FluidSynth real-time and thread safety challenges

David Henningsson
FluidSynth Developer Team
diwic @ubuntu.com

Abstr act

FluidSynth takes soundfonts and MIDI data as
input, and gives rendered audio samples as output.
On the surface, this might sound simple, but doing
it with hard real-time guarantees, perfect timing,
and in a thread safe ways, is difficult.

This paper discusses the different approaches that
have been used in FluidSynth to solve that
problem both in the past, present, as well as
suggestions for the future.

Keywords

FluidSynth, real-time, thread safety, soundfont,
MIDI.

1 Introduction to FluidSynth

FluidSynth is one of the more common software
synthesizers in Linux today. It features a high level
of compliance to the SoundFont (SF2) standard, as
well as good performance. The design is modular
enough to suit a variety of use cases.

FluidSynth does not come bundled with a GUI,
but several front-ends exist. It does however come
with several drivers for MIDI and audio, e.g.
JACK, ALSA, PulseAudio, OSS, CoreAudio/
CoreMidi (MacOSX), and DirectSound
(Windows).

1.1 FluidSynth's use cases

FluidSynth is not only a command-line
application, but also a library used by more than
15 other applications [1], all putting their
requirements on the FluidSynth engine.
Requirements include:

* low-latency guarantees, e.g. when
playing live on a keyboard.

* fast rendering', e.g. when rendering a
MIDI file to disk.

* configurability, such as loading and
changing soundfonts on the fly.

* monitoring current state and what's
currently happening inside the engine,
needed by GUI front-ends and
soundfont editors.

1.2 Introduction to SoundFonts

SoundFont (SF2) files contains samples and
instructions for how to play them, just like similar
formats such as DLS, Gigastudio and Akai. A
soundfont renderer must implement features such
as cut-off and resonance filters, ADSR envelopes,
LFOs (Low-Frequency Oscillators), reverb and
chorus, and a flexible system for how MIDI

! Sometimes known as “batch processing”, a mode of
operation where throughput matters more than latency.

SF2 metadata

4

MIDI
\ MIDI processing:
Presets, tuning,

gain, etc

Overview of FluidSynth core

—» \oice(s) —

SF2 sample data

Audio processing:
Interpolation,
filters, etc

__» Rendered audio

messages affect the different parameters of these
features.

1.3 Morebackground information

1.3.1 Buffer management

FluidSynth internally processes data in blocks of
64 samples’. It is between these blocks the
rendering engine can recalculate parameters, such
as e.g. current LFO values and how they affect
pitch, volume, etc.

There is also the concept of the audio buffer
size, which controls the latency: the audio driver
uses this size parameter to determine how often the
system should wake up, executing one or more
internal block rendering cycles, and write the result
to the sound card's buffer.

1.3.2 MIDI processing latency

To understand some of the problems faced
below, it is also important to understand the
difficulty of handling all MIDI messages in a
timely fashion:

* Loading soundfonts or MIDI files from
disk are worst, and are not guaranteed to
execute within an acceptable amount of
time due to disk accesses.

* MIDI Program change messages are
troublesome, somewhat depending on
the current API allowing custom
soundfont and preset loaders.

* Other MIDI messages, while they are
not calling into other libraries (and thus
unknown code latency-wise), still take
some time to process, compared to just
rendering a block.

21t is known as the FLUID_BUFSIZE constant in the
code, and I have never seen anyone change it.

2 Architecture before1.1.0

FluidSynth has always had a multi-threaded
architecture: One or more MIDI threads produce
MIDI input to the synthesizer, and the audio driver
thread is asking for more samples. Other threads
would set and get the current gain, or load new
soundfonts.

2.1 Thread safety versus low latency

When the author got involved with the
FluidSynth project, a few years ago, thread safety
was not being actively maintained, or at least not
documented properly. There weren't any clear
directions for users of FluidSynth's API on what
could be done in parallel.

Yet there seems to have been some kind of
balance: Unless you stress tested it, it wouldn't
crash that often — even though several race
conditions could be found by looking at the source
code. At the same time, latency performance was
acceptable — again, unless you stress tested it, it
wouldn't underrun that often.

This “balance” was likely caused by carefully
selecting places for locking a mutex — the more
MIDI messages and API calls protected by this
mutex, the better thread safety, but worse latency
performance. In several places in the code, one
could see this mutex locking code commented out.

2.2 The “drunk drummer” problem

An additional problem was the timing source:
The only timing source was the system timer, i.e.
timing based on the computer's internal clock. This
had two consequences.

The first: All rendering, even rendering to disk,
took as long time as the playing time of the song,
so if a MIDI file was three minutes long, rendering

Audio driver thread: Render blocks
Shell thread: load new SF2 file \
MIDI thread: input from keyboard

GUI thread: Set reverb width
Different threads calling into FluidSynth

FluidSynth core

that song would take three minutes, with the
computer idling most of the time.

The second: With larger audio buffer/block
sizes’, timing got increasingly worse. Since audio
was rendered one audio buffer at a time, MIDI
messages could only be inserted between these
buffer blocks. All notes and other MIDI events
therefore became quantized to the audio block
size. (Note that this quantization is not at all
related to the intended timing of the music!)

This problem was labelled “the drunk drummer
problem”, since listeners were especially sensitive
to the drum track having bad timing (even though
the same bad timing was applied to all channels).

3 Architecture in 1.1.0 and 1.1.1

3.1 Queuinginput

To make FluidSynth thread safe, it was decided
to queue MIDI messages as well as those API calls
setting parameters in the engine. This was
implemented as lock-free queues — the MIDI
thread would insert the message into the queue,
and the audio thread would be responsible for
processing all pending MIDI messages before
rendering the next block.

3.2 Thesample timer

To make the drunk drummer sober again, the
“sample timer” was added — that uses the number
of rendered samples as a timing source instead of
the system timer. This also allowed features such
as fast MIDI-file rendering to be added. This was

3 In high-latency scenarios, such as a MIDI file
player, you would typically want as large buffer as
possible, both to avoid underruns and to improve overall
performance.

implemented so that on every 64th sample, a
callback was made to the MIDI player so that it
could process new MIDI messages.

3.3 Problemswith the over haul

3.3.1 Worse latency

As the audio thread was now expected to
process all MIDI messages, this meant more
pressure on the MIDI messages to return timely,
and audio latency now had to take MIDI
processing into account as well. The sample timer
made this even worse, as all MIDI file loading and
parsing now also happened in the audio thread.

3.3.2 Reordering issues

To aid the now tougher task of the audio thread,
program change messages were still processed in
the MIDI thread, queueing the loaded preset
instead of the MIDI message. However, this also
meant that bank messages had to be processed
immediately, or the program change would load
the wrong preset. In combination with API calls
for loading soundfonts, this became tricky and
there always seemed to be some combination order
not being handled correctly.

3.3.3 Not getting out what you're putting in

Since API calls were now being queued until the
next rendering, this broke API users expecting to
be able to read back what they just wrote. E g if a
GUI front-end set the gain, and then read it back, it
would not read the previous set value as that value
had not yet been processed by the audio thread.

This was somewhat worked around by providing
a separate set of variables that were updated
immediately, but since these variables could be
simultaneously written by several threads, writes
and reads had to be atomic, which became difficult

MIDI thread: input from keyboard

GUI thread: Set reverb \

Shell thread: load new SF2 file

Audio driver thread:
Render blocks

¢

width

FluidSynth core:

MIDI processing,

Audio rendering

A4

Threading architecture in 1.1.0

MIDI/API queues

when writes and reads spanned several variables
internally.

4 Architecture in 1.1.2 and later

To overcome the problems introduced with
1.1.0, the thread safety architecture was once again
rewritten in 1.1.2. This time, it was decided to split
the engine into two parts: One for handling MIDI
and one for handling audio. Hard real-time is
guaranteed for the audio thread only, in order not
to miss a deadline and cause underruns as a result.

For MIDI, the synth no longer has an input
queue, but is instead mutex protected®. This means,
that if one thread calls into the API to do
something time intensive, such as loading a new
soundfont, other MIDI threads will be delayed in
the meantime and will have to wait until soundfont
loading is finished.

4.1 Thenew gqueue

Instead of having a MIDI input queue, the queue
has now moved to being between the MIDI
handling and the audio thread. Instead of queuing
the MIDI messages themselves, the outcome of the
MIDI processing is queued to the audio thread.
This releases pressure on the audio thread to
handle MIDI processing, so audio latency is
improved. If MIDI processing is lengthy, the end
result will be that the result of that event is delayed
— as compared to 1.1.0, where the result would
have been an underrun.

4 The mutex can optionally be turned off for cases
where the API user can guarantee serialized calls into
the APIL, e.g. in some embedded use cases.

4.2 Returninformation

A queue with return information also had to be
added, with information flowing from the Audio
rendering thread to the MIDI threads. This is used
to notify the MIDI processing when a voice has
finished, so that the voice can be reallocated at the
next MIDI note-on event. This return information
queue is processed right after the mutex is locked.

5 Conclusion and suggestions for the future

While the architecture in 1.1.2 seems to have
been more successful than the previous attempts in
terms of stability, it is still not optimal. There is
still work that could be done to improve the thread
safety and real-time performance further.

51 Sampletimers

Given the new architecture, the sample timer
mechanism needs to be rewritten to work optimal
under low latency conditions: as it currently
stands, the audio thread triggers the sample timer,
which in turn performs potentially lengthy MIDI
processing.

To solve this problem without regressing back to
the “drunk drummer”, one would need to add a
“mini sequencer” into the event queue so that
events can be added to be processed by the audio
thread not before all 64 sample blocks are
processed, but also between them. This would
further require a time aware MIDI part of the synth
— so the MIDI part would know where into insert
the new queue item. Also the MIDI player needs to
have a separate thread, monitoring the progress of
the audio stream and adding more MIDI events as
necessary.

GUI thread: Set reverb width

Mutex

MIDI thread: input from keyboard
Shell thread: load new SF2 file

Audio driver thread:
Render blocks

//oice changes queue x

MIDI processing \

Audio rendering

FluidSynth core: >

Threading architecture in 1.1.2

> FluidSynth core:

5.2 Synchronous MIDI/Audio

In particular, synchronous MIDI and audio can
be a problem when using JACK MIDI in
conjunction with JACK audio — because JACK
calls into both MIDI and audio -callbacks
synchronously. To try to avoid MIDI blocking
audio rendering, MIDI input could be queued to a
lower priority thread, and processed as time
permits. Caution must be taken to make that this
does not happen when JACK is running in its
“freewheeling”” mode, where MIDI and audio
callbacks should be processed in the exact order
they arrive.

5.3 Monitoring the audio thread

A sometimes asked for feature, in particular by
soundfont editors and sometimes by other GUI
frontends, is to be able to monitor the progress of
the audio rendering.

This could be e.g. to see the current sample
position of a particular voice, or to be able to
receive callbacks whenever something happens in
the audio thread, e.g. when a voice enters a new
envelope stage. This is currently difficult as
information is optimized to flow from the MIDI
part to the audio thread, not the other way around.

One solution to this problem would be for the
audio thread to continously write down relevant
information into a buffer, that the MIDI part could
read upon request. Caution must be taken in order
not to have the MIDI part read partially updated
information (and thus get a potentially
inconsequent view), but at the same time an

3 This is a JACK term indicating that the JACK server
is currently rendering as fast as CPU permits, e.g. when
performing a mixdown to disk, not unlike the “fast
rendering” mode of FluidSynth.

ongoing read should not block a new write. This
can be done with some clever atomic pointer
exchanges.

The audio thread's write-down operations could
potentially be turned on and off, in order not to
hurt performance for users not needing the feature.

6 Acknowledgements

Thanks go to the rest of FluidSynth developer
team (Joshua “Element” Green and Pedro Lopez-
Cabanillas), as well as all other contributors to
FluidSynth, including patch writers, testers, and
people helping out on the FluidSynth development
mailing list.

References

[1]
http://sourceforge.net/apps/trac/fluidsynth/wiki/
Applications

	1 Introduction to FluidSynth
	1.1 FluidSynth's use cases
	1.2 Introduction to SoundFonts
	1.3 More background information
	1.3.1 Buffer management
	1.3.2 MIDI processing latency

	2 Architecture before 1.1.0
	2.1 Thread safety versus low latency
	2.2 The “drunk drummer” problem

	3 Architecture in 1.1.0 and 1.1.1
	3.1 Queuing input
	3.2 The sample timer
	3.3 Problems with the overhaul
	3.3.1 Worse latency
	3.3.2 Reordering issues
	3.3.3 Not getting out what you're putting in

	4 Architecture in 1.1.2 and later
	4.1 The new queue
	4.2 Return information

	5 Conclusion and suggestions for the future
	5.1 Sample timers
	5.2 Synchronous MIDI/Audio
	5.3 Monitoring the audio thread

	6 Acknowledgements

