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Interactive Music Scores

• Alien Lands - Sandeep Bhagwati
[Montréal - February 2011] 
Music performance in four movements 
for four spatially dispersed 
percussionists with interactive scores.

• Calderʼs Violin - Richard Hoadley
[Cambridge - October 2011]
Automatic music for violin and computer.



The Interlude Project
New Digital Paradigms for Exploration and Interaction 

of Expressive Movement with Music.



The Interlude Project



INScore

•Music score extension

•Graphic & time spaces relationship

•Performance representation

•Interaction
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• Symbolic music notation [ GMN, MusicXML]
• Textual elements
• Bitmaps [jpg, gif, tiff, png,...]
• Vectorial graphics (rectangles, ellipses, SVG,...)
• Video files
• Sound and gesture graphic representations

INScore supports

• a standalone score viewer
• an open source C/C++ library

INScore is

• multi-platform
• an Open Sound Control API



INScore
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Approach the problem with segmentation and relations between segments
Hypothesis
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Approach the problem with segmentation and relations between segments
Hypothesis
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• generalizable to n dimensions

Segmentation
A set of disjoined segments
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Approach the problem with segmentation and relations between segments
Hypothesis

• operations to query the mapping
• operations to compose mappings

Mapping
Relation between two segmentations:



Relations between graphic and time space
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Segmentations and mappings for each component type:

type segmentations and mappings required
text graphic ↔ text ↔ relative time

score graphic↔ wrapped relative time ↔ relative time
image graphic ↔ pixel ↔ relative time

vect. graphics vectorial↔ relative time
signal graphic ↔ frame ↔ relative time



Performance representation

11

The VEMUS approach

• a mirror metaphor
• feedback based pedagogy
• score annotation with 

performance representations
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The VEMUS approach

• static design, 
• tricky to extend,
• awkward to experiment.

• a mirror metaphor
• feedback based pedagogy
• score annotation with 

performance representations
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Approach the graphic of a signal as a graphic signal.
Hypothesis

A graphic signal
A composite signal made of:
• a y signal
• a thickness signal
• a color signal
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Approach the graphic of a signal as a graphic signal.
Hypothesis

A graphic signal
A composite signal made of:
• a y signal
• a thickness signal
• a color signal
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Consider a signal S defined as a time function:

Introduction Augmented Music Score Synchronization Graphic signals

Graphic signals

Consider a signal S defined as a time
function:

f (t) : R → R3 = (y , h, c) | y , h, c ∈ R

this signal could be directly drawn.
(i.e. without additional computation)

To make simple, we assume that the color
space addressed by c has one dimension.

This signal could be directly drawn (i.e. without additional computation)
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Approach the graphic of a signal as a graphic signal.
Hypothesis

A graphic signal
A composite signal made of:
• a y signal
• a thickness signal
• a color signal

Consider a signal S defined as a time function:

Introduction Augmented Music Score Synchronization Graphic signals

Graphic signals

Consider a signal S defined as a time
function:

f (t) : R → R3 = (y , h, c) | y , h, c ∈ R

this signal could be directly drawn.
(i.e. without additional computation)

To make simple, we assume that the color
space addressed by c has one dimension.

This signal could be directly drawn (i.e. without additional computation)

y h c
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Examples

Introduction Augmented Music Score Synchronization Graphic signals

Examples

g = Sf0 / kt / kc
Sf0 : fundamental frequency
kt : constant thickness signal
kc : constant color signal
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Examples

g = Sf0 / kt / kc
Sf0 : fundamental frequency
kt : constant thickness signal
kc : constant color signal

Introduction Augmented Music Score Synchronization Graphic signals

Examples

g = ky / Srms / kc
Srms : RMS signal
ky : constant y signal
kc : constant color signal
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Introduction Augmented Music Score Synchronization Graphic signals

Examples

g = Sf0 / kt / kc
Sf0 : fundamental frequency
kt : constant thickness signal
kc : constant color signal

Introduction Augmented Music Score Synchronization Graphic signals

Examples

g = ky / Srms / kc
Srms : RMS signal
ky : constant y signal
kc : constant color signal

Introduction Augmented Music Score Synchronization Graphic signals

Examples

g = Sf0 / Srms / kc
Srms : RMS signal
Sf0 : fundamental frequency
kc : constant color signal

Introduction Augmented Music Score Synchronization Graphic signals

Examples

g0 = Sf0 / Srms0 / kc0
Sf0 : fundamental frequency
Srms0 : f0 RMS values

g1 = Sf0 / Srms1 + Srms0 / kc1
Srms1 : f1 RMS values

g2 = Sf0/ Srms2 + Srms1 + Srms0 / kc2
Srms2 : f2 RMS values
...
g = g2 / g1 / g0
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An «object oriented» approach
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• The OSC address is like an object pointer.
• An OSC message is similar to an object method call.
• The OSC address space is dynamic.

An «object oriented» approach

OSC message general format

OSC address message string parameter



255 128 40 150

INScore OSC Messages
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• The OSC address is like an object pointer.
• An OSC message is similar to an object method call.
• The OSC address space is dynamic.

An «object oriented» approach

OSC message general format

OSC address message string parameter

Example
/ITL/scene/score color

score->color(255, 128, 40, 150)
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OSC address message string parameter

/ITL

/scene1 /scene2 /scene3

/object1/signal/sync /object2 /object3

/sig1 /sig2
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Application

OSC address message string parameter

/ITL

/scene1 /scene2 /scene3

/object1/signal/sync /object2 /object3

/sig1 /sig2
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Application

Scene

OSC address message string parameter

/ITL

/scene1 /scene2 /scene3

/object1/signal/sync /object2 /object3

/sig1 /sig2
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Application

Scene

Components

OSC address message string parameter

/ITL

/scene1 /scene2 /scene3

/object1/signal/sync /object2 /object3

/sig1 /sig2
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Application

Scene

Components

Signals

OSC address message string parameter

/ITL

/scene1 /scene2 /scene3

/object1/signal/sync /object2 /object3

/sig1 /sig2



OSC address message string parameter

Messages Strings
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OSC address message string parameter

Messages Strings
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• Position: 
x, y, z, angle, scale, dx, dy, dz, 
dangle, dscale

• Color: 
color, dcolor, red, green, blue, 
dred, dgreen, dblue, alpha, dalpha, 
hue, saturation, brightness, dhue, 
dsaturation, dbrightness

Graphic space control

• Time position: 
date, ddate, clock 

• Duration: 
duration, dduration

Time space control

Constructor
• set 

Query message
• get 

Time and graphic 
spaces relations

• map 

Signals and graphic 
signals messages
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• int32 
• float32
• OSC-string

Direct use of basic OSC types

OSC address message string parameter

Relaxed types but strict parameters count



Interaction Messages
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Basic principle
OSC address watch messageevent
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Basic principle
OSC address watch messageevent

• mouse up, mouse down, 
mouse move, mouse enter, 
mouse leave ...

• time enter, time leave



address parameters

Interaction Messages
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Basic principle
OSC address watch messageevent



OSC address

address parameters

Interaction Messages
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Basic principle
OSC address watch messageevent



OSC address

address parameters

Interaction Messages
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Basic principle

IP address

host name
port:

OSC address watch messageevent



/ITL/scene/myObject watch mouseDown /ITL/scene/myObject show 0

Examples

Interaction Messages
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Basic principle
OSC address watch messageevent



/ITL/scene/myObject watch mouseDown host.domain.org:12100/an/address start

/ITL/scene/myObject watch mouseDown /ITL/scene/myObject show 0

Examples

Interaction Messages

19

Basic principle
OSC address watch messageevent



Interaction Messages

20

Variables
• $x, $y, $absx, $absy, $sx, $sy
• $date

Scaling variable values
• $x[min, max], $y[min, max]

Address variables
• $self
• $scene

Message based variables
• $(a valid INScore ‘get’ message)

Date quantification
• $date[n/d]
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Variables
• $x, $y, $absx, $absy, $sx, $sy
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Scaling variable values
• $x[min, max], $y[min, max]

Address variables
• $self
• $scene

Message based variables
• $(a valid INScore ‘get’ message)

Date quantification
• $date[n/d]



• INScore files as script files.
• Supports variables
• Javascript support (embedded by default)

• optional Lua support (not embedded by default)

Scripting
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<?javascript   ... any javascript code ... ?>

<?lua   ... any lua code ... ?>



 

http://inscore.sourceforge.net

http://inscore.sourceforge.net
http://inscore.sourceforge.net

