
Particle synthesis – a unified model for granular synthesis

Øyvind BRANDTSEGG
Music technology

NTNU - Department of Music
NO-7491 Trondheim, Norway
oyvind.brandtsegg@ntnu.no

Sigurd SAUE
Music technology

NTNU – Department of Music
NO-7491 Trondheim, Norway

sigurd.saue@ntnu.no

Thom JOHANSEN
Q2S Centre of Excellence

N-7491 Trondheim
Norway

thomj@alumni.ntnu.no

Abstract

The article describes an implementation of a
synthesis module capable of performing all known
types of time based granular synthesis. The term
particle synthesis is used to cover granular
synthesis and all its variations. An important
motivation for this all-inclusive implementation is
to facilitate interpolation between the known
varieties of particle synthesis. The requirements,
design and implementation of the synthesis
generator is presented and discussed. Examples of
individual varieties are implemented along with a
longer interpolated sequence morphing between
them. Finally an application, the Hadron Particle
Synthesizer, is briefly presented.

Keywords

Granular synthesis, Particle synthesis, CSound

1 Introduction
Granular synthesis is a well established

technique for synthesizing sounds based on the
additive combination of thousands of very short
sonic grains into larger acoustics events [1]. Its
potential for musical and sonic expression is
abundantly rich through fine-grained (!) control of
properties in both the time- and frequency-domain.

The foundation for granular synthesis was laid
by the British physicist Dennis Gabor in his studies
of acoustical quanta as a means of representation in
the theory of hearing [2]. The idea of using grains
of sound in music was later expanded into a
compositional theory by Iannis Xenakis in his
book Formalized Music [3].

In its basic form granular synthesis offers low-
level control of single grains through parameters
such as waveform, frequency, duration and
envelope shape, and it typically provides global
organization of grains through another set of
parameters such as density, frequency band and
grain cloud envelope.

There are several variations of the basic scheme.
A comprehensive survey of different granular
techniques can be found in Curtis Roads' excellent

book “Microsound” [4]. We will present a brief
summary in the next section. The book suggests
the term particle synthesis as a general term
covering granular synthesis and all its variations.
Although not a formal definition, we will adopt
that usage in this paper. Hence our all-in-one
implementation of all these techniques is aptly
named partikkel, the Norwegian word for 'particle'.

Due to its popularity numerous implementations
of granular synthesis have been made available
through the years, starting with the pioneering
works of Roads (see [4]) and later Truax [5].
Today we find real-time granular synthesis
modules included in commercial software
synthesis packages such as Absynth and Reaktor
from Native Instruments [6] or Max/MSP from
Cycling '74 [7]. Granular synthesis is also a
household component of open-source, platform-
independent audio programming languages such as
CSound [8], PureData [9] and SuperCollider [10].

Common to most of these implementations is
that they focus on a particular variety of granular
synthesis, for instance sound file granulation or
asynchronous granular synthesis. The opcode1
partikkel [11] that we have implemented in the
audio processing language CSound, is an attempt
to support all known types of time based granular
synthesis. To our knowledge it is the only open-
source, platform-independent all-in-one solution
for granular synthesis.

This paper will motivate the design of our
particle generator by extracting requirements from
known particle synthesis varieties. After some
additional considerations we present the partikkel
implementation. Finally we briefly introduce the
Hadron Particle Synthesizer that provides a
powerful and compact user interface to the particle
generator.

1An opcode is a basic CSound module that either
generates or modifies signals.

2 Particle synthesis
The term particle synthesis covers all the

varieties of granular synthesis as described by
Roads [4]. In this section we will take a closer
look at each variety, starting with basic granular
synthesis. We will focus on specific design
requirements posed by the variety as input to an
all-including implementation.

2.1 Basic granular synthesis
The building block of granular synthesis is the

grain, a brief microacoustic event with duration
near the threshold of human hearing, typically in
the range 1 to 100 milliseconds [4]. Figure 1 shows
a typical grain: a sinusoidal waveform shaped by a
Gaussian envelope. The parameters necessary to
control the grain are:

• Source audio: arbitrary waveform
(sampled or periodic)

• Grain shape: envelope function for each
grain

• Grain duration
• Grain pitch: playback rate of source

audio inside the grain
• Phase (or time pointer): start position for

reading the waveform inside each grain

The grain shape does not have to be symmetric.
Figure 2 shows a grain envelope with

independently specified attack and decay, and a
sustain portion in the middle. A flexible
implementation should permit updates of both
grain envelope and waveform during playback.

The global organization of grains introduces one
more parameter:

• Grain rate: the number of grains per
second

In synchronous granular synthesis, the grains are
distributed at regular intervals as shown in Figure
3. For asynchronous granular synthesis the grain
intervals are irregularly distributed, and in this case
it might be more correct to use the term grain
density than grain rate. An all-including
implementation should permit various degrees of
soft or hard synchronization.

The concept of a granular cloud is typically
associated with asynchronous grain generation
within specified frequency limits. The latter can
easily be controlled from outside the grain
generator by providing a randomly varied, band-
limited grain pitch variable. Similarly the
amplitude envelope of a cloud of grains may be
implemented as external global control of the
individual grain amplitudes.

2.2 Glisson synthesis

Glisson synthesis is a straightforward extension
of basic granular synthesis in which the grain has
an independent frequency trajectory [4]. The grain
or glisson creates a short glissando (see Figure 4
above). In order to meet this requirement the
granular generator must allow specification of both
start and end frequency for each individual particle
and also allow control over the pitch sweep curve

Figure 1: A sinusoidal grain with Gaussian envelope

Figure 2: Sinusoidal grain with irregular envelope
and sustain

Figure 3: Synchronous granular synthesis of audio
sample, the time pointer into the source waveform is
updated on each new grain

Figure 4: A typical grain in Glisson synthesis

(the rate of progression from starting pitch to
ending pitch).

2.3 Grainlet synthesis

Grainlet synthesis is inspired by ideas from
wavelet synthesis. We understand a wavelet to be a
short segment of a signal, always encapsulating a
constant number of cycles. Hence the duration of a
wavelet is always inversely proportional to the
frequency of the waveform inside it. Duration and
frequency are linked (through an inverse
relationship). Grainlet synthesis is based on a
generalization of the linkage between different
synthesis parameters.

Obviously, the greater the number of parameters
available for continuous control, the greater the
number of possible combinations for parameter
linkage. The most common linkage of grainlets is
the frequency/duration linkage found in wavelets.
More exotic combinations mentioned by Roads [4]
are duration/space, frequency/space and
amplitude/space. The space parameter refers to the
placement of a grain in the stereo field or the
spatial position in a 3D multichannel setup.

Grainlet synthesis does not impose additional
requirements on the design of the granular
generator itself, but suggests the possibility of
linking parameters, which can conveniently be
accomplished in a control structure external to the
actual granular audio generator unit.

2.4 Trainlet synthesis

The specific property that characterizes a trainlet
(and also gives rise to its name) is the audio
waveform inside each grain. The waveform
consists of a band-limited impulse train as shown
in Figure 5. The trainlet is specified by:

• Pulse period (or its counterpart, the base
frequency)

• Number of harmonics

• Harmonic balance (chroma): The energy
distribution between high and low
frequency harmonics

In terms of designing a general purpose granular
synthesis generator, as we set out to do in this
paper, it should be noted that the trainlet waveform
has to be synthesized in real time to allow for
parametric control over the impulse train. This
dictates that the trainlet must be considered a
special case when compared to single cycle or
sampled waveforms used in the other varieties of
particle synthesis.

2.5 Pulsar synthesis

Pulsar synthesis introduces two new concepts to
our universal particle synthesis engine: duty cycle
and masking. Here the term pulsar is used to
describe a sound particle consisting of an arbitrary
waveform (the pulsaret) followed by a silent
interval. The total duration of the pulsar is labeled
the pulsar period, while the duration of the pulsaret
is labeled the duty cycle. The pulsaret itself can be
seen as a special kind of grainlet, where pitch and
duration is linked. A pulsaret can be contained by
an arbitrary envelope, and the envelope shape
obviously affects the spectrum of the pulsaret due
to the amplitude modulation effects inherent in
applying the envelope to the signal. Repetitions of
the pulsar signal form a pulsar train.

A feature associated with pulsar synthesis is the
phenomenon of masking. This refers to the
separate processing of individual pulsars, most
commonly by applying different amplitude gains
to each pulsaret (see Figure 6 for an example).
Masking may be done on a periodic or stochastic
basis. If the masking pattern is periodic,
subharmonics of the pulsar frequency will be
generated. To be able to synthesize pulsars in a
flexible manner, we should enable grain masking
in our general granular synthesizer.

2.6 Formant synthesis

Granular techniques are commonly used to
create a spectrum with controllable formants, for
example to simulate vocals or speech. Several
variants of particle-based formant synthesis (FOF,
Vosim, Window Function Synthesis) have been

Figure 6: Amplitude masked pulsar train

Figure 5:Band-limited trainlet pulse

proposed [4]. As a gross simplification of these
techniques one could state that the base pitch is
constituted by the grain rate (which is normally
periodic), the formant position is determined by the
pitch of the source audio inside each grain
(commonly a sine wave), and the grain envelope
has a significant effect on the formant’s spectral
shape. Formant wave-function (FOF) synthesis
requires separate control of grain attack and decay
durations, and commonly uses an exponential
decay shape (see Figure 7). These requirements
must be met by the design of our all-including
granular generator.

3 Design considerations

3.1 Grain clock
Different varieties of particle synthesis use

different methods for organizing the distribution of
grains over time, from periodic grain dispersion to
asynchronous scattering of grains. A general
purpose granular generator must be able to
dynamically change the rate and the periodicity of
the internal clock used for grain generation.
Generation of truly asynchronous grain clouds may
require that an external clock source is allowed to
trigger grain generation (possibly by disabling the
internal clock). In any case, enabling an optional
external clock source to control grain dispersion
ensures maximum flexibility of grain scheduling.
In order to support exotic and yet unknown
synchronous granular synthesis varieties it would
be useful to add the possibility to gradually
synchronize internal and external clocks.

When deliberating the question of the most
flexible clock source for our granular generator, we
should also consider making the clock adjustable at
audio rate2, so as to enable frequency modulation

2Audio rate corresponds to the sample rate (as
opposed to control rate which normally is orders of

effects on the clock rate. Obviously, the effect of
continuously modulating a clock rate is only
manifested at the actual tick output of the clock.
Hence the clock rate could be considered as some
kind of “clock modulation sampling rate”.
Frequency modulation of the grain rate will be the
source of further investigation in later research
projects.

3.2 Grain masking

The masking concept introduced in relation to
pulsar synthesis could be extended to other
parameters than amplitude. We could for instance
dynamically distribute individual grains to
different locations in space. Thus our particle
generator could provide a channel mask option and
thereby allow individual grains to be routed to
specific audio outputs. This feature would also
enable the possibility to apply different signal
processing effects (for instance different filtering)
on individual grains by post-processing the output
channels of the generator.

3.3 Waveform

One important reason for designing an all-
including particle generator is to enable dynamic
interpolation between the different varieties. As we
have already pointed out, the generator should
support arbitrary waveforms within the grains. As
a matter of fact the grain waveform is a
distinguishing characteristic of several varieties. In
order to morph between them the particle generator
must support gradual transitions from one
waveform to another.

The most obvious approach to waveform
transitions is crossfading. Crossfading between two
different waveforms would be sufficient, but it
might be interesting to investigate the effects of
simultaneously crossmixing even more waveforms
into each grain. We also need a crossfading option
for trainlet sources, since trainlet synthesis must be
treated as a special case. The masking technique
discussed in the previous section can easily be
extended to include source waveform mixing: a
wave-mix mask for truly exotic pulsars.

Providing several simultaneous source
waveforms for each grain would naturally also
require independent transposition and phase (time
pointer) control for each source wave to enable
flexible mixing and matching of source waves.

As a simple extension to the already flexible
playback and mixing of source audio material
within each grain, the generator could add support
for frequency modulation of the source waveforms.

magnitude slower)

Figure 7: Grain shape with complex envelope. The
envelope is made up of an overall exponential decay
combined with sinusoidal attack and decay segments.

It is computationally cheap, but its effects in
granular synthesis have been sparsely explored.
Frequency modulation of source waveform
playback pitch could be implemented as phase
modulation, using an external audio input to
modulate the reading position of the source audio
waveform(s).

4 The partikkel CSound opcode
A generalized implementation enabling all

known varieties of particle synthesis in one single
generator will facilitate new forms of the synthesis
technique. To enable the use of such a generalized
granular generator in a broader context, it seems
apt to implement it in an already existent audio
processing language. To broaden the context as
much as possible it would be preferable to use an
open source language with a large library of signal
processing routines already in place. To comply
with these requirements, the authors chose to
implement the new generator as an opcode for the
audio programming language CSound. The opcode
was given the name partikkel.

We will now try to sum up the features of
partikkel. Where appropriate, we will refer to the
specific type of particle synthesis that each feature
originates from.

The basic parameters of granular synthesis are
grain rate, grain pitch and grain shape/duration, as
well as the audio waveform inside each grain. We
decided to enable grain rate modifications at audio
rate since this might open up new possibilities for
frequency modulating the grain rate. The internal
grain clock may also be disabled completely for
truly asynchronous grain clouds, or it may be run
as an internal clock with soft synchronization to an
external clock source. For simpler grain
displacements (semi-synchronous), a separate grain
distribution parameter has been implemented,
moving single grains within a time slot of
1/grainrate seconds.

Grain pitch should be relatively straightforward,
defined as the playback speed of the audio
waveform inside each grain. However, since we
use four separate source waveforms3 we need four
separate pitch controls, in addition to one master
pitch control. Grain pitch can also be modified at
audio rate via a separate frequency modulation
audio input parameter to partikkel. Trainlets (or
pulse trains) can be used as a fifth source, and we
actually need a separate pitch control for them too.

3The choice of four source waveforms is a more or
less arbitrary trade-off between complexity and
expressivity.

As glisson synthesis requires pitch glissandi
within each grain, an additional layer of pitch
control with start and end pitch for each grain has
been added. This type of control over individual
grains is implemented in a general manner via a
grain masking method. We will return to that topic
later.

Different varieties of particle synthesis require
different source audio waveforms, and to enable
the interpolation between different synthesis types
partikkel has the ability to crossfade between
different waveforms. Separate phase control over
the four source waveforms completes this design
requirement. Trainlet synthesis requires a special
source waveform of band limited pulse trains. This
waveform is synthesized in real time to allow for
parametric control over harmonics and chroma.

Both pulsars and formant synthesis require
flexible grain envelopes with separate control over
shape and time for both the attack and decay
portion of the envelope. As a further adjustment to
the envelope shape, a sustain time parameter has
been added, where the grain amplitude is at
maximum for the duration of the sustain segment.
To enable even more flexibility, a second
enveloping window (full grain length) might be
used on top of the primary attack, sustain and
decay shape.

Pulsar synthesis introduces a grain masking
feature. Normally, this masking would be confined
to amplitude and output channel modifications. In
partikkel, the masking methods have also been
extended to include source waveform mix, pitch
glissandi (with separate start and end pitch values),
and frequency modulation index masks. The
masking feature is implemented by using tables of
successive values, partikkel reading one value for
each grain before progressing onto the next table
index. Start and end/loop indices are also part of
this data set, so the mask length and content can be
continuously modified while the generator is
running. For simplified random particle bursts, a
separate parameter (random mask) can be used to
randomly mute separate grains.

Grainlet synthesis has not been explicitly
accounted for so far. This is because we chose to
design the core granular generator to be as generic
as possible, and as part of that design decision we
determined that any parameter linkage should be
left to external implementation. Still, the parameter
set and the supported rate of change for each
parameter have been designed with parameter
linkage in mind.

4.1 Implementation notes

The processing in the partikkel opcode consists
of two primary phases: grain scheduling and grain
rendering. The grain scheduler will place grains
according to the time parameters, with each grain
being given attributes according to the parameters
describing pitch, amplitude, etc.

Grain rendering consists of synthesizing the
actual grain waveforms. Despite the large number
of parameters utilized by partikkel, the core grain
rendering itself is quite simple, and consists of the
following stages:

1. interpolated sample reading or DSF4
synthesis for trainlets

2. frequency modulation
3. frequency sweep (glisson) curve

synthesis
4. applying envelope
5. mixing to output buffer(s)

Most of the internal parameters these stages
depend upon are calculated on creation of the grain
and stored away in a linked list containing one
entry per grain, and will not be modified until the
end of the grain's life cycle. This is a tradeoff,
meaning that partikkel cannot (with the exception
of waveform FM) alter any properties influencing
a grain during its lifetime, but also means that all
the most demanding calculations are performed
one time per grain, leaving most processing power
to render as many grains as possible at the same
time. This might at first seem a limitation, but it
can be argued that granular synthesis is at its most
promising exactly when grains are allowed to be
different, and evolve in succession rather than
simultaneously.

5 Examples

A number of implementation examples [12]
accompany this paper. The examples are intended
to show how different varieties of particle
synthesis can be implemented using the
generalized technique as described in the paper.
First we present a number of individual examples,
followed by a long morphing sound, gluing
together all the individual examples into a long,
continuous transformation.

4 Discrete Summation Formulae (DSF) (see for
instance [17])

5.1 Example 1: Basic granular synthesis,
sample player with time stretch

In this example, a sound file is used as the
source waveform for grains and we use a flexible
time pointer (moving phase value) to set the
starting point for waveform reading within each
grain. This technique is commonly used for time
stretching and other time manipulations.

5.2 Example 2: Single cycle source waveform

A sine wave is used as source waveform for each
grain. In itself this is a trivial example, but is
included to show the transition (in example 10)
from reading sampled waveforms to single cycle
waveforms. The transition can be considered
nontrivial for most oscillators. Not only must the
oscillator waveform change on the fly, but the
pitch ratio for sampled sounds and single cycle
waveforms are usually very different.

5.3 Example 3: Glissons

Glissons in this example have a converging pitch
sweep profile. Each single glisson may start on a
pitch above or below, gliding quickly and
stabilizing on a central pitch.

5.4 Example 4: Trainlets

Trainlets with 20 partials and chroma varying
from 1 to 1.5.

5.5 Example 5: Simple pulsars/grainlets

This example shows simple pulsar synthesis. A
pulsaret is generated at periodic intervals, followed
by a silent interval. The duration of the pulsaret is
inversely proportional to the pulsaret pitch, and the
pitch gradually changes over the duration of the
example. The waveform of the pulsaret is a
trainlet.

5.6 Example 6: Pulsar masking

The example starts with a pulsar train similar to
the one in example 5. By grain masking we
gradually reduce the amplitude of every second
grain, then gradually creating a stereo pattern of
grains (left-center-right-center). Towards the end
of the example, stochastic masking is added.

5.7 Example 7: Formant synthesis

Using granular techniques similar to the classic
FOF (Fonction d'onde formantique) generators,
where the grain rate constitutes the perceived pitch.
The grain pitch (transposition of the waveform
inside each grain) controls the placement of a
formant region, and the grain shape controls the
spectral contour of the formant region. Since our

granular generator allows 4 separate source
waveforms with independent pitch, we can create 4
formant regions with one granular generator. The
example generates formants as found in the vowel
“a” in a male basso voice.

5.8 Example 8: Asynchronous GS

A gradual transformation from synchronous to
asynchronous granular synthesis. An asynchronous
clock pulse is generated by using a probability
function, this clock pulse is used to trigger
individual grains.

5.9 Example 9: Waveform mixing

Crossfading between 4 sampled waveforms.
From a vocal sample to distorted vibraphone, to
cello and finally to a synth pad.

5.10 Example 10: Morphing between all
previous examples

One continuous long transformation moving
through the granular techniques explored in each
previous example.

6 Performing with the partikkel opcode
The all-including implementation of particle

synthesis in a single generator encourages further
experimentation with granular synthesis
techniques. Interpolation between the different
granular varieties may reveal new and interesting
sonic textures, as would experimentation with
some of the more exotic design considerations
suggested in section 3.

The flexibility of the partikkel opcode comes
with a price. The parameter set is large and
unwieldy, particularly in a live performance
setting. There seems to be an unavoidable trade-off
between high-dimensional control and playability.
We have therefore investigated various strategies
for meta-parametric control to reduce parameter
dimensionality and with that performance

complexity, greatly inspired by research on
mapping in digital musical instruments [13-15].

The partikkel opcode takes on the role as the
fundamental building block in a particle-based
digital instrument where the mapping between
performance parameters and opcode variables
plays a significant part. Not only to increase
playability, but also to provide particle synthesis
features external to the core generator, such as the
parameter linkage of grainlet synthesis.

The most recent ”front-end” for partikkel is the
Hadron Particle Synthesizer. It adds several new
features including a number of modulators such as
low-frequency oscillators, envelopes and random
generators, all interconnected by a dynamic
modulation matrix [16]. A simplified control
structure was developed to allow real-time
performance with precise control over the large
parameter set using just a few user interface
controls (see Figure 8).

Hadron is freely available, open-source software
[12] and will be publicly released in 2011. The
screen shot in Figure 8 is taken from the Max For
Live version. Other plug-in formats such as VST,
RTAS and AU will be supported. Hadron can also
be run as a standalone instrument under CSound.
Expansion packs with additional parameter states
will be made available for purchase at
www.partikkelaudio.com.

Acknowledgements

The partikkel opcode was designed by first
author Øyvind Brandtsegg. It was implemented as
a diploma project by students Thom Johansen and
Torgeir Strand Henriksen under the supervision of
Sigurd Saue.

References
[1] Curtis Roads. 1988. Introduction to Granular

Synthesis. In Computer Music Journal 12(2):
11-13

Figure 8: Graphical user interface for the Hadron Particle Synthesizer

http://www.partikkelaudio.com/

[2] Dennis Gabor. 1947. Acoustical quanta and
the theory of hearing. In Nature 159(4044): 591-
594

[3] Iannis Xenakis. 1971. Formalized Music.
Indiana University Press, Bloomington, Indiana.

[4] Curtis Roads. 2001. Microsound. MIT Press,
Cambridge, Massachusetts.

[5] Barry Truax. 1986. Real-time granular
synthesis with the DMX-1000. In P. Berg (ed.)
Proceedings of the International Computer
Music Conference, The Hague, Computer Music
Association

[6] Native Instruments. Homepage at:
http://www.native-instruments.com

[7] Cycling '74. Homepage at:
http://cycling74.com/

[8] CSound. Information at: http://csounds.com/
[9] PureData. Information at:

http://puredata.info/
[10] SuperCollider. Information at:

http://supercollider.sourceforge.net/
[11] CSound opcode partikkel. Documentation at:

http://www.csounds.com/manual/html/partikkel.
html

[12] Hadron source code and audio examples
available at:
http://folk.ntnu.no/oyvinbra/LAC2011partikkel/i
ndex.htm

[13] D. Arfib, J. Couturier, L. Kessous and V.
Verfaille. 2002. Strategies of mapping between
model parameters using perceptual spaces.
Organised Sound 7 (2): pages 127-144

[14] A. Hunt, M. Wanderley and M. Paradis. 2003.
The importance of parameter mapping in
electronic instrument design. Journal of New
Music Research 32 (4): pages 429-440

[15] A. Momeni and D. Wessel. 2003.
Characterizing and controlling musical material
intuitively with geometric models. In
Proceedings of the New Interfaces for Musical
Expression Conference (NIME-03) (Montreal,
Canada, May 22-24, 2003)

[16] Ø. Brandtsegg, S. Saue and T. Johansen.
2011. A modulation matrix for complex
parameter sets. In Proceedings of the New
Interfaces for Musical Expression Conference
(NIME-11) (Oslo, Norway, 2011)

[17] T. Stilson and J. O. Smith. 1996. Alias-free
synthesis of classic analog waveforms. In
Proceedings of the 1996 International Computer
Music Conference, Hong Kong, Computer Music

Association: pages 332-335. Available at:
https://ccrma.stanford.edu/~stilti/papers/blit.pdf

https://ccrma.stanford.edu/~stilti/papers/blit.pdf
http://folk.ntnu.no/oyvinbra/LAC2011partikkel/index.htm
http://folk.ntnu.no/oyvinbra/LAC2011partikkel/index.htm
http://www.csounds.com/manual/html/partikkel.html
http://www.csounds.com/manual/html/partikkel.html
http://supercollider.sourceforge.net/
http://puredata.info/
http://csounds.com/
http://cycling74.com/
http://www.native-instruments.com/

	1 Introduction
	2 Particle synthesis
	2.1 Basic granular synthesis
	2.2 Glisson synthesis
	2.3 Grainlet synthesis
	2.4 Trainlet synthesis
	2.5 Pulsar synthesis
	2.6 Formant synthesis

	3 Design considerations
	3.1 Grain clock
	3.2 Grain masking
	3.3 Waveform

	4 The partikkel CSound opcode
	4.1 Implementation notes

	5 Examples
	5.1 Example 1: Basic granular synthesis, sample player with time stretch
	5.2 Example 2: Single cycle source waveform
	5.3 Example 3: Glissons
	5.4 Example 4: Trainlets
	5.5 Example 5: Simple pulsars/grainlets
	5.6 Example 6: Pulsar masking
	5.7 Example 7: Formant synthesis
	5.8 Example 8: Asynchronous GS
	5.9 Example 9: Waveform mixing
	5.10 Example 10: Morphing between all previous examples

	6 Performing with the partikkel opcode

