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Abstract

The article describes an implementation of a 
synthesis module capable of performing all known 
types of time based granular synthesis. The term 
particle synthesis is used to cover granular 
synthesis and all its variations. An important 
motivation for this all-inclusive implementation is 
to facilitate interpolation between the known 
varieties of particle synthesis. The requirements, 
design and implementation of the synthesis 
generator is presented and discussed. Examples of 
individual varieties are implemented along with a 
longer interpolated sequence morphing between 
them. Finally an application, the Hadron Particle 
Synthesizer, is briefly presented.
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1 Introduction
Granular  synthesis  is  a  well  established 

technique  for  synthesizing  sounds  based  on  the 
additive  combination  of  thousands  of  very  short 
sonic  grains  into  larger  acoustics  events  [1].  Its 
potential  for  musical  and  sonic  expression  is 
abundantly rich through fine-grained (!) control  of 
properties in both the time- and frequency-domain.

The foundation for granular synthesis was laid 
by the British physicist Dennis Gabor in his studies 
of acoustical quanta as a means of representation in 
the theory of hearing [2]. The idea of using grains 
of  sound  in  music  was  later  expanded  into  a 
compositional  theory  by  Iannis  Xenakis  in  his 
book Formalized Music [3].

In its basic form granular synthesis offers low-
level  control  of  single grains through parameters 
such  as  waveform,  frequency,  duration  and 
envelope  shape,  and  it  typically  provides  global 
organization  of  grains  through  another  set  of 
parameters  such  as  density,  frequency  band  and 
grain cloud envelope.

There are several variations of the basic scheme. 
A  comprehensive  survey  of  different  granular 
techniques can be found in Curtis Roads' excellent 

book  “Microsound”  [4].  We will  present  a  brief 
summary in  the  next  section.  The book suggests 
the  term  particle  synthesis  as  a  general  term 
covering granular synthesis and all  its variations. 
Although  not  a  formal  definition,  we  will  adopt 
that  usage  in  this  paper.  Hence  our  all-in-one 
implementation  of   all  these  techniques  is  aptly 
named partikkel, the Norwegian word for 'particle'.

Due to its popularity numerous implementations 
of  granular  synthesis  have  been  made  available 
through  the  years,  starting  with  the  pioneering 
works  of  Roads  (see  [4])  and  later  Truax  [5]. 
Today  we  find  real-time  granular  synthesis 
modules  included  in  commercial  software 
synthesis packages such as Absynth  and Reaktor 
from  Native  Instruments  [6]  or  Max/MSP  from 
Cycling  '74  [7].  Granular  synthesis  is  also  a 
household  component  of  open-source,  platform-
independent audio programming languages such as 
CSound [8], PureData [9] and SuperCollider [10].

Common  to  most  of  these  implementations  is 
that they focus on a particular variety of granular 
synthesis,  for  instance sound file   granulation or 
asynchronous   granular  synthesis.  The  opcode1 
partikkel  [11]  that  we  have  implemented  in  the 
audio processing language CSound,  is an attempt 
to support all known types of time based granular 
synthesis.  To our knowledge it  is the only open-
source,  platform-independent  all-in-one  solution 
for granular synthesis.

This  paper  will  motivate  the  design  of  our 
particle generator by extracting requirements from 
known  particle  synthesis  varieties.  After  some 
additional considerations we present the  partikkel  
implementation.  Finally  we  briefly  introduce  the 
Hadron  Particle  Synthesizer  that  provides  a 
powerful and compact user interface to the particle 
generator.

1An  opcode  is  a  basic  CSound  module  that  either 
generates or modifies signals.



2 Particle synthesis
The  term  particle  synthesis  covers  all  the 

varieties  of  granular  synthesis  as  described  by 
Roads [4].  In this section we will  take a closer 
look at  each variety,  starting with basic  granular 
synthesis.  We  will  focus  on  specific  design 
requirements posed by the variety as input  to an 
all-including implementation.

2.1 Basic granular synthesis
The building block of granular synthesis is the 

grain,  a  brief  microacoustic  event  with  duration 
near the threshold of human hearing, typically in 
the range 1 to 100 milliseconds [4]. Figure 1 shows 
a typical grain: a sinusoidal waveform shaped by a 
Gaussian  envelope.  The  parameters  necessary  to 
control the grain are:

• Source  audio:  arbitrary  waveform 
(sampled or periodic)

• Grain shape: envelope function for each 
grain

• Grain duration
• Grain  pitch:  playback  rate  of  source 

audio inside the grain
• Phase (or time pointer): start position for 

reading the waveform inside each grain

The grain shape does not have to be symmetric. 
Figure  2 shows  a  grain  envelope  with 

independently  specified  attack  and  decay,  and  a 
sustain  portion  in  the  middle.  A  flexible 
implementation  should  permit  updates  of  both 
grain envelope and waveform during playback.

The global organization of grains introduces one 
more parameter: 

• Grain  rate:  the  number  of  grains  per 
second

In synchronous granular synthesis, the grains are 
distributed at regular intervals as shown in  Figure
3.  For asynchronous  granular synthesis  the  grain 
intervals are irregularly distributed, and in this case 
it  might  be  more  correct  to  use  the  term  grain 
density  than  grain  rate. An  all-including 
implementation should  permit  various  degrees  of 
soft or hard synchronization.

The  concept  of  a  granular  cloud is  typically 
associated  with  asynchronous  grain  generation 
within  specified  frequency  limits.  The  latter  can 
easily  be  controlled  from  outside  the  grain 
generator by providing a randomly varied,  band-
limited  grain  pitch  variable.  Similarly  the 
amplitude envelope of a cloud of  grains  may be 
implemented  as  external  global  control  of  the 
individual grain amplitudes.

2.2 Glisson synthesis

Glisson synthesis is a straightforward extension 
of basic granular synthesis in which the grain has 
an independent frequency trajectory [4]. The grain 
or glisson creates a short glissando (see  Figure 4 
above).  In  order  to  meet  this  requirement  the 
granular generator must allow specification of both 
start and end frequency for each individual particle 
and also allow control over the pitch sweep curve 

Figure 1: A sinusoidal grain with Gaussian envelope

Figure  2:  Sinusoidal  grain with irregular  envelope  
and sustain

Figure  3:  Synchronous granular  synthesis  of audio  
sample,   the  time pointer into the source waveform is  
updated on each new grain

Figure 4: A typical grain in Glisson synthesis



(the  rate  of  progression  from  starting  pitch  to 
ending pitch). 

2.3 Grainlet synthesis

Grainlet  synthesis  is  inspired  by  ideas  from 
wavelet synthesis. We understand a wavelet to be a 
short segment of a signal, always encapsulating a 
constant number of cycles. Hence the duration of a 
wavelet  is  always  inversely  proportional  to  the 
frequency of the waveform inside it. Duration and 
frequency  are  linked  (through  an  inverse 
relationship).  Grainlet  synthesis  is  based  on  a 
generalization  of  the  linkage  between  different 
synthesis parameters.  

Obviously, the greater the number of parameters 
available  for  continuous  control,  the  greater  the 
number  of  possible  combinations  for  parameter 
linkage. The most common linkage of grainlets is 
the frequency/duration linkage found in wavelets. 
More exotic combinations mentioned by Roads [4] 
are  duration/space,  frequency/space  and 
amplitude/space. The space parameter refers to the 
placement  of  a  grain  in  the  stereo  field  or  the 
spatial position in a 3D multichannel setup.

Grainlet  synthesis  does  not  impose  additional 
requirements  on  the  design  of  the  granular 
generator  itself,  but  suggests  the  possibility  of 
linking  parameters,  which  can  conveniently  be 
accomplished in a control structure external to the 
actual granular audio generator unit.

 

2.4 Trainlet synthesis

The specific property that characterizes a trainlet 
(and  also  gives  rise  to  its  name)  is  the  audio 
waveform  inside  each  grain.  The  waveform 
consists of a band-limited impulse train as shown 
in Figure 5. The trainlet is specified by:

• Pulse period (or its counterpart, the base 
frequency)

• Number of harmonics

• Harmonic balance (chroma): The energy 
distribution  between  high  and  low 
frequency harmonics

In terms of designing a general purpose granular 
synthesis  generator,  as  we  set  out  to  do  in  this 
paper, it should be noted that the trainlet waveform 
has  to  be  synthesized  in  real  time  to  allow  for 
parametric  control  over  the  impulse  train.  This 
dictates  that  the  trainlet  must  be  considered  a 
special  case  when  compared  to  single  cycle  or 
sampled waveforms used in the other varieties of 
particle synthesis.

2.5 Pulsar synthesis

Pulsar synthesis introduces two new concepts to 
our universal particle synthesis engine: duty cycle 
and  masking.  Here  the  term  pulsar  is  used  to 
describe a sound particle consisting of an arbitrary 
waveform  (the  pulsaret)  followed  by  a  silent 
interval. The total duration of the pulsar is labeled 
the pulsar period, while the duration of the pulsaret 
is labeled the duty cycle. The pulsaret itself can be 
seen as a special kind of grainlet, where pitch and 
duration is linked. A pulsaret can be contained by 
an  arbitrary  envelope,  and  the  envelope  shape 
obviously affects the spectrum of the pulsaret due 
to  the  amplitude  modulation  effects  inherent  in 
applying the envelope to the signal. Repetitions of 
the pulsar signal form a pulsar train. 

A feature associated with pulsar synthesis is the 
phenomenon  of  masking.  This  refers  to  the 
separate  processing  of  individual  pulsars,  most 
commonly  by applying  different  amplitude  gains 
to  each  pulsaret  (see  Figure  6 for  an  example). 
Masking may be done on a periodic or stochastic 
basis.  If  the  masking  pattern  is  periodic, 
subharmonics  of  the  pulsar  frequency  will  be 
generated.  To be  able  to  synthesize  pulsars  in  a 
flexible manner, we should enable grain masking 
in our general granular synthesizer.

2.6 Formant synthesis

Granular  techniques  are  commonly  used  to 
create a spectrum with controllable formants,  for 
example  to  simulate  vocals  or  speech.  Several 
variants of particle-based formant synthesis (FOF, 
Vosim,  Window  Function  Synthesis)  have  been 

Figure 6: Amplitude masked pulsar train

Figure 5:Band-limited trainlet pulse



proposed  [4].  As  a  gross  simplification  of  these 
techniques  one  could  state  that  the  base  pitch  is 
constituted  by  the  grain  rate  (which  is  normally 
periodic), the formant position is determined by the 
pitch  of  the  source  audio  inside  each  grain 
(commonly a sine wave), and the grain envelope 
has a significant  effect  on the formant’s  spectral 
shape.  Formant  wave-function  (FOF)  synthesis 
requires separate control of grain attack and decay 
durations,  and  commonly  uses  an  exponential 
decay  shape  (see  Figure  7).  These  requirements 
must  be  met  by  the  design  of  our  all-including 
granular generator.

3 Design considerations

3.1 Grain clock
Different  varieties  of  particle  synthesis  use 

different methods for organizing the distribution of 
grains over time, from periodic grain dispersion to 
asynchronous  scattering  of  grains.  A  general 
purpose  granular  generator  must  be  able  to 
dynamically change the rate and the periodicity of 
the  internal  clock  used  for  grain  generation. 
Generation of truly asynchronous grain clouds may 
require that an external clock source is allowed to 
trigger grain generation (possibly by disabling the 
internal clock). In any case, enabling an optional 
external  clock  source  to  control  grain  dispersion 
ensures maximum flexibility of grain scheduling. 
In  order  to  support  exotic  and  yet  unknown 
synchronous granular synthesis varieties it  would 
be  useful  to  add  the  possibility  to  gradually 
synchronize internal and external clocks. 

When  deliberating  the  question  of  the  most 
flexible clock source for our granular generator, we 
should also consider making the clock adjustable at 
audio rate2, so as to enable frequency modulation 

2Audio  rate  corresponds  to  the  sample  rate  (as 
opposed  to  control  rate  which  normally  is  orders  of 

effects on the clock rate. Obviously,  the effect of 
continuously  modulating  a  clock  rate  is  only 
manifested at the actual tick output of the clock. 
Hence the clock rate could be considered as some 
kind  of  “clock  modulation  sampling  rate”. 
Frequency modulation of the grain rate will be the 
source  of  further  investigation  in  later  research 
projects.

3.2 Grain masking

The masking  concept  introduced in  relation  to 
pulsar  synthesis  could  be  extended  to  other 
parameters than amplitude. We could for instance 
dynamically  distribute  individual  grains  to 
different  locations  in  space.  Thus  our  particle 
generator could provide a channel mask option and 
thereby  allow  individual  grains  to  be  routed  to 
specific  audio  outputs.  This  feature  would  also 
enable  the  possibility  to  apply  different  signal 
processing effects (for instance different filtering) 
on individual grains by post-processing the output 
channels of the generator.

3.3 Waveform

One  important  reason  for  designing  an  all-
including particle generator is to enable dynamic 
interpolation between the different varieties. As we 
have  already  pointed  out,  the  generator  should 
support arbitrary waveforms within the grains. As 
a  matter  of  fact  the  grain  waveform  is  a 
distinguishing characteristic of several varieties. In 
order to morph between them the particle generator 
must  support  gradual  transitions  from  one 
waveform to another.

The  most  obvious  approach  to  waveform 
transitions is crossfading. Crossfading between two 
different  waveforms  would  be  sufficient,  but  it 
might  be  interesting  to  investigate  the  effects  of 
simultaneously crossmixing even more waveforms 
into each grain. We also need a crossfading option 
for trainlet sources, since trainlet synthesis must be 
treated as a special  case.  The masking technique 
discussed  in  the  previous  section  can  easily  be 
extended  to  include  source  waveform mixing:  a 
wave-mix mask for truly exotic pulsars.

Providing  several  simultaneous  source 
waveforms  for  each  grain  would  naturally  also 
require independent transposition and phase (time 
pointer)  control  for  each  source  wave  to  enable 
flexible mixing and matching of source waves.

As  a  simple  extension  to  the  already  flexible 
playback  and  mixing  of  source  audio  material 
within each grain, the generator could add support 
for frequency modulation of the source waveforms. 

magnitude slower)

Figure  7: Grain shape with complex envelope.  The  
envelope  is made up of  an overall  exponential  decay  
combined with sinusoidal attack and decay segments.



It  is  computationally  cheap,  but  its  effects  in 
granular  synthesis  have  been  sparsely  explored. 
Frequency  modulation  of  source  waveform 
playback  pitch  could  be  implemented  as  phase 
modulation,  using  an  external  audio  input  to 
modulate the reading position of the source audio 
waveform(s).

4 The partikkel CSound opcode
A  generalized  implementation  enabling  all 

known varieties of particle synthesis in one single 
generator will facilitate new forms of the synthesis 
technique. To enable the use of such a generalized 
granular generator in a broader context,  it  seems 
apt  to  implement  it  in  an  already existent  audio 
processing  language.  To  broaden  the  context  as 
much as possible it would be preferable to use an 
open source language with a large library of signal 
processing  routines  already  in  place.  To  comply 
with  these  requirements,  the  authors  chose  to 
implement the new generator as an opcode for the 
audio programming language CSound. The opcode 
was given the name partikkel.

We  will  now  try  to  sum  up  the  features  of 
partikkel. Where appropriate, we will refer  to the 
specific type  of particle synthesis that each feature 
originates from. 

The basic  parameters  of  granular synthesis  are 
grain rate, grain pitch and grain shape/duration, as 
well as the audio waveform inside each grain. We 
decided to enable grain rate modifications at audio 
rate since this might open up new possibilities for 
frequency modulating the grain rate. The internal 
grain clock may also be disabled  completely for 
truly asynchronous grain clouds, or it may be run 
as an internal clock with soft synchronization to an 
external  clock  source. For  simpler  grain 
displacements (semi-synchronous), a separate grain 
distribution  parameter  has  been  implemented, 
moving  single  grains  within  a  time  slot  of 
1/grainrate seconds.

Grain pitch should be relatively straightforward, 
defined  as  the  playback  speed  of  the  audio 
waveform inside  each  grain.  However,  since  we 
use four separate source waveforms3 we need four 
separate pitch controls,  in addition to one master 
pitch control. Grain pitch can also be modified at 
audio  rate  via  a  separate  frequency  modulation 
audio  input  parameter  to  partikkel.  Trainlets  (or 
pulse trains) can be used as a fifth source, and we 
actually need a separate pitch control for them too. 

3The choice of four source waveforms is a more or 
less  arbitrary  trade-off  between  complexity  and 
expressivity.

As  glisson  synthesis  requires  pitch  glissandi 
within  each  grain,  an  additional  layer  of  pitch 
control with start and end pitch for each grain has 
been added.  This type  of control  over individual 
grains is  implemented in a general  manner  via a 
grain masking method. We will return to that topic 
later.

Different  varieties  of  particle  synthesis  require 
different  source  audio  waveforms,  and  to  enable 
the interpolation between different synthesis types 
partikkel has  the  ability  to  crossfade  between 
different  waveforms.  Separate phase control  over 
the four source waveforms completes this design 
requirement.  Trainlet  synthesis  requires  a  special 
source waveform of band limited pulse trains. This 
waveform is synthesized in real time to allow for 
parametric control over harmonics and chroma. 

Both  pulsars  and  formant  synthesis  require 
flexible grain envelopes with separate control over 
shape  and  time  for  both  the  attack  and  decay 
portion of the envelope. As a further adjustment to 
the envelope shape, a sustain time parameter has 
been  added,  where  the  grain  amplitude  is  at 
maximum for the duration of the sustain segment. 
To  enable  even  more  flexibility,  a  second 
enveloping  window  (full  grain  length)  might  be 
used  on  top  of  the  primary  attack,  sustain  and 
decay shape.

Pulsar  synthesis  introduces  a  grain  masking 
feature. Normally, this masking would be confined 
to amplitude and output channel modifications. In 
partikkel,  the  masking  methods  have  also  been 
extended to  include  source  waveform mix,  pitch 
glissandi (with separate start and end pitch values), 
and  frequency  modulation  index  masks.  The 
masking feature is implemented by using tables of 
successive values,  partikkel reading one value for 
each grain before progressing onto the next table 
index. Start and end/loop indices are also part of 
this data set, so the mask length and content can be 
continuously  modified  while  the  generator   is 
running.  For  simplified random particle  bursts,  a 
separate parameter (random mask) can be used to 
randomly mute separate grains.

Grainlet  synthesis  has  not  been  explicitly 
accounted for so far. This is because we chose to 
design the core granular generator to be as generic 
as possible, and as part of that design decision we 
determined that  any parameter linkage should be 
left to external implementation. Still, the parameter 
set  and  the  supported  rate  of  change  for  each 
parameter  have  been  designed  with  parameter 
linkage in mind.



4.1 Implementation notes

The processing in the  partikkel opcode consists 
of two primary phases: grain scheduling and grain 
rendering.  The  grain  scheduler  will  place  grains 
according to the time parameters, with each grain 
being given attributes according to the parameters 
describing pitch, amplitude, etc.

Grain  rendering  consists  of  synthesizing  the 
actual grain waveforms. Despite the large number 
of parameters utilized by partikkel, the core grain 
rendering itself is quite simple, and consists of the 
following stages:

1. interpolated  sample  reading  or  DSF4 
synthesis for trainlets

2. frequency modulation
3. frequency  sweep  (glisson)  curve 

synthesis
4. applying envelope
5. mixing to output buffer(s)

Most  of  the  internal  parameters  these  stages 
depend upon are calculated on creation of the grain 
and  stored  away  in  a  linked  list  containing  one 
entry per grain, and will not be modified until the 
end  of  the  grain's  life  cycle.  This  is  a  tradeoff, 
meaning that partikkel cannot (with the exception 
of waveform FM) alter any properties influencing 
a grain during its lifetime, but also means that all 
the  most  demanding  calculations  are  performed 
one time per grain, leaving most processing power 
to render as many grains as possible at the same 
time. This might  at first seem a limitation, but it 
can be argued that granular synthesis is at its most 
promising exactly when grains are allowed to be 
different,  and  evolve  in  succession  rather  than 
simultaneously.

5 Examples

A  number  of  implementation  examples  [12] 
accompany this paper. The examples are intended 
to  show  how  different  varieties  of  particle 
synthesis  can  be  implemented  using  the 
generalized  technique  as  described  in  the  paper. 
First we present a number of individual examples, 
followed  by  a  long  morphing  sound,  gluing 
together  all  the  individual  examples  into  a  long, 
continuous transformation.

4 Discrete  Summation  Formulae  (DSF)  (see  for 
instance [17])

5.1 Example  1:  Basic  granular  synthesis, 
sample player with time stretch

In  this  example,  a  sound  file  is  used  as  the 
source waveform for grains and we use a flexible 
time  pointer  (moving  phase  value)  to  set  the 
starting  point  for  waveform reading  within  each 
grain. This technique is commonly used for time 
stretching and other time manipulations.

5.2 Example 2: Single cycle source waveform

A sine wave is used as source waveform for each 
grain.  In  itself  this  is  a  trivial  example,  but  is 
included  to  show the  transition  (in  example  10) 
from reading sampled waveforms to single  cycle 
waveforms.  The  transition  can  be  considered 
nontrivial for most oscillators. Not only must the 
oscillator  waveform  change  on  the  fly,  but  the 
pitch  ratio  for  sampled  sounds  and  single  cycle 
waveforms are usually very different. 

5.3 Example 3: Glissons

Glissons in this example have a converging pitch 
sweep profile. Each single glisson may start on a 
pitch  above  or  below,  gliding  quickly  and 
stabilizing on a central pitch.

5.4 Example 4: Trainlets

Trainlets  with  20  partials  and  chroma  varying 
from 1 to 1.5.

5.5 Example 5: Simple pulsars/grainlets

This example shows simple pulsar synthesis. A 
pulsaret is generated at periodic intervals, followed 
by a silent interval. The duration of the pulsaret is 
inversely proportional to the pulsaret pitch, and the 
pitch  gradually changes  over  the  duration  of  the 
example.  The  waveform  of  the  pulsaret  is  a 
trainlet.

5.6 Example 6: Pulsar masking

The example starts with a pulsar train similar to 
the  one  in  example  5.  By  grain  masking  we 
gradually  reduce  the  amplitude  of  every  second 
grain,  then gradually creating a  stereo pattern of 
grains  (left-center-right-center).  Towards  the  end 
of the example, stochastic masking is added.

5.7 Example 7: Formant synthesis

Using granular techniques similar to the classic 
FOF  (Fonction  d'onde  formantique)  generators, 
where the grain rate constitutes the perceived pitch. 
The  grain  pitch  (transposition  of  the  waveform 
inside  each  grain)  controls  the  placement  of  a 
formant  region,  and the grain  shape controls  the 
spectral contour of the formant region. Since our 



granular  generator  allows  4  separate  source 
waveforms with independent pitch, we can create 4 
formant regions with one granular generator. The 
example generates formants as found in the vowel 
“a” in a male basso voice.

5.8 Example 8: Asynchronous GS

A gradual  transformation  from synchronous  to 
asynchronous granular synthesis. An asynchronous 
clock  pulse  is  generated  by  using  a  probability 
function,  this  clock  pulse  is  used  to  trigger 
individual  grains. 

5.9 Example 9: Waveform mixing

Crossfading  between  4  sampled  waveforms. 
From a vocal  sample  to  distorted vibraphone,  to 
cello and finally to a synth pad.

5.10 Example  10:  Morphing  between  all 
previous examples 

One  continuous  long  transformation  moving 
through the granular techniques explored in each 
previous example.

6 Performing with the partikkel opcode
The  all-including  implementation  of  particle 

synthesis in a single generator encourages further 
experimentation  with  granular  synthesis 
techniques.   Interpolation  between  the  different 
granular varieties may reveal new and interesting 
sonic  textures,  as  would  experimentation  with 
some  of  the  more  exotic  design  considerations 
suggested in section 3.

The  flexibility  of  the  partikkel  opcode  comes 
with  a  price.  The  parameter  set  is  large  and 
unwieldy,  particularly  in  a  live  performance 
setting. There seems to be an unavoidable trade-off 
between high-dimensional control and playability. 
We have therefore investigated various strategies 
for  meta-parametric  control  to  reduce  parameter 
dimensionality  and  with  that  performance 

complexity,  greatly  inspired  by  research  on 
mapping in digital musical instruments [13-15].

The  partikkel opcode  takes  on  the  role  as  the 
fundamental  building  block  in  a  particle-based 
digital  instrument  where  the  mapping  between 
performance  parameters  and  opcode  variables 
plays  a  significant  part.  Not  only  to  increase 
playability,  but  also to  provide particle  synthesis 
features external to the core generator, such as the 
parameter linkage of grainlet synthesis. 

The most recent ”front-end” for  partikkel is the 
Hadron Particle  Synthesizer.  It  adds several  new 
features including a number of modulators such as 
low-frequency  oscillators,  envelopes  and random 
generators,  all  interconnected  by  a  dynamic 
modulation  matrix  [16].  A  simplified  control 
structure  was  developed  to  allow  real-time 
performance  with  precise  control  over  the  large 
parameter  set  using  just  a  few  user  interface 
controls (see Figure 8). 

Hadron is freely available, open-source software 
[12]  and  will  be  publicly  released  in  2011.  The 
screen shot in Figure 8 is taken from the Max For 
Live version. Other plug-in formats such as VST, 
RTAS and AU will be supported. Hadron can also 
be run as a standalone instrument under CSound. 
Expansion packs with additional parameter states 
will  be  made  available  for  purchase  at 
www.partikkelaudio.com. 
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