Csound as a Real-time Application
Typical Problems and Solutions for the Use of Csound in a Live Context

Joachim HEINTZ
Incontri - Institute for new music
HMTM Hannover
Emmichplatz 1, 30175 Hannover, Germany
joachim.heintz@hmtm-hannover.de

Abstract

This article discusses the usage of Csound for live
electronics. Embedding Csound as an audio engine in
Pd is shown as well as working in CsoundQt for live
performance. Typical problems and possible solutions
are demonstrated as examples. The pros and contras of
both environments are discussed in comparison.

Keywords

Csound, Pd, Live Electronics.

1 Introduction

Csound [1] is well known as one of the most
powerful and approved audio libraries, but its main
programming model stems from a non-real-time
approach: 'instruments' are called for specified
durations by a 'score'. This is perfectly suited for
tape compositions, and there is still a predominant
opinion that Csound is good for fixed media
compositions but cannot be used in live situations.
Or at least, that it is a pain to do so.

Indeed, if the user does not want to hit a dead end
when using Csound in a real-time situation, the
architecture and event structure of Csound needs to
be carefully considered. It is the aim of this
contribution to exemplify how Csound can be used
successfully for live performance.

As Csound has no native user interface, it can be
embedded in different hosts. Each host application
offers different advantages and its own manner of
interfacing with Csound. In the field of free
software, the use of Csound in Pd [2], and the use of
Csound in CsoundQt [3] are probably the most

interesting choices.' The examples given here utilize
these two hosts. They will describe the real-time
transposition of a live input, which would represent
a typical real-time transformation.

2 Csound in Pd: Building a polyphonic real-
time transposer

Combining Csound's DSP power with Pd's
flexibility and interfacing should be a really nice
idea, both for Csound and Pd users. Victor
Lazzarini's csoundapi~ external for Pd* offers this
connection. Strange enough, it is much fewer used
than it would be expected to — perhaps due to a
certain lack of documentation. The first example
uses Csound as a polyphonic transposition machine
inside Pd and discusses some typical issues.

2.1 Running the csoundapi~ object

It is beyond the scope of this article to describe the
installation of the csoundapi~ external in Linux, MS
Windows and Apple OSX. Descriptions can be
found, for instance, in the Csound Floss Manual.?

Once the csoundapi~ object has been installed, it
is available in Pd and refers to a Csound file (*.csd).

I For commercial software, the use of Csound in
MaxMsp is well known and perfectly documentated by
Davis Pyon [4]. As any Max object itself can be embedded
in Ableton Live via "Max4Live", it is possible to call
Csound in Ableton Live, too. This has been popularized
by Richard Boulanger and partners as "Csound4Live" [5].

2 The sources can be found in the "frontends" directory
of the csound code [1] or in the git repository at
http://csound.git.sourceforge.net/git/gitweb-index.cgi

3 www.flossmanuals.net/csound/index

Now audio and control data can be sent from Pd to
Csound and back.

2.2 Building a four voice
instrument

transposition

In this example, audio from a microphone is
received by Pd and passed to Csound which then
creates the four voice transposition which is then
sent back to Pd as stereo mix. Csound implements
these transpositions by first converting the received
audio into a frequencydomain signal and then
creating the four pitch shifted signals. These four
signals are converted back into the timedomain and
panned and mixed to create a stereo output.* This
stereo signal is finally passed back into Pd which in
turn sends it to the speakers.

O

Pd

Csound

Figure 1: Scheme of embedding Csound in Pd for a
Sfour-voice live transposition

The related Csound file is very simple:

<CsoundSynthesizer>
<CsInstruments>

sr = 44100

ksmps = 32

nchnls = 2

O0dbfs =1

instr transp

;input from pd

4 A quadrophonic output redirection into Pd would also
be possible.

aln inch 1
;transform to frequency domain
fIn pvsanal aIn, 1024, 256, 1024, 1
;transposition
fTranspl pvscale fIn, cent(-600)
fTransp2 pvscale fIn, cent(-100)
fTransp3 pvscale fIn, cent(200)
fTransp4 pvscale fIn, cent(500)
;back to time domain

aTranspl pvsynth fTranspl
aTransp2 pvsynth fTransp2
aTransp3 pvsynth fTransp3
aTransp4 pvsynth fTransp4

;panning
aLl, aRl pan2
aL2, aR2 pan2
aL3, aR3 pan2
alL4, aR4 pan2
aL =
aR =
;output to pd
outs aL, aR

aTranspl, .1
aTransp2, .33
aTransp3, .67
aTransp4, .9
(aLl+alL2+aL3+aL4)/3
(aRl+aR2+aR3+aR4)/3

endin

</CsInstruments>
<CsScore>

i "transp" 0 99999
</CsScore>
</CsoundSynthesizer>

The whole Pd patch looks like this:

=adc~_
csoundapi~ LiveT;ansp.csi

dac~

Figure 2: Pd patch for four-voice live transposition
embedding Csound via csoundapi~

2.3 Sending and receiving control data

For a fuller interaction between Pd and the
embedded Csound it is normally desirable to also
pass control signals between Pd and Csound. The
transposition values in the given example might
have to be controlled from Pd instead of being fixed:

Pd

Csound

Figure 3: Sending cent values from Pd to Csound

From Pd's point of view, the cent values are a
"message" to be sent to Csound. From Csound's
point of view, the cent values are "control signals"
which are received on certain "control channels".

The csoundapi~ object understands the message
"chnset ...". A Pd message box containing "chnset
centl -600" means: send the value -600 on the
software channel named "cent1".

In Csound, the related message needs to be
received by a chnget opcode.” The instrument code
has to be changed slightly now, as follows:

instr transp
;audio input from pd

aln inch 1
;control input from pd

kCentl chnget "centl"

kCent2 chnget "cent2"

kCent3 chnget "cent3"

kCent4 chnget "cent4"
;transform to frequency domain

fIn pvsanal aIn, 1024, 256, 1024, 1
;transposition

fTranspl pvscale fIn, cent(kCentl)

> The alternative choice is to send messages as
"control ..." from Pd to Csound, and receive them with the
invalue opcode in Csound.

fTransp2 pvscale
fTransp3 pvscale
fTransp4 pvscale

fIn, cent(kCent2)
fIn, cent(kCent3)
fIn, cent(kCent4)

And this is the Pd patch, with some choices to
send values:

:dc:

2 200

L

chnset cent3 §1

Too 200

chnset centd $1

chnset centl §1 chnset cent2 $1

hnset cent3 200 hnset centd 500

hnset centd @

csoundapi~ LiveTransp2.csd

dac~

Figure 4: Pd sending cent values to Csound

2.4 The "just once' problem

It is worth to have a closer look at what is actually
happening in the example above. It looks easy, and it
works, but actually two languages are
communicating with each other in a strange way. In
this case, they understand each other, but this is pure
chance if the differences have not been understood
by the user.

Pd differentiates between messages and audio
streams.® Messages are sent just once, while audio
streams are sending data continuously, in the sample
rate. Csound has no type for sending something in
realtime "just once". If something is sent as a control
value to Csound, like the cent values in the example
above, Csound considers this as a control signal, i.e.
a continuous stream of control data.’

In this case, it works. Pd sends a new cent
message just once, and Csound interpretes this as a
repeated control message. It works, because the
pvscale opcode needs a control-rate input. But if the
user wants to trigger something "just once", they

6 This is the same in MaxMsp, and is the well known
difference between an object with a tilde and an object
without a tilde. For instance, the object "*' multiplies two
numbers: just once, when the left inlet has received a
number as message. The object "*~' multiplies two audio
streams (or an audio stream and a number) continuously.

7 This stream of control data has a lower rate than the
audio rate, depending on the ksmps value. If ksmps=32,
one control sample is used for 32 audio samples.

have to ensure that Csound does not repeat the
message from Pd all the time.

As a simple example, the user may want to trigger
a short beep each time a message box with a 'l1' has
been pressed:

Figure 5: Sending a 'l' message from Pd to Csound

It looks straightforward to code the beep.csd in
this way:

<CsoundSynthesizer>
<CsInstruments>

sr = 44100

ksmps = 32

nchnls =1

0dbfs =1

instr master ;wrong!

kTrigger chnget "trigger"
if kTrigger == 1 then
event "i", "beep", 0, 1
endif
endin
instr beep
aBeep oscils .2, 400, 0
aEnv transeg 1, p3, -6, 0
out aBeep * aEnv
endin
</CsInstruments>
<CsScore>
i "master" 0 99999
</CsScore>

</CsoundSynthesizer>

A master instrument would receive the data on the
channel called ‘trigger' from Pd, and call a
subinstrument "beep" each time a 'l' has been
received. That's the wish of the user. But what really
happens: the kTrigger variable will always be set to
'l", because there is no other message coming from
Pd, and so Csound will trigger a beep not "just
once", but once at each control cycle, in this case
44100/32 times per second ...

Two things have to be done here: Pd must send a
'0", if the message box has not been pressed. The

following patch sends, when hitting the 'bang' first a
'1' and then after 10 milliseconds a '0":®

delay 10 1
L
0

fhnset trigger s1
csoundapi~ beep.csd

dac~

Figure 6: Pd sending '1' followed by '0' to Csound

On the Csound site, just the first '1' received after
any zeros should trigger a beep. So Csound has to
ignore the repetitions. This is done by the following
code in the master instrument:

instr master ;now correct

kTrigger chnget "trigger"
kNewVal changed kTrigger
if kTrigger == 1 && kNewVal == 1 then
event "i", "beep", 0, 1
endif
endin

This opcode returns '1' exactly in the control cycle
when a new value of kTrigger has been received. So
the if-clause has to ask whether both, kNewVal and
kTrigger equal 1. Only in this case the subinstrument
is to be triggered.

2.5 Results

The use of Csound for realtime applications in Pd
can be considered as easy and straightforward in
general. The major difficulties come from the the
different signal paradigms in both languages. Special
care has to be taken by the user for "just once" cases,
which are common in Pd but need cautious coding in
Csound.

8 Using a trigger in Pd which sends a '1' from the right
output, followed by a '0' from the left output will not work,
because Csound will just receive the '0'".

3 Presets, software channels and more: An
extended live instrument in CsoundQt

CsoundQt has been written and developed by
Andrés Cabrera since 2008.° It is now the most
widely used frontend for Csound. It uses the Qt
toolkit' for building a graphical user interface.

CsoundQt offers all necessary tools to work with
live electronics in Csound, without using another
host application. But how can Csound be trimmed to
support presets which are necessary for each
extended live electronic context? An example is
given which uses a midi keyboard as instrument for
controlling both some real-time processings of a
microphone input, and electronic sounds generated
in real time.

3.1 Presets

A preset is a general configuration in a live
electronic application which defines the meaning of
certain input signals in the context of this preset
environment. For instance, if the midi key number
60 has been pressed in the context of preset 1, it may
mean "open the live input with a fade in". If the
same key has been pressed in preset 2, it may mean
something totally different, for instance "play a
percussive sound".

As CsoundQt has native widgets, these widgets
can be used to represent a preset.'' Csound will then
look at the value of this widget, and will decide what
to do at a certain midi input. This is the general
scheme:

As "triggering an event" in Csound usually means
"calling an instrument", the Csound code looks like
this:

instr midi_receive
;getting the midi note number

iNotNum notnum
;getting the actual preset number

® The name has been changed from QuteCsound to
CsoundQt after discussions at the Csound Conference in
Hannover in october 2011.

10 http://qt.nokia.com

T CsoundQt also offers a possibility to store widget
states as presets. This is very useful in many cases, but not
sufficient here, because here the presets do not affect just
widgets, but also determine the effect of a Midi key
pressed, a parameter being set, and more.

widget for
preset state

incoming
midi-key
=60

preset
=2

preset
=N

event A;
open live input

event B:
trigger sound

Figure 7: General preset scheme
iPreset = i(gkPreset)
;bindings for preset 1
if iPreset == 1 then
if iNotNum == 60 then
event_i "i", "live fade_ in", 0, 1
elseif iNotNum == ... then
event i
endif
;bindings for preset 2
elseif iPreset == 2 then
if iNotNum == 60 then
event_i "i", "trigger sound", 0, 1
elseif iNotNum == ... then
event i
endif
;bindings for preset ...
elseif ...
endif
endin
The gkPreset variable which holds the status of
the preset given by the preset widget, is created in an
"always on" instrument. This instrument should be
the first of all the instruments,'” and its definition
should contain a line like this ("preset" is a string

which defines the name of the widget's channel):

12" Technically speaking: the instrument with the
smallest number.

gkPreset invalue "preset"

By this, the current preset state is received from
the spin box widget, and sent as the global variable
gkPreset to each instrument. The widget itself can be
changed by the user either via the GUI or via any
input event, for example a reserved midi note for
increasing, and another note number for decreasing
the preset number. Assuming the reserved midi note
for increasing is 72, and for decreasing 48, the code
looks like this:"

if iNotNum == 72 then

outvalue "preset", iPreset + 1
elseif iNotNum == 48 then

outvalue "preset", iPreset - 1
endif

The method proposed here for handling presets
offers the wuser all flexibility. All events are
embedded in instruments which are triggered if a
midi key is received in the context of a particular
preset. General conditions for a new preset can be
set in a similar way as shown in chapter 2.4 with the
changed method. For instance, if the live
microphone is to be open at the beginning of preset
1, but closed at the beginning of preset 2, the code in
the master instrument could be:

gkPreset invalue "preset"
kNewPrest changed gKPreset
if kNewPrest ==
if gkPreset == 1 then
kLivevol = 1 ;mic open
elseif gkPreset == 2 then
kLivevVol = 0 ;mic closed
endif
endif

3.2 Software busses for control and audio data

Many situations need a flexible interchange of
control data. Suppose the user wants to transpose the
live input first in four voices with the cent values
-449, -315, 71 and 688, and then in the next bar with
the cent values -568, -386, 428 and 498. Both events
— activating the four voice transposition and

13 The instrument is the same as the one above called
"midi_receive". This instrument is triggered directly by a
midi note on message. It works during Csound's
initialization pass, which is in some cases another option
for the "just once" problem.

changing the values — are to be triggered by two
different midi keys, for instance 60 and 62.

This is a typical case for the use of internal
software busses. Four audio signals are set. For each
of them a software control bus is created, holding the
transposition value. The first instrument sets the
initial values. When the second instrument is
triggered, the control busses are set to the new

values (figure 8).
=60 =62

create control channels
for transposition

(G G Com ot

Figure 8: Working with software channels to change
transposition values

This is the related Csound code:

instr set_transp
;create software busses

chn k "transpl", 3
chn_k "transp2", 3
chn _k "transp3", 3
chn_k "transp4", 3
;set initial values
chnset -449, "transpl"
chnset -315 "transp2"
chnset 71, "transp3"
chnset 688, "transp4"
;receive the values from the software busses
kCentl chnget "transpl"
kCent2 chnget "transp2"
kCent3 chnget "transp3"
kCent4 chnget "transp4"
;receive the live audio input
aLvIn chnget "live_in"
;perform fourier transform
fLvIn pvsanal aLvIn,1024,256,1024,1
;perform four voice transposition
fTpl pvscale fLvIn, cent(kCentl)
fTp2 pvscale fLvIn, cent(kCent2)
fTp3 pvscale fLvIn, cent(kCent3)
fTp4 pvscale fLvIn, cent(kCent4)
;resynthesize
aTpl pvsynth fTpl

aTp2 pvsynth fTp2

aTp3 pvsynth fTp3
aTp4 pvsynth fTp4

;add and apply envelope
aTp = aTpl+aTp2+aTp3+aTp4
kHul linsegr 0,.3,1,p3-0.3,1,.5,0
alut = aTp * kHul

;mix to global audio bus for live out
chnmix alut, "live out"
endin

instr change_transp

chnset -568, "transpl”
chnset -386, "transp2"
chnset 428, "transp3"
chnset 498, "transp4"

endin

As can be seen from this example, the software
busses are not just used for control but also for audio
signals. The live audio input is sent to a channel
called "live_in". The instrument set_transp gets the
live input via the line

aLvIn chnget "live_in"

After processing, the live transposed signals are
sent to an audio bus called "live_out". As other
instruments may also send audio to this bus, chnmix
is used instead of chnset:

chnmix adut, "live_out"

Software channels are the solution to many
different situations in programming live electronics:
mixing, routing, interchanging of values. The chn
opcodes offer a flexible and reliable system to work
with them in Csound.

3.3 Performance tweakings

Csound's performance for live applications
depends mainly on its vector and buffer sizes.'* As
mentioned above, the ksmps constant defines the
internal vector size. A value of ksmps=32 should be
adequate for most live situations. The software and
hardware buffer sizes must not be kept at Csound's
defaults, but should be set to lower values to avoid

14 There are some opcodes which are not suited for live
in Csound. Usually they have a fast and modern
alternative. Especially the old pv (phase vocoder)
opcodes should in pratical use be substituted by the
excellent pvs (phase vocoder streaming) opcodes:
www.csounds.com/manual/html/SpectralReal Time.html

an audible latency."> CsoundQt offers an easy way to
adjust them in the configure panel. These are fair
values:

(- CsoundQt Configuration

Run | General | Widgets | Editor Environm

& Buffer Size (-b) 128

& Hw Buffer Size (-B) [512]

Additional command line flags

Figure 9: Adjusting the
buffer sizes in CsoundQt's
configuration panel

In future versions of Csound, the use of multiple
cores and threads, will further improve the
performance.'® This would also be adjusted in
CsoundQt's configure panel.

In addition to these general Csound adjustments,
there are some performance tweaks particularly
related to CsoundQt. The python -callback,
especially, must be disabled for the best live
performance:

@@ csoundQt Configuration

Run || General| wWidgets Editor En

Run Utilities using:
@® Csound API

External shell
Performance tweaks
No messages to consoles
& Disable recording and scopes
Disable realtime score events
& Disable python callback

Figure 10: Performance
tweaks in CsoundQt

3.4 Results

CsoundQt offers a nice graphical user interface for
the use of "pure" Csound with standard widgets for
live electronics. Instead of changing between
different platforms, the wusers have an easier

5 More information can be found at
www.csounds.com/manual/html/UsingOptimizing.html

16 Thanks to the work of John ffitch and others, the new
parser for Csound is at the time of writing this article (end
of the year 2011) in the process of becoming the default.
Amongst other improvements, it will offer multithreading.

workflow than using Csound in Pd. (When making
changes to a Csound file running within Pd it is
necessary to save the Csound file and to reset the
csoundapi~ object that uses it for those changes to
take effect.) Users can add their own functions
("user defined opcodes") or integrate any from the
repository,'” for instance for simplifying the use of
the ascii keyboard or for easily recording and
playing buffers.

On the user's wish list for using CsoundQt live is
certainly an increased array of widgets, for example
an audio meter, a midi keyboard widget and an
interactive table editor. The possibility of creating
more than one widget panel would certainly make
CsoundQt much more flexible for use live.'®

4 Conclusion

Csound can be used perfectly for any live
application. The usage of Csound in Pd is very easy.
It offers many new possibilities for Pd users, and an
easy connection with any external devices (game
pads, arduino boards and more) for Csound users.

The usage of CsoundQt for live applications offers
a clean and pleasant internal graphical interface and
a comfortable workflow to the user. Complex
features like presets and software busses can be
programmed easily. However, some additional
widgets and GUI options might be desireable.

Ultimately, whether a user ought to use Csound
live within Pd or purely with CsoundQt as the front-
end, will depend on their personal preferences and
the situation.

So it depends on the users, their preferences and
situations, whether they prefer working with Csound
for live in Pd or in CsoundQt.

5 Acknowledgements

Thanks to Anna, Alex, Andrés and Iain for reading
the manuscript.

17 www.csounds.com/udo

18 Although not covered in this article, it should be
http://www.youtube.com/watch?v=09WU7DzdUmE
http://www.youtube.com/watch?v=Hs3eO70349k
http://www.youtube.com/watch?v=yUMzp6556Kw

References

[1] Csound: http://csound.sourceforge.net (with
many links to related sites)

[2] Pd: http://puredata.info

[3] CsoundQt: http://qutecsound.sourceforge.net

[4] csound~ (a Max external to run Csound):
www.davixology.com/csound~.html

[5] Csound4Live (Csound for use in Ableton Live
via csound~ [4] and the Max4Live bridge):
www.csoundforlive.com

	1 Introduction
	2 Csound in Pd: Building a polyphonic real-time transposer
	2.1 Running the csoundapi~ object
	2.2 Building a four voice transposition instrument
	2.3 Sending and receiving control data
	2.4 The "just once" problem
	2.5 Results

	3 Presets, software channels and more: An extended live instrument in CsoundQt
	3.1 Presets
	3.2 Software busses for control and audio data
	3.3 Performance tweakings
	3.4 Results

	4 Conclusion
	5 Acknowledgements

