

The

Of

University

Sheffield.

Dr Charles Fox Research Associate, Natural Speech Technology University of Sheffield, UK www.5m.org.uk

Talk aims

- Tell you about the world of Automated Speech Recognition research – not much overlap yet with Linux audio world. But there may be soon!
- Natural Speech Technology is different from standard ASR (such as DragonDictate), more audio/DSP focussed and needing Linux audio.
- What we are using your tools to do (thanks!)
- What we need your tools to do (please!)
 - (vs computer music requirements in particular)

ASR vs Natural speech

- Automated Speech Recognition (ASR)
 - Historically developed as a separate community from audio research (music, DSP etc)
 - Mature field, 20 years of tools
 - Large-data (eg. 1000 hours) and results driven
 - Standard features (MFCC, PLP) preprocessing
 - Then statistical models of feature data
 - Many ASR researchers don't listen to the speech!
 - Then find models and parameters to optimise word error rate (WER)
 - 10% great, 20% good, 40% normal, depends on corpus

ASR vs Natural speech

- ASR just about a solved problem for single, trained user in noiseless environment
- eg. Dragon Dictate, Siri
 - (both by Nuance Inc)
 - WER 1% obtainable
- Clean but unknown speakers
 - eg. radio news broadcasts
 - Still a research area,
 - WERs eg between 17%-70%

ASR vs natural speech

- Recent research area : extending ASR to natural speech (Wolfel&McDonough,2006)
 - business meetings minuting
 - TV subtitling
 - Interview archives transcription
 - Telephone conversations transcription + keywords

UK NST project

Involves many organisations interested in NST:

Running 2011-2015. Sample applications:

- Subtitling TV and radio programmes (BBC)
- Consumer and business meeting transcription (Nuance)
- Security (GCHQ)
- Voice control for disabled patients (NHS)

The University Of Sheffield.

^{Sheffield.}Natural speech challenges

- Unlike standard ASR tasks, we have:
 - Multiple speakers talking at once
 - Speakers moving around the room
 - Significant room effects (reverb, resonance)
 - Background noise (furniture, traffic, plumbing)
 - Unknown speakers, accents/dialects
- Need to work more with DSP now
 - Begins to look more like computer music type research (eg. Music transcription, CASA)
 - Need nice audio tools
 - but different requirements from musical audio

University Of Sheffield. My background – linux audio

- Score following
 - Raphael Music+1
 - "How to be Lost", Fox&Quinn ICMC2008
- Linux, ALSA; Matlab+win.

Particle filter + lostness

Lyon cochlea filter

Chordbank filter HMM

Sheffield. Bayesian musical scenes

- Rhythms
- Structures (Hofstadter's CopyCat)
- Python, Lush Lisp, OSS midi

Music recording

Catch-it Kebabs (Riot Music, 2007) £11.66 (Amazon/shops) or free direct download **www.catchitkebabs.co.uk** Studio recording still in Cubase/ProTools :-(Some demos/writing now in Ardour/JACK

	3	
🧕 Applications Places S	stem 🕹 @	
2 V	onnection Kit [(defaulti)] started. X	
▶ <u>Start</u> ■ Stop	Started RT 1.9% 48000 Hz X Quit	UbuntuStudio -
A Soccion Transport Ed	•UDUNTUSTUCIO - Ardour • • • • • • • • • • • • • • • • • • •	Strips St H
H H 1.00 % sprung 3	tu v N = 0 00 00 00 00 00 00 000 00 00 00 00 0	master Audio 1 Audio 1 Audio 1 Input Input Audio 2 record record
	N E> 4 ♥ 00:00:00 € ● ♥ ♥ 00:00:00 ♥	
Timecode Bars:Beats Meter Tempo Location Markers Range Markers Loop/Punch Ranges		
Master m s v h a g Audio 1 m s v h a p g		Mute Solo Mute S -0.0 -inf -0.0 -:
		Group Activ
Audio 2 m s	n han heine seine auf han bei eine bei eine bei eine seine alle auf bei eine seine bei beite b	·all·
	de ha ha ha ha ha a sa a sa a sa a sa a s	
l.		
		Grp post Grp

Sheffield. *Speech vs music data*

- Corpus size:
 - music album \sim 20 hours. music usually one track at a time, 5 mins.
 - Corpus 1000hours. Needs fast access to all at once; playback ~1 hour.
- Quality
 - Music mixdown 44.1kHz, 16bit;
 - classic ASR usually starts with 16kHz 16bit, then extracts features.
 - NST ASR may need music or better quality, eg. 48kHz 32bit.
- Channels
 - Music \sim 20 channels, typically record <10 at once
 - NST ASR, localisation and separation techniques may require large mic arrays, 16 channels common, 64+ would be nice...
- Compute power: Music usually on one PC; ASR on 100 core cluster.
- Real-time
 - Music album: latency is crucial. Classic ASR: processing done offline.
 - NST: maybe will need realtime interplay with the processing?

Why Linux? HTK setup

- Conventional modern ASR is done offline, on large clusters
- Our set up:
 - 100 Core cluster, running Oracle (Sun) Grid Engine
 - CentOS Linux (Community enterprise version of Fedora)
 - Encode 1000 hours of wav to features ~1 day
 - Train language models, 10M words, ~3 hours.
 - Alignment/decode ~1 day; train audio ~1 weekend.
- Crucial need to hack NST is a new research area and we don't know in advance which parts of the tool chain will need to be opened up and modified!

- Much ASR research uses the HTK (Hidden Markov model ToolKit) tools. Native to Unix/Linux (but win32 ports)
 - Under development for ~20 years, mature.

- Tools for building speech recognisers, is not a full system
- Began in Cambridge University; sold to spin-out Entropic; bought by Microsoft; licensed back to Cambridge.
- Cambridge is then allowed to distribute HTK source on the net under a gratis but non-libre licence.
- Licence allows users to modify code for own use but cannot redistribute (eg. In a linux distro or "OpenDragonDictate").
- Users are "encouraged" to donate their modifications back to Microsoft for inclusion in future version
- Microsoft could revoke the licence at any time
- Many groups have their own mods that they don't donate back
- A GPL alternative **Kaldi** is in progress; but HTK is dominant.

Small HMMs can be written in a few lines of Python or Octave ASR requires **very** large ones,

eg. 200,000 triphone states /c/ /a/ /t/ vs /b/ /a/ /t/ Transition priors from large language models, eg. 10M words.

Large models need lots of clever tricks and heuristics to run in reasonable time and memory (eg. On 100 \$gb-node clusters). Hence HTK.

HTK command line tools

- Preprocessing
 - Listening (eg 1 hour wavs, show speech features)
 - Feature extraction (MFCC, PLP)
- Alignment
 - Line up known transcript with audio, using HMM
- Training
 - EM training of HMM
- Decoding
- Scoring
 - International NIST standard scores, WER
- Typically controlled from big tcsh or Python scripts

HTK-related ecosystem

- Sox audio conversion and listening (GPL)
- Perl/Python.regex transcript processing (GPL)
- HDecode alternative HMM decoder (?)
- ARPA language modelling tools (govt/BSD?)
- NIST scoring tools (govt/BSD?)
- Padsp makes HTK work on PulseAudio (GPL)
- OSS native HTK audio system (GPL)
- Tcsh/Python scripting (GPL)
- Sed/awk always useful (GPL)
- Audacity,OpenOfficeCalc for inspection.

From ASR to NST

- Unlike standard ASR tasks, we have:
 - Multiple speakers talking at once
 - Speakers moving around the room
 - Significant room effects (reverb, resonance)
 - Background noise (furniture, traffic, plumbing)
 - Unknown speakers, accents/dialects

Lab set up

- 16 channels:
 - Up to 8 ceiling mics
 - Up to 8 table mics
 - + headsets
- Two MOTU Pre8s
- Firewire
- 3D people trackers
- 3 Cameras
- Teleconferencing (H323,sip)
- DAW: 3GHz, 4Gb,UbuntuStudio11.10
- Record 16chs, 48kHz,316chs, 48kHz,32bit
- For 1 hour meetings

Linux meeting recording

Set-up lessons learned

- ffado (firewire) with JACK2 (install Ubuntu packages: jack2d, jack2d-firewire, libffado,jackd, laditools.)
- Unlock memory.
- adduser charles audio.
- edit /etc/security/limits.d/audio.conf
 - @audio rtprio 95
 - @audio memlock unlimited
- Qjackctl: 128frms/per,48kHz,3per/buf.
- Result: Just 11 xruns in 1hour.Only 25% CPU usage on 16ch/16kHz/32bit 2-core 3GHz machine.

(So looking good for more mics!)

Setup - JACK Audio Connection Kit 🔷 🗘								
Settings Options Display	Misc							
Preset Name: NST-studio-1-charles								
Server								
Server Path: /usr/bin/jack	d	▼ <u>N</u>	ame: (default)	Driv <u>e</u> r: fir	ewire 🔻			
Parameters								
✓ <u>R</u> ealtime	Priorit <u>y</u> :	(default)		ce: (default)	▼ >			
🗌 No Memory Loc <u>k</u>	<u>F</u> rames/Period:	128 -	Dit <u>h</u>	er: None				
✓ Unlock Memory	Sample <u>R</u> ate:	48000 -	Aud	lio: Duplex				
So <u>f</u> t Mode	Periods/ <u>B</u> uffer:	3	Input Devi	ce: (default)	▼ >			
<u>M</u> onitor	Word Length:			ce: (default)				
✓ Force <u>1</u> 6bit	Wait (usec):	21333 🔻						
H/W Monitor	Channels:		Input Channe					
H/W Meter	_							
☐ Ignore H/W	Port Ma <u>x</u> imum:	256 -	Input Laten	cy: (default)	* *			
✓ Verbose messages	<u>T</u> imeout (msec):	500 -	Output Laten	cy: (default)	* *			
MIDI Driv <u>e</u> r: none 🔻 Start De <u>l</u> ay (secs): 2 🔭 Latency: 8 msec								
				<u>C</u> ancel	<u>o</u> k			

Multi-mic de-mixing

- Speakers may talk over one another
- And background noises interfere with them
- Use microphone arrays to pull out sources:
- Assume each speaker and noise is $x_{i}[t]$
- So vector of source signals, **x**[t]
- Assume mics get stationary linear mix, y=Mx
- Search for parameters M to make x'=M⁻¹y look like x
 - ICA: assume sources are independent
 - Speech priors: make **x'** have speechlike harmonics
 - Beamforming: use knowledge of locations and physics...
- More mics → better accuracy!

Environment modelling

- Assume each mic channel *j* picks up a source $x_i[t]$ that has been filtered by the room's reverb and resonance, $y_i(t) = \sum_{d \in i} f_i(d) x(t-d)$
- Find filter f to "de-verb" the room and retreive x.
- Again, by making prior assumptions about what we would like x to look like
- More complicated when the multiple source problem is there at the same time...

 $y_{j}(t) = \sum_{i} \sum_{d} f_{ij}(d) x_{i}(t-d)$

Speaker localisation and beamforming

- Consider the time to reach different mics from the speed of sound.
- Requires sample-perfect accuracy.

(1meter in 1/330s = 3ms = 145samples@48kHz)

- For testing, also sync to our people-tracker and video camera streams (JACK? GStreamer?)
- Time delay between each pair of mics gives a set of possible locations. Intersecting sets from many pairs are probably source locations.
- Speakers may move around over time
 - \rightarrow Kalman like tracking (+video)
- Once we know the speaker locations, then use physics of sound to do source separation – infer back from constructive and destructive interference patterns - beamforming
- Bayesian probability is a useful framework to try solving **all** of these problems simultaneously...
- Bayes is good at chicken-and-egg problems but needs great computing power (eg. Clusters), especially if we want real-time.

Remote NST recognition

Microcones, Android phones, sending speech back to our cluster for analysis.

Of Sheffield. Linux for natural speech

- Unlike standard ASR tasks, we have:
 - Multiple speakers talking at once
 - Speakers moving around the room
 - Significant room effects (reverb, resonance)
 - Background noise (furniture, traffic, plumbing)
- Linux audio requirements:
 - Large data sets (1000 hours) mostly (entirely?) for offline work
 - Each recording typically 1 hour
 - Many simultaneous recording channels, 16 good, 64+ better ...
 - Sample-perfect synchronisation between mics for beamforms
 - Sync audio to video and 3D data streams sample accurate
 - HTK/Microsoft licensing issues (or move to Kaldi?)
 - Linking existing HTK (or Kaldi) offline cluster tools to realtime audio and over networks for remote users, eg. their Android phones.
- What can we contribute back to GPL Linux Audio from the NST Project?

NUANCE

Please do get in touch now or after the conference: www.5m.org.uk

NHS B B C