
Luppp - A real-time audio looping program

Harry VAN HAAREN,
University of Limerick,

Ireland

harryhaaren@gmail.com
http://harryhaaren.blogspot.com

https://github.com/harryhaaren/Luppp

Abstract
Luppp is a live performance tool that allows the play-
back of audio while applying effects to it in real time.
It aims to make creating and modifying audio as easy
as possible for an artist in a live situation.

At its core lies the JACK Audio Connection Kit
for access to audio and MIDI, usable effects include
LADSPA, LV2 and custom Luppp effects. There is a
GUI built using Gtkmm, however it is encouraged to
use a hardware controller for faster and more intuitive
interaction.

Keywords
Live performance, real-time looping, audio production

1 Introduction

Luppp is the ”Luppp Untuitive Personal Perform-
ing Program”, it’s a tool to be used in a live sce-
nario to creatively produce music. The fact that
it is to be used live imposes certain requirements
like low latency input-output and real-time effect
rendering.

This paper gives an overview of the structure of
the audio processing engine in Luppp and how it
delegates tasks to different threads, as well as how
communication between the threads is achieved.
The loading of effects is discussed, as is the user
interface and its design.

2 Engine

2.1 Dependencies

The core engine depends on a number of different
libraries:

• JACK [1]

• Gtkmm [2]

• libsndfile [3]

• Fluidsynth [4]

• libconfig [5]

• SUIL [6]

• LILV [7]

2.2 Overview of components

The core of the program consists of a process-
ing engine. Its function is to process all input
events and produce its output within a certain
time frame. Its primary inputs are MIDI mes-
sages and events from the GUI, while its primary
output is audio data that is written to the JACK
ports. It also facilitates the display of data on
screen in the user interface. This involves trans-
porting data from the real-time engine thread to
the user interface thread to be displayed.

2.3 Engine Events

The EngineEvent class is a class that represents
any action that the engine can perform. For each
action there is a function to set the right parame-
ters in the class, while reading data from the class
is done through the use of public data members.

2.4 Events and ring-buffers

To communicate between the various threads in
the engine in a lock-free manner ring-buffers are
used. Pointers to instances of the EngineEvent
class are passed through the ring-buffers, which
allows the use of these events from a real-time
thread. The GUI thread creates a pool of
EngineEvent instances while the real-time JACK
thread can pull event pointers from this queue,
sending the messages without having to allocate
them. This causes minimal overhead in the real-
time thread while a background thread occasion-
ally polls the ring-buffer for write space, and fills
it with new instances.



2.5 State store

The StateStore class holds the state of all other
components of the engine. It is a centralized loca-
tion for all data like AudioBuffers, AudioSinks,
BufferAudioSourceStates etc. The real-time
thread takes EngineEvents, and writes the data
contained within it to the StateStore. This state
data is later requested by each engine component
when it is required to do its processing.

The requesting of state data is done using
unique identification numbers for each state in-
stance. When an instance of a class that needs
a state is created, it automatically increments its
own ID number, while also adding a new state
with its own ID number to the StateStore. It
can now request the state with its own ID num-
ber from StateStore and it will receive its own
state data.

2.6 Audio processing

The AudioTrack is the main structure in au-
dio processing, with the track’s AudioSource
providing a channel of mono audio, a list of
Effects being applied to this signal, and finally
the AudioSink passes the produced data to the
Mixer class. The Mixer then takes each track’s
output, applies master effects and writes the data
to the master output ports.

Meta data is available to each element in-
side an AudioTrack so AudioSource, Effect and
AudioSink class instances can make informed de-
cisions how to process the next block of audio
based on the engines current state.

2.6.1 Audio sources

The AudioSource base class is defined as the start
of the processing chain. It is subclassed to provide
varying functionality: The BufferAudioSource
reads samples from an AudioBuffer, and then
writes them to the AudioTrack’s buffer. In the
case of instrument sources like Fluidsynth or a
LV2 synth, it gathers incoming MIDI data from
JACK or a playing MIDI clip and generates sam-
ples and writes them to the AudioTrack’s buffer.

2.6.2 Effects and plugins

The Effect base class is defined as a class that re-
quests its state from the StateStore using its own
ID, sets its new parameters, and performs some
processing on an AudioTrack’s buffer. Currently
there is no latency compensation done for any of

Figure 1: AudioTrack block diagram

the effects, however the effects that are available
have been extensively tested to comply both with
the real time requirements of the program, as well
as not inducing unacceptable latency to the track.

This base class can be subclassed to host any
kind of audio effect, the only constraint is that the
number of input samples must match the number
of output samples. LADSPA[8] and LV2[9] ef-
fects are implemented, however theoretically any
type of plugin format could be supported.

2.6.3 Audio sinks

The AudioSink class is the base class that rep-
resents the end of the processing chain. Every
track has an OutputAudioSink, whose purpose it
is to mix the mono input samples into ambisonic
B-format, while also copying the samples to the
post-fade send buffer and headphones pre-fade lis-
ten buffers.

2.6.4 Headphones PFL

Each track has headphones pre-fade listen func-
tionality, which allows the user to preview tracks
before actually mixing them into the master out-
put. This functionality is achieved by writing the
mono signal that is passed to the AudioSink to
the headphones buffer in Mixer. After each track
has been processed, Mixer will write the head-
phones buffer to the JACK port.

2.6.5 Post-fade Sends

Each track has a post-fade send. All tracks are
summed together into a single buffer, which is
then written to a JACK audio port. This JACK
port can be connected to arbitrary JACK clients
to add effects to the signal. Although a mono sig-
nal is sent, the return ports are B-format to sup-



port scenarios where an ambisonic effect is used.
The returned signal is then mixed into the master
bus.

2.7 Real-time recording

In order to record an arbitrary length of audio an
arbitrary length array is needed to store it, and
due to real-time constraints we cannot create one
such array in the real-time thread. This problem
was solved by writing all incoming audio to a ring-
buffer, and allowing the GUI thread to create the
actual buffers that are later used in the engine.
The buffer is passed to the real-time thread us-
ing an event and ring-buffer as described earlier.
This allows the user to record any length of audio
in real-time without any non-real-time operations
occurring.

3 User Interface

The user interface for Luppp is geared towards
live use, and hence it makes as little use of popup
dialogs and extra windows as possible. The main
view is laid out with tracks oriented vertically,
and song-parts horizontally.

3.1 Clip view

The main part of the GUI is dedicated to the
clip view, which selects the currently playing
AudioBuffer. To load a buffer into a clip we
right click on the desired clip, and we will be pre-
sented with a file-chooser dialog. It is also possi-
ble to drag-and-drop samples onto the clip using
the side-pane file browser. Recording audio from
a JACK audio input port is also possible, just
record enable the track and click on the clip.

3.2 Track view

The lower part of the window shows the state of
the currently selected track. Its AudioSource is
on the left while any effects are listed to the right.
The main parameters of effect can be modified
using the mouse, by click-and-drag in the graph
area. The X and Y axis of the graph are mapped
to the two most used parameters of that effect
type.

3.3 Master track

The master track provides feedback as to what
scene is currently playing, the rotation and eleva-
tion values of the B-format ambisonic output and
headphones volume levels.

3.4 Side-pane browser

On the left of the UI there is a browser that al-
lows the previewing of samples, instruments and
effects. Drag-and-drop operations from the sam-
ples to the clips is supported, as is dropping effects
and instruments onto the track view. The browser
filters its contents based on file extension, samples
must have a .wav extension. The Instrument and
Effect lists are hard coded.

4 Meta data files

To inform the engine how long an audio loop is
in musical beats, meta data files are used. The
files are read by libconfig, and can provide infor-
mation like the length of the loop in beats, or the
key of a loop. This gives the engine a chance to
process the audio in a musically meaningful way,
like stretching drum loops to match the tempo of
the currently playing material.

4.1 Sample meta data

When loading a sample, Luppp attempts to
open a file called lupppSamplePack.cfg from
the same directory as the sample is located.
If this file exists, we iterate trough all infor-
mation in the file, and check if any of the
metadata is relevant to the sample that we
want to load. If meta data exists about the
sample, we set properties on the AudioBuffer
instance that the sample will get loaded into.
These properties can be its number of beats (in
the musical sense), or what musical key its in, etc.

Example lupppSamplePack.cfg file:

luppp :
{
samplePack:
{
name = "SamplePackName";
numSamples = 1;

s0:
{
name = "sampleName.wav"
numBeats = 16;

}
}

}



Figure 2: Luppp user interface showing the clip selector, track effects and file browser.

5 Future work

In future I would like to implement more features
for Luppp, particularly around easier access to
core Luppp functionality from controllers. Also
on the todo list is MIDI sequencing functionality
which will allow a faster workflow while creating
new musical ideas.

Some improvements can be made in perfor-
mance, and multi-threading the actual audio pro-
cessing path in the engine is a possibility.

5.1 MIDI sequencing and editing

It is intended to support the looping of MIDI clips
in a similar fashion to Seq24. MIDI clips will be
shown in the user interface just like audio clips,
and clicking on one will select it to be shown in
the MIDI editor.

The MIDI editor will be as streamlined as possi-
ble, with minimal features and as fast a workflow
as is possible. Some initial sketches of possible
workflows have been made, however this function-
ality is still in its planning stages.

5.2 Immutable Engine

For performance reasons it is planned to make
AudioBuffer instances immutable, so that they
can be used in the real-time thread as well as
shown in the GUI without expensive copying.
Plotting the audio clips in the GUI will be-
come an easier task, as we can safely access the
AudioBuffers from multiple threads due to its
immutability.

To modify an AudioBuffer a new one will be
created in the GUI thread, and that new instance
will be swapped into engine. This modified buffer
will keep the same unique ID number, so that all
other parts of the engine will automatically use to
the updated buffer.

5.3 Sidechain compression

In order to fully support sidechain compression
between tracks, it will be necessary to change the
direction of sample requesting in an AudioTrack.
This is due to the fact that for sidechain compres-
sion audio data from another track is needed, and



hence a method to request the processing of an-
other AudioTrack than the current one is needed.

If each SidechainCompressor instance has a
pointer to a SidechainSource, it can request the
source to produce the needed samples, and then
continue to process its own AudioTrack’s audio
based on the sidechain buffer of samples. This
also involves implementing a system whereby each
Effect or AudioSource can be marked as finished
processing, so that we avoid re-calculating parts
of a track that has already been processed because
of the call to the SidechainSource.

Essentially this makes the SidechainSource a
cache for audio samples, which can be requested
to process the next block of audio either from
the AudioTrack that is it part of, or another
AudioTrack which needs this SidechainSource’s
output to complete its own processing.

5.4 Additional effect classes

Initial work to host Pure Data patches or CSound
instruments as AudioSources or Effects has
went well, although some design is needed with
regards to real-time constraints of the effects and
loading files. Another issue that needs to be
addressed is that non real-time safe operations
might be carried out by user defined patches.

VAMP plugins[10] will hopefully be supported
in the future, to allow the user analyze existing
material, and work with a higher level of con-
trol over the music. If more meta data can be
provided to the Luppp engine, more high level
features can be implemented as more data exists
for use during the processing cycle. I feel this is
quite an important aspect of Luppp to develop,
as it gives the user more scope for creativity and
inspiration instead of hindering the workflow with
mathematical details of the processing that is go-
ing on behind the GUI.

6 Conclusions

While Luppp is currently in a usable state, there
are some known issues that must be dealt with. I
would like to rethink the method of communica-
tion between the Engine and the StateStore for
the user interface. The way that the user inter-
face widgets are stored in the gui class can also
be much improved. Some design issues like the
concept of tracks and how ID number related to
tracks could also be upgraded, as currently some
functionality is hindered by how the ID’s are set.

7 Acknowledgments

I would like to thank the entire LAD community
for all that I have learnt through reading their
code, asking questions on the LAD mailing list as
well as on IRC.

Thanks also to all those who have helped me
in any way while I have been working on Luppp
for providing suggestions, testing buggy code and
just chatting about the project in general.

8 References

[1] JACK Audio Connection Kit
http://www.jackaudio.org

[2] Gtkmm, official C++ interface for the
popular GUI library GTK+
http://www.gtkmm.org

[3] libsndfile, C library for reading and
writing files containing sampled sound
http://www.mega-nerd.com/libsndfile

[4] Fluidsynth, a real-time software synthesizer
based on the SoundFont 2 specifications
www.fluidsynth.org/

[5] libconfig, a simple library for processing
structured configuration files
http://www.hyperrealm.com/libconfig

[6] SUIL, a lightweight C library for loading
and wrapping LV2 plugin UIs
http://drobilla.net/software/suil

[7] LILV, a library to make the use of LV2
plugins as simple as possible
http://drobilla.net/software/lilv

[8] LADSPA, Linux Audio Developer’s Simple
Plugin API
http://www.ladspa.org

[9] LV2, a plugin standard for audio systems
http://lv2plug.in/trac/

[10] VAMP, an audio processing plugin system
for plugins that extract descriptive
information from audio data
http://vamp-plugins.org/

http://www.jackaudio.org
http://www.gtkmm.org
http://www.mega-nerd.com/libsndfile
www.fluidsynth.org/
http://www.hyperrealm.com/libconfig
http://drobilla.net/software/suil
http://drobilla.net/software/lilv
http://www.ladspa.org
http://lv2plug.in/trac/
http://vamp-plugins.org/

	Introduction
	Engine
	Dependencies
	Overview of components
	Engine Events
	Events and ring-buffers
	State store
	Audio processing
	Audio sources
	Effects and plugins
	Audio sinks
	Headphones PFL
	Post-fade Sends

	Real-time recording

	User Interface
	Clip view
	Track view
	Master track
	Side-pane browser

	Meta data files
	Sample meta data

	Future work
	MIDI sequencing and editing
	Immutable Engine
	Sidechain compression
	Additional effect classes

	Conclusions
	Acknowledgments
	References

