Krzysztof Gawlas

Institute of Music, Artistic Department, University of Silesia in Katowice

Rite of the Earth

composition with frequency-based harmony and ambisonic sound projection.

LAC 2012, CCRMA Stanford

Academy of the Sounds of the Earth

Institute of Fine Arts, Artistic Department, University of Silesia in Katowice

- Since 2007
- Artistic director dr hab. Małgorzata Skałuba-Krentowicz
- Lecturers and students of the Institute of Fine Arts and students of Ethnology
- Over 70 different instruments
- Several exhibitions and concerts

Example instruments

- Trial and error approach of instrument building
- Focus on visual side
- Very soft sound, too soft for an acoustic concert
- Tuning of the instruments doesn't correspond to any particular musical scale

On the other hand...

- Interesting sounds
- Great sound material for computer treatment
- Timbral structures inspiring for harmonic operations challenge

Recording of the sounds

2 methods:

- B-format with 1 omnidirectional and 2 figure-of-eight microphones
- a-b 2 spaced omnidirectional microphones

Analysis of the sounds

Spectral analysis for studying the inner structure of the sounds

Export to musical notation

Timbre-harmony unity

Musical discourse through transformation of chord structures

2664 2608 2554 2500 2446 2392 2339 2282 2228		Sonic Visualizer analysis http://www.sonicvisualiser.org/
2174 2121 2067 2013		D6
1959 1902 1849 1795 1741 1687 1633 1577 1523 1469 1415 1361 1308 1251 1197 1143		
1523 1469 1415 1361 1308 1251 1197		F#5+43c
1090 1036 982 928 872 818	C#5+18c	
764 710 656 602 546 492 438 384 331 277 220 166 113	G4-3c	
277 220 166 113 59	2.558	225633

OpenMusic -> SuperCollider

OM uses midicents for pitch

Middle C=60 in MIDI so it's 6000 in midicents

One can easily and with high accuracy convert it back to frequency

Chords were imported as arrays of frequencies in sc

Generating musical gestures

Strenghts of Supercollider – combining powerful synthesis engine with flexible control possibilities – envelopes, various random distributions, tendency, routines, patterns...

Ctk - The Composition Tool Kit

by Josh Parmenter (DXARTS)

A set of Supercollider Object classes for creation of fixed pieces through the use of a Score-like structure.

Replacement for the standard SuperCollider classes (Synth, Buffer, Group, and Bus), that can be used in RT and NRT synthesis without changing the syntax.

Problems with the Ctk method

Not all processes may be wrapped into the Ctk system – for example:

- PmonoArtic patterns that play legato instruments (changing pitch of a sounding note instead of playing several consecutive notes)
- BBCut (a library for algorithmic beat slicing)
- Realtime controllers use

In above cases SuperCollider was used in realtime and its output was connected through jack directly to Ardour.

Instruments

Sampling

Sampling and frequency shifting or ring modulation

Hybrid - sample + additive or FM synthesis

Resonance models + samples as exciters

Ats resynthesis with complex instruments instead of sinusoids

Granular synthesis

BBCut for rhythm slicing

```
SynthDef(\playBufAmb, {arg buffer, freq=440, bfreq=440, dur, att=0.01,
                       rel=0.4, start, pan=0, rho=1, amp=0.1,
                       shift=0, wScale=1;
   var w, x, y, z, rate, sig, env;
   rate = Lag2.kr(freq/(1*bfreq), 0.03);
   env = EnvGen.ar(Env([0, 1, 0.9, 0], [att, dur-att-rel, rel], \sin));
   #w,x,y,z = PlayBuf.ar(4, buffer, BufRateScale.kr(buffer) * rate,
             startPos: start * BufSampleRate.kr(buffer)) * env * amp;
   \#w,x,y,z = FreqShift.ar([w, x, y, z], shift);
   \#w,x,y,z = BFManipulate.ar(w, x, y, z, pan);
Out.ar(0, [w*wScale, x, y, w]);
})
```

```
// thisThread.randSeed (171); // SEEDS
repeats=16:
repeats.do({|ix|
var ind, freqs, pans, offset, durEnv, toffsEnv;
ind=[0,1,2,4,11,12,13].choose; //buf.size.rand;
freqs=(intplMatrix[1]);
offset=ix:
durEnv=Env([1.0,0.3],[1],\lin);
toffsEnv=Env([0,33],[1],-1);
if (0.9.coin, {
  score.add(noteSample.note(toffsEnv[ix/repeats], 14.5)
     .buffer (buf[ind])
    .freq (CtkControl.env(
         Env([freqs[0+offset], freqs[0+offset],
              freqs[1+offset], freqs[1+offset],
              freqs[2+offset], freqs[2+offset],
             freqs[3+offset], freqs[3+offset],
              freqs[4+offset], freqs[4+offset]],
         [0.25,0.0,0.25,0.0,0.25,0.0,0.25,0.0,0.25]*durEnv[ix/repeats], \lin)))
    .bfreq (bfreqs[ind])
    .shift ([(freqs[4+offset]/[0.5,0.25].choose).neg, 0].choose)
    .dur_(rrand(12.5,14.5))
    .start(0.0)
    .amp (rrand(0.1,0.4))
    .wScale (CtkControl.env(Env([-20.dbamp,0.dbamp,-20.dbamp], [3.5,5], \sin)))
    .pan (pi.rand2))},
 {});
});
score.play;
// score.write("/home/boss/Ziemia-cd/Bowls&Bows/Intpl2-8-wxyw.wav".standardizePath,
   options: ServerOptions.new.numOutputBusChannels (4));
```

Spatializing and mixing

The soundfiles generated in SuperCollider are already multichannel, 1-3 order ambisonics.

Micro-scale (notes) positioning/movements was done in sc.

Medium-scale spatial arrangement in DAW.

Distance changes through "w" signal gain modulation. Unmodulated "w" signal for feeding reverb. The soudfiles generated in Supercollider contain "modulated w", "x", "y" (...) and "unmodulated w" signals.

Acknowledgments

Akademia dźwięków ziemi (Academy of the Sounds of the Earth) http://www.instytutsztuki.us.edu.pl/kr/akademia-dzwiekow-ziemi

Sonic Visualiser http://www.sonicvisualiser.org/

Spear

http://www.klingbeil.com/spear/

OpenMusic

http://repmus.ircam.fr/openmusic/home

Supercollider

http://supercollider.sourceforge.net/

Fons Adriaensen software

http://kokkinizita.linuxaudio.org/

Reaper

http://reaper.fm/

Ardour

http://ardour.org/