as-
sumes that the video-server runs on localhost
or the server’s document-root is shared via
NFS®. The dialog offers options to transcode
the file on import, or copy/hardlink it
to the session folder. Furthermore there
are options to launch the video-monitor
and set the Ardour session’s timecode-rate
to match the video-file’'s FPS (see figure
5). gtk2_ardour/video_copy-dialog.cc is
a potential follow-up dialog with progress-bar
and overwrite confirmation.

If the video-server is running on localhost,
the dialog also checks if the (imported) file
is under the configured document-root of the
video-server.

gtk2_ardour/transcode_video_dialog.cc
allows to transcode video-files on import. It
is recommended to do so in order to decrease
the CPU load and optimize I/O resource
usage of the video-decoder. The dialog
also allows to select an audio-track to be

Sactually xj-remote which in turn communicates with
Xjadeo, platform dependent either via message-queues or
RPC calls

SA prefix can be configured to be removed from the
selected path for making requests to the video-server.

Set vides Track

File: /tmpftsmm mypeg-avi 10 m-25.avi Browse
Options

den monitor.

ion framerate to match video-fps.

Cancel

Figure 5: A3: the video-open dialog

extracted from the video-file and imported
as audio-track into Ardour.

Transcode/ Import Video File

Options

e video: width = O

Bitrate { i manual override 640

Eztract audio: No audio
enable debug-mode: print fimpeg command & output to stdout.

Cancel Copy only Transcode / Import

Figure 6: A3: the import-video, transcode dialog

gtk2_ardour/open_video monitor_dialog.cc
optional settings for Xjadeo. This dialog
can be bypassed (configuration option)
and allows to customize settings of Xjadeo
that should be retained between sessions:
e.g. window-size, position and state,
On-Screen-Display settings, etc.

gtk2_ardour/export_video_dialog.cc is the
most complex dialog. It includes various
(hardcoded) presets for video-encoding and
ffmpeg options. It also includes a small
wrapper around Ardour’s audio-export
function.

4.1.5 video-monitor / Xjadeo

gtk2_ardour/video_monitor.cc implements in-
teraction with Xjadeo. In particular sending
video-seek messages if Ardour is using internal

transport and time-offset parameters if the video
is re-aligned.

Switching Ardour’s sync mechanism between
JACK and internal-transport automatically tog-
gles the way Ardour controls Xjadeo. Also
Xjadeo’s window state (on-top), on-screen-display
mode (SMPTE, frame-number display) as well
as the window position and size are remembered
across sessions. Ardour sets override-flags in
Xjadeo’s GUI that disable some of the direct user-
interaction with Xjadeo; in particular: you can
not close the monitor-window nor load different
files by drag-drop on the Xjadeo window or nei-
ther modify the time-offset using keyboard short-
cuts. These interactions need to be done through
Ardour.

4.1.6 misc

There are various small patches - mostly glue
- to Ardour’s editor_*.cc, ardour_ui*.cc
as well as preference (video-server URL) and
session-option (sync, pull up/down) dialogs.
Dedicated video functions have been collected
in gtk2_ardour/editor_videotimeline.cc and
gtk2_ardour/utils_videotl.cc

4.1.7 libardour

While the video-timeline patch itself only con-
cerns the Ardour GUI, a few helper functions se-
mantically belong in libardour. They are almost
exclusively related to saving preferences or resolv-
ing directories.

4.2 prototype server

The source-code includes a simple PHP script
tools/videotimeline/vseq.php that emulates
the behaviour of the video-server (no frame-
caching) and implements the minimal interface
protocol specifications. It is built on top of the
command-line applications: ffmpeg, ffprobe and
ImageMagick’s convert.

4.3 video-server — Sodankyla — icsd

The video-server was born in Sodankyld June
2008. It’s a motley collection of tools for handling
video files. The ‘image compositor socket dae-
mon’ (icsd - the names goes back to Ardour-1)
implements a video-frame-caching HTTP server
according to specs defined in section 3.1. icsd2 in
the same source-tree is a (work-in-progress) ver-
sion adding the video-session and NLE capabili-
ties.

By default icsd listens on all network inter-
faces’” TCP port 1554 and runs in foreground,
serving files below a given document-root.

usage: icsd [OPTION] <document-root>

The number of cached video-frames can be
specified with the -C <num> option. It defaults to
128. The IP address to listen on can be set with
-P <IPv4 address> (default: 0.0.0.0). There are
various options regarding daemonizing, chroot,
set-uid, set-gid and logging that allow icsd be
started as system-service. They are documented
in the manual-page.

Note that, icsd does not perform any access
control. As with a web-server, all documents be-
low the document-root are publicly readable.

The internal video frame-cache uses LRU
(least-recently requested video-frame) cache-line
expiry strategy. icsd is multi-threaded, it keeps
a pool of decoders and tries to map consecutive
frames from one keyframe to the same-decoder;
however a new decoder is only spawned if the cur-
rent one is busy in another thread.

+ 2001: A Space Odyssey |
© 2046

Control

00:52:53.21

letepper@ |[15steps

Status:
ready. (http:/localhost/video/frame. php?id=343&frame=76173)

s

Figure 7: icsd2: JavaScript+XHTML video-
monitor

icsd2 extends the simple API towards video-
session and non-linear-editing.

To allow interoperability with various client-
side tools, a REST-API is being defined. XLST
is used to export information in XML, as well as
generate XHTML pages. For prototyping and de-
bugging a simple web-player and JavaScript EDL
editor came to be (screenshot in figure 7).

5 QA and Performance Tests

The most important part is to assure fitness for
the purpose. Usability and integration is useless
if fundamental quality is not sufficient. Criteria
that require verification include accuracy, time-
code mapping, as well as latency and system-load.

Depending on the zoom-level video-frames in
the audio-timeline must be properly aligned. Dur-
ing playback the video-monitor must not lag be-
hind. Audio latency must be compensated so
that the video-frame on screen corresponds to
the audio-signal currently reaching the speakers.
The system load must remain within reasonable
bounds and the applications should run smoothly
without spiking.

5.1 Quality Assurance and Testing

Audio/Video frame alignment has been tested us-
ing the “time-stamp-movie-maker” [Gareus and
Garrido, 2006 2012a]. It was used to create
movies with time-code and frame-number ren-
dered on the image at most common frame-rates
(23.976, 24, 24.976, 25, 29.97df, 30, 59.94 and 60
fps) using common codecs + format combinations
(mjpeg/avi, h264/avi, h264/mov, mpeg4/mov,
theora/ogg). All 40 videos have been loaded into
Ardour and tested to align correctly.

[Edit Region Track View JACK indow kel
Frame: 25

=

00:00:01:00

Figure 8: testing time-code mapping using a time-
stamped movie

Latency compensation is verified by playing a
movie of a unique series of black and white frames
full-screen synchronously to an audio-track that
sends an impulse on every white frame. The
audio-impulse signal must occur aligned to the
(luminance) signal of the video within the bounds
of display frequency. Since there are 3 differ-
ent clocks (display-refresh frequency, video frame-
rate, audio sample-rate) involved the problem is
not trivial. However audio sample-rate is an order
of magnitude smaller than the usual video frame-

rates and can be neglected. Systematic latency-
compensation tests have successfully been per-
formed at 25fps file of alternating black and white
frames on a 75Hz display frequency. Other rates
have been verified but not analyzed in depth.

5.2 Performance tests

Performance is evaluated by benchmarking unit-
tests of the individual components as well as mon-
itoring overall system performance.

The former includes measuring request latency
to query video-frames which is further broken
up into distributing workload on multiple video-
decoders. An average session will spawn 16-20
video-decoders on a dual-core. The memory foot-
print of a decoder is negligible compared to the
cached image data, yet it greatly improves re-
sponse time when seeking in files to use a decoder
positioned close to the key-frame.

Request and decode latencies have been mea-
sured with ab - The Apache HTTP server bench-
marking tool as well as by timing the requests
with Ardour. Cache hits are dominated by trans-
fer time which is on the order of a few (1-3) mil-
liseconds depending on image-size and network.
Decoder latency is highly dependent on the geom-
etry of the movie-file, codec, scaling and CPU or
I/0O. On slower CPUs (< 1.6 GHz Intel) a full HD
video can be decoded and scaled at 25 fps using
mjpeg codec width only intra-frames at the cost of
high I/0. Faster CPUs can shift the load towards
the CPU. Parallelizing requests increases latency
to up to a few hundred milliseconds. This is in-
tended behavior: image for a whole view-point
page will arrive simultaneously.

6 User Manual
6.1 Setup
e get Ardour3 with video-timeline patch.

e install icsd (>alpha-11) and optionally ffm-
peg, flprobe and Xjadeo (> 0.4.12) to
$PATH.

e make sure that there is no firewall on local-
host TCP-port 1554 (required for communi-
cation between Ardour and the video-server).

If you run the video-server on the same host as

Ardour, no further configuration is required.
When opening the first video, Ardour3 will ask

for the path of the video-server binary (unless

decoding mpeg4 and transfering 80x60px rgb frames
16

concurrency=8 ——
concurrency=2 ———

14 r concurrency=1 ———1

12 r

10 ¢

response time (ms)
o

0 10 20 30 40 50 60 70 80 90 100
percentage of requests served within certain time

Figure 9: latency for decoding thumbnail frames
for 1,2 and 8 parallel requests

decoding mpeg4 and transfering 768x576px rgb frames
450

Eoncur?ehcy‘:ﬁ [
concurrency=2 ———
concurrency=1 ———

400 |

350 r

300 r

250 r

200 r

response time (ms)

150 -

100 -

50

0 10 20 30 40 50 60 70 80 90 100
percentage of requests served within certain time

Figure 10: decoder and request latency for PAL
video.

it is found in $PATH) and also allows you to
change the TCP port number as well as the set
cache size. Transcoding is only available if ffm-
peg and ffprobe are found in $PATH (fallback on
OSX: /usr/local/bin/ffmpeg sodankyla - pro-
vided with icsd.pkg).

The video-monitor likewise requires xjremote
to be present in $PATH or on OSX under
/Applications/Jadeo.app/Contents/Mac0S/
and windows $PROGRAMFILES\xjadeo\. Xjre-
mote comes with Xjadeo and Jadeo respectively.

6.2 Getting Started

It is pretty much self-explanatory and intended to
be intuitive. All functions are available from the
Ardour Menu. Select actions are accessible from
the context-menu on the video-timeline.

e Menu — Session — Open Video
e Menu — Session — Export — Video

e Menu — View — Rulers — Video (or right-
click the ruler/marker bar)

Menu — View — Video Monitor (Xjadeo)

Menu — Edit — Preferences — Video

Menu — Session — Video maintenance —
... (manual video server interaction)

A quick walk-through goes something like this:
Launch Ardour3, Menu — Open Video. If the
video-server is not running, Ardour asks to start
it. You choose a video-file and optionally extract
the original sound of the video to an Ardour track.
By default Ardour also sets the session FPS and
opens a video-monitor window.

From then on, everything else is plain Ardour.
Add audio-tracks, import samples, mix and mas-
ter,. ..

Eventually you’ll want to export your work.
Session — Export — Video covers the common
cases from file-creation for online-services over
producing a snapshot for the client at the end
of the day to optimized high-quality two-pass
MPEG encoding. However it is no substitute
for dedicated software (such as dvd-creator) or a
video engineer with a black-belt in ffmpeg or ex-
pertise in similar transcoding software, especially
when it comes to interlacing and scan-ordering..

The export dialog defaults to use the imported
video as source, note however that using the orig-
inal file usually produces better results; every
transcoding step potentially decreases quality.

6.3 Advanced Setups

The video-server can be run on a remote-machine
with Ardour connecting to it. In this case you
need to launch icsd on the server-machine and
configure Ardour to access it. The server’s URL
and docroot configuration can be accessed via Ar-
dour’s menu — Edit — Preferences.

You should have a fast network connection
(>100Mbit /s, low latency (a switch performs bet-
ter than router) and preferably a dedicated net-
work) between the machine running Ardour and
the video-server.

While not required for operation, it is handy
to share the video-server’s document-root file-
system with the machine running Ardour. It is,
however, required to

browse to a video-file to open”’

display local video-monitor window

import/transcode a video-file to the Ardour
session folder

extract audio from a video-file 7

e export to video-file”

File-system sharing can be done using any
network-file-system (video-files reside on the
server, not the Ardour workstation) or using NAS.
Alternatively a remote replica of the Ardour-
project-tree that only contains the video-files is an
option. The local project folder only needs a copy
of the video-file for displaying a video-monitor.

The document-root configured in Ardour is re-
moved from the local absolute-path to the selected
file when making a request to the video-server.

Xjadeo itself includes a remote-control API
that allows to control the video-monitor over a
network connection. Please refer to the Xjadeo
manual for details.

6.4 Known Issues

Video-monitor settings (window state, position,
size) are sent to Ardour when the video-monitor
is terminated. Ardour saves and restores these
settings. The video-monitor is closed when a ses-
sion is closed. If any of the video-settings have
changed since the last save, session-close will ask
again to save the session, even if it was saved just
before closing. Every session-save should query
and save the current state of the video-monitor
to prevent this.

Operating Ardour with very close-up zoom
(only one or two video-frames visible in the time-
line), caching images only for the previous and
next viewpoint is not sufficient. On playback

"later versions of the video-server and Ardour may not
require this anymore.

video-frames are missing (black-cross images) in
the timeline. The Ardour internal frame-cache
should require a minimum of frames regardless of
canvas pages to compensate for the request and
redraw latency.

7 Acknowledgements

Thanks go to Paul Davis, Luis Garrido, Rui Nuno
Capela, Dave Phillips and Natanael Olaiz.

This project would not have been possible with-
out various free-software projects, most notably
ffmpeg/libav. Kudos go to the Ardour and JACK
development-teams and to linux-audio-users for
feedback.

Last but not least to Carolina Feix for motivat-
ing this project in the first place.

References
Rui Nuno Capela. 2005-2011. Qtractor. http:
//qtractor.sourceforge.net/.

Paul Davis et al. 1999-2012. Ardour. http:
//ardour.org.

Paul Davis et al. 2001-2012. Jack trans-
port. http://jackaudio.org/files/docs/
html/transport-design.html.

Gabriel Finch. 2004-2012. Lives. http://
lives.sourceforge.net/.

Blender Foundation. 1999-2012. Blender.

http://blender.org.

Robin Gareus and Luis Garrido. 2006—
2012a. Time-stamp-movie-maker. http://
xjadeo.sf .net.

Robin Gareus and Luis Garrido. 2006—2012b.
Xjadeo - the x-jack-video-monitor. http://
xjadeo.sf .net.

Robin Gareus. 2008-2012. Sodankyla, icsd.
http://gareus.org/wiki/a3vtl.

Heroine Virtual Ltd. 2002-2011. Cinelerra.
http://cinelerra.org/.

Piero Scaruffi. 2007. A brief history of Popular

Music before Rock Music. Omniware.

Werner Schweer et al. 1999-2012. Musescore:
Music score editor. .

Wikipedia. 2011. Film-score. http://en.
wikipedia.org/wiki/Film_score.

