
Linux Audio Conference 2012 - April 12-15 @ CCRMA, Stanford University, CA, USA

INScore

D. Fober, Y. Orlarey, S. Letz

AN ENVIRONMENT FOR THE DESIGN OF LIVE MUSIC SCORES

Interactive Music Scores

Interactive Music Scores

• Alien Lands - Sandeep Bhagwati
[Montréal - February 2011]
Music performance in four movements
for four spatially dispersed
percussionists with interactive scores.

• Calderʼs Violin - Richard Hoadley
[Cambridge - October 2011]
Automatic music for violin and computer.

The Interlude Project
New Digital Paradigms for Exploration and Interaction

of Expressive Movement with Music.

The Interlude Project

INScore

•Music score extension

•Graphic & time spaces relationship

•Performance representation

•Interaction

INScore

6

• Symbolic music notation [GMN, MusicXML]
• Textual elements
• Bitmaps [jpg, gif, tiff, png,...]
• Vectorial graphics (rectangles, ellipses, SVG,...)
• Video files
• Sound and gesture graphic representations

INScore supports

• a standalone score viewer
• an open source C/C++ library

INScore is

• multi-platform
• an Open Sound Control API

INScore

7

Relations between graphic and time space

8

Approach the problem with segmentation and relations between segments
Hypothesis

Relations between graphic and time space

8

Approach the problem with segmentation and relations between segments
Hypothesis

t1t0

x1x0

y1

y0

t1t0

x1x0

y1

y0

t1t0 t3

t1t0

x1x0

y1

y0

t2

Segments
Defined as a list of intervals:

t1t0 t3

t1t0

x1x0

y1

y0

t2

• intersection operation

x1x0

y1

y0
z0

z1

• generalizable to n dimensions

Segmentation
A set of disjoined segments

Relations between graphic and time space

9

Approach the problem with segmentation and relations between segments
Hypothesis

Relations between graphic and time space

9

Approach the problem with segmentation and relations between segments
Hypothesis

• operations to query the mapping
• operations to compose mappings

Mapping
Relation between two segmentations:

Relations between graphic and time space

10

Segmentations and mappings for each component type:

type segmentations and mappings required
text graphic ↔ text ↔ relative time

score graphic↔ wrapped relative time ↔ relative time
image graphic ↔ pixel ↔ relative time

vect. graphics vectorial↔ relative time
signal graphic ↔ frame ↔ relative time

Performance representation

11

The VEMUS approach

• a mirror metaphor
• feedback based pedagogy
• score annotation with

performance representations

Performance representation

11

The VEMUS approach

• static design,
• tricky to extend,
• awkward to experiment.

• a mirror metaphor
• feedback based pedagogy
• score annotation with

performance representations

Performance representation

12

Approach the graphic of a signal as a graphic signal.
Hypothesis

Performance representation

12

Approach the graphic of a signal as a graphic signal.
Hypothesis

A graphic signal
A composite signal made of:
• a y signal
• a thickness signal
• a color signal

!

"

#$

Performance representation

12

Approach the graphic of a signal as a graphic signal.
Hypothesis

A graphic signal
A composite signal made of:
• a y signal
• a thickness signal
• a color signal

!

"

#$

Consider a signal S defined as a time function:

Introduction Augmented Music Score Synchronization Graphic signals

Graphic signals

Consider a signal S defined as a time
function:

f (t) : R → R3 = (y , h, c) | y , h, c ∈ R

this signal could be directly drawn.
(i.e. without additional computation)

To make simple, we assume that the color
space addressed by c has one dimension.

This signal could be directly drawn (i.e. without additional computation)

Performance representation

12

Approach the graphic of a signal as a graphic signal.
Hypothesis

A graphic signal
A composite signal made of:
• a y signal
• a thickness signal
• a color signal

Consider a signal S defined as a time function:

Introduction Augmented Music Score Synchronization Graphic signals

Graphic signals

Consider a signal S defined as a time
function:

f (t) : R → R3 = (y , h, c) | y , h, c ∈ R

this signal could be directly drawn.
(i.e. without additional computation)

To make simple, we assume that the color
space addressed by c has one dimension.

This signal could be directly drawn (i.e. without additional computation)

y h c

Performance representation
System expressivity

13

Examples

Introduction Augmented Music Score Synchronization Graphic signals

Examples

g = Sf0 / kt / kc
Sf0 : fundamental frequency
kt : constant thickness signal
kc : constant color signal

Performance representation
System expressivity

13

Examples

Introduction Augmented Music Score Synchronization Graphic signals

Examples

g = Sf0 / kt / kc
Sf0 : fundamental frequency
kt : constant thickness signal
kc : constant color signal

Introduction Augmented Music Score Synchronization Graphic signals

Examples

g = ky / Srms / kc
Srms : RMS signal
ky : constant y signal
kc : constant color signal

Performance representation
System expressivity

13

Examples

Introduction Augmented Music Score Synchronization Graphic signals

Examples

g = Sf0 / kt / kc
Sf0 : fundamental frequency
kt : constant thickness signal
kc : constant color signal

Introduction Augmented Music Score Synchronization Graphic signals

Examples

g = ky / Srms / kc
Srms : RMS signal
ky : constant y signal
kc : constant color signal

Introduction Augmented Music Score Synchronization Graphic signals

Examples

g = Sf0 / Srms / kc
Srms : RMS signal
Sf0 : fundamental frequency
kc : constant color signal

Performance representation
System expressivity

13

Examples

Introduction Augmented Music Score Synchronization Graphic signals

Examples

g = Sf0 / kt / kc
Sf0 : fundamental frequency
kt : constant thickness signal
kc : constant color signal

Introduction Augmented Music Score Synchronization Graphic signals

Examples

g = ky / Srms / kc
Srms : RMS signal
ky : constant y signal
kc : constant color signal

Introduction Augmented Music Score Synchronization Graphic signals

Examples

g = Sf0 / Srms / kc
Srms : RMS signal
Sf0 : fundamental frequency
kc : constant color signal

Introduction Augmented Music Score Synchronization Graphic signals

Examples

g0 = Sf0 / Srms0 / kc0
Sf0 : fundamental frequency
Srms0 : f0 RMS values

g1 = Sf0 / Srms1 + Srms0 / kc1
Srms1 : f1 RMS values

g2 = Sf0/ Srms2 + Srms1 + Srms0 / kc2
Srms2 : f2 RMS values
...
g = g2 / g1 / g0

INScore OSC Messages

14

An «object oriented» approach

INScore OSC Messages

14

• The OSC address is like an object pointer.
• An OSC message is similar to an object method call.
• The OSC address space is dynamic.

An «object oriented» approach

OSC message general format

OSC address message string parameter

255 128 40 150

INScore OSC Messages

14

• The OSC address is like an object pointer.
• An OSC message is similar to an object method call.
• The OSC address space is dynamic.

An «object oriented» approach

OSC message general format

OSC address message string parameter

Example
/ITL/scene/score color

score->color(255, 128, 40, 150)

INScore OSC Address Space

15

OSC address message string parameter

/ITL

/scene1 /scene2 /scene3

/object1/signal/sync /object2 /object3

/sig1 /sig2

INScore OSC Address Space

15

Application

OSC address message string parameter

/ITL

/scene1 /scene2 /scene3

/object1/signal/sync /object2 /object3

/sig1 /sig2

INScore OSC Address Space

15

Application

Scene

OSC address message string parameter

/ITL

/scene1 /scene2 /scene3

/object1/signal/sync /object2 /object3

/sig1 /sig2

INScore OSC Address Space

15

Application

Scene

Components

OSC address message string parameter

/ITL

/scene1 /scene2 /scene3

/object1/signal/sync /object2 /object3

/sig1 /sig2

INScore OSC Address Space

15

Application

Scene

Components

Signals

OSC address message string parameter

/ITL

/scene1 /scene2 /scene3

/object1/signal/sync /object2 /object3

/sig1 /sig2

OSC address message string parameter

Messages Strings

16

OSC address message string parameter

Messages Strings

16

• Position:
x, y, z, angle, scale, dx, dy, dz,
dangle, dscale

• Color:
color, dcolor, red, green, blue,
dred, dgreen, dblue, alpha, dalpha,
hue, saturation, brightness, dhue,
dsaturation, dbrightness

Graphic space control

• Time position:
date, ddate, clock

• Duration:
duration, dduration

Time space control

Constructor
• set

Query message
• get

Time and graphic
spaces relations

• map

Signals and graphic
signals messages

Messages Parameters

17

• int32
• float32
• OSC-string

Direct use of basic OSC types

OSC address message string parameter

Relaxed types but strict parameters count

Interaction Messages

18

Basic principle
OSC address watch messageevent

Interaction Messages

18

Basic principle
OSC address watch messageevent

• mouse up, mouse down,
mouse move, mouse enter,
mouse leave ...

• time enter, time leave

address parameters

Interaction Messages

18

Basic principle
OSC address watch messageevent

OSC address

address parameters

Interaction Messages

18

Basic principle
OSC address watch messageevent

OSC address

address parameters

Interaction Messages

18

Basic principle

IP address

host name
port:

OSC address watch messageevent

/ITL/scene/myObject watch mouseDown /ITL/scene/myObject show 0

Examples

Interaction Messages

19

Basic principle
OSC address watch messageevent

/ITL/scene/myObject watch mouseDown host.domain.org:12100/an/address start

/ITL/scene/myObject watch mouseDown /ITL/scene/myObject show 0

Examples

Interaction Messages

19

Basic principle
OSC address watch messageevent

Interaction Messages

20

Variables
• $x, $y, $absx, $absy, $sx, $sy
• $date

Scaling variable values
• $x[min, max], $y[min, max]

Address variables
• $self
• $scene

Message based variables
• $(a valid INScore ‘get’ message)

Date quantification
• $date[n/d]

Interaction Messages

20

Variables
• $x, $y, $absx, $absy, $sx, $sy
• $date

Scaling variable values
• $x[min, max], $y[min, max]

Address variables
• $self
• $scene

Message based variables
• $(a valid INScore ‘get’ message)

Date quantification
• $date[n/d]

-1

-1

1

1

0.5

0.5

0.50.5

Interaction Messages

20

Variables
• $x, $y, $absx, $absy, $sx, $sy
• $date

Scaling variable values
• $x[min, max], $y[min, max]

Address variables
• $self
• $scene

Message based variables
• $(a valid INScore ‘get’ message)

Date quantification
• $date[n/d]

• INScore files as script files.
• Supports variables
• Javascript support (embedded by default)

• optional Lua support (not embedded by default)

Scripting

21

<?javascript ... any javascript code ... ?>

<?lua ... any lua code ... ?>

http://inscore.sourceforge.net

http://inscore.sourceforge.net
http://inscore.sourceforge.net

