
Audio Plugin development with Cabbage

Rory Walsh
Dundalk Institute of Technology,

Co.Louth,
Ireland

rory.walsh@dkit.ie

Abstract

This paper describes a novel new approach to
developing cross-platform audio plugins with
Csound. It begins with an short historical overview
of projects that led to the development of Cabbage
as it exists today, and continues with a more
detailed description of Cabbage and its use within
digital audio workstations. The paper concludes
with an example of an audio effect plugins and a
simple MIDI based plugin instrument.

Keywords

Cabbage, WinXound, Csound, Audio Plugin,
Audio programming languages.

1 Introduction
In an industry dominated by commercial and

closed-source software, audio plugins represent a
rare opportunity for developers to extend the
functionality of their favourite digital audio
workstations, regardless of licensing restrictions.
Developers of plugins can concentrate solely on
signal processing tasks rather than low-level audio
and MIDI communication.

The latest version of Cabbage seeks to provide
for the first time a truly cross-platform, multi-
format Csound-based plugin solution. Cabbage
allows users to generate plugins under three major
frameworks: the Linux Native VST[1], Virtual
Studio Technology (VST) [2], and Apple's Audio
Units [3]. Plugins for the three systems can be
created using the same code, interchangeably.
Cabbage also provides a useful array of GUI
widgets so that developers can create their own
unique plugin interfaces.

When combined with the latest version of
WinXound[4] computer musicians have a
powerful, fully integrated IDE for audio software
development using the Csound programming
language.

1.1 The Csound host API

The main component of the framework
presented here is the Csound 5 library[5], accessed
through its API. This is used to start any number
of Csound instances through a series of different
calling functions. The API provides several
mechanisms for two-way communication with an
instance of Csound through the use of 'named
software' buses.

Cabbage accesses the named software bus on the
host side through a set of channel functions,
notably Csound::setChannel() and
Csound::getChannel(). Csound instruments
can read and write data on a named bus using the
chnget/chnset opcodes.

In general, the host API allows software to
control Csound in a very flexible way, without it
the system described in this paper would not have
been possible.

2 Background

The ability to run open source audio software in
tandem with commercial DAWs is not something
new to computer musicians. Systems such as
Pluggo[6], PdVST[7] and CsoundVST[8] all
provide users with a way to develop audio plugins
using open source audio languages. CsoundVST is
still available for download but it's anything but a
lightweight plugin system. Pluggo and PdVst have
been discontinued or are no longer under
development.

The software presented in this paper may well
have been inspired by the systems mentioned
above but is in fact an amalgamation of 3 projects
that have been rewritten and redesigned in order to
take full advantage of today's emerging plugin
frameworks. Before looking at Cabbage in its
present state it is worth taking a look at the two
main projects it is derived from.

2.1 csLADSPA/csVST
csLADSPA[9] and csVST[10] are two

lightweight audio plugin systems that make use of
the Csound API. Both toolkits were developed so

that musicians and composers could harness the
power of Csound within a host of different DAWs.
The concept behind these toolkits is very simple
and although each makes use of a different SDK,
they were both implemented in the very same way.
A basic model of how the plugins work is shown
below in fig.1.

Figure 1. Architecture of a Csound plugin

The host application loads the csLADSPA or
csVST plugin. When the user processes audio the
plugin routes the selected audio to an instance of
Csound. Csound will then process this audio and
return it to the plugin which will then route that
audio to the host application. The main drawback
to these systems is that they do not provide any
tools for developing user interfaces. Both
csLADSPA and csVST use whatever native
interface is provided by the host to display plugin
parameters.

2.2 Cabbage 2008
Cabbage was first presented to the audio

community at the Linux Audio Conference in
2008[11]. The framework provided Csound
programmers with no low-level programming
experience with a simple, albeit powerful toolkit
for the development of standalone cross-platform
audio software. The main goal of Cabbage at that
time was to provide composers and musicians with
a means of easily building and distributing high-
end audio applications. Users could design their
own graphical interfaces using an easy to read
syntax that slots into a unified Csound text
file(.csd). This version of Cabbage had no support
for plugin development.

3 Cabbage 2011

The latest version of Cabbage consolidates the
aforementioned projects into one user-friendly
cross-platform interface for developing audio
plugins. Combining the GUI capabilities of earlier
versions of Cabbage with the lightweight

csLADSPA and csVST systems, means users can
now develop customised high-end audio plugins
armed with nothing more than a rudimentary
knowledge of Csound and basic programming.

Early versions of Cabbage were written using
the wxWidgets C++ GUI library.[12] Whilst
wxWidgets provides a more than adequate array of
GUI controls and other useful classes it quickly
became clear that creating plugins with wxWidgets
was going to be more trouble than it was worth
due to a series of threading issues.

After looking at several other well documented
GUI toolkits a decision was made to use the JUCE
Class library[13]. Not only does JUCE provide an
extensive set of classes for developing GUIs, it
also provides a relatively foolproof framework for
developing audio plugins for a host of plugin
formats. On top of that it provides a robust set of
audio and MIDI input/output classes. By using
these audio and MIDI IO classes Cabbage
bypasses Csound's native IO devices completely.
Therefore users no longer need to hack Csound
command line flags each time they want to change
audio or MIDI devices.

The architecture of Cabbage has also undergone
some dramatic changes since 2008. Originally
Cabbage produced standalone applications which
embedded the instrument's .csd into a binary
executable that could then be distributed as a
single application. Today Cabbage is structured
differently. Instead of creating a new standalone
application for each instrument Cabbage is now a
dedicated plugin system in itself.

3.1 The Cabbage native host

The Cabbage native host loads and performs
Cabbage plugins from disk. The only difference
between the Cabbage host and a regular host is
that Cabbage can load .csd files directly as
plugins. To load Cabbage plugins in other hosts
users must first export the Cabbage patch as some
form of shared library, dependant on the OS. The
Cabbage host provides access to all the
audio/MIDI devices available to the user and also
allows changes to be made to the sampling rate
and buffer sizes. The function of the Cabbage host
is twofold. First it provides a standalone player for
running GUI based Csound instruments. In this
context it functions similarly to the Max/MSP
runtime player[6]. Secondly it provides a platform
for developing and testing audio plugins. Any
instrument that runs in the Cabbage native host can
be exported as a plugin.

3.1.1 Cabbage Syntax
The syntax used to create GUI controls is quite

straightforward and should be provided within
special xml-style tags <Cabbage> and
</Cabbage> which can appear either above or
below Csound's own <CsoundSynthesizer>
tags. Each line of Cabbage specific code relates to
one GUI control only. The attributes of each
control is set using different identifiers such as
colour(), channel(), size() etc.
Cabbage code is case sensitive.

3.1 Cabbage widgets

Each and every Cabbage widget has 4 common
parameters: position on screen(x, y) and
size(width, height). Apart from position and size
all other parameters are optional and if left out
default values will be assigned. As x/y, width and
height are so common there is a special identifier
named bounds(x, y, width, height)
which lets you pass the four values in one go.
Below is a list of the different GUI widgets
currently available in Cabbage. A quick reference
table is available with the Cabbage documentation
which illustrates which identifiers are supported
by which controls.

form caption("title"), pos(x,y), size(width, height),
colour(“colour”)

Form creates the main plugin window. X, Y,
Width and Height are all integer values. The
default values for size are 400x600. Forms do not
communicate with an instance of Csound. Only
interactive widgets can communicate with an
instance of Csound, therefore no channel identifier
is needed. The colour identifier will set the
background colour. Any HTML and CSS
supported colour can be used.

slider chan(“chanName”), pos(x,y), size(width,
height), min(float), max(float), value(float),
caption(“caption”), colour(“colour”)

There are three types of slider available in
Cabbage. A horizontal slider(hslider), a
vertical slider(vslider) and a rotary
slider(rslider). Sliders can be used to send data
to Csound on the channel specified through the
“chanName” string. The “chanName” string
doubles up as the parameter name when running a
Cabbage plugin. For example, if you choose
“Frequency” as the channel name it will also

appear as the identifier given to the parameter in a
plugin host. Each slider that is added to a Cabbage
patch corresponds with a plugin parameter on the
host side. Min and Max determine the slider range
while value initialises the slider to a particular
value. If you wish to set Min, Max and Value in
one go you can use the range(min, max,
value) identifier instead. All sliders come with a
number box which displays the current value of
the slider. By default there is no caption but if
users add one Cabbage will automatically place
the slider within a captioned groupbox. This is
useful for giving labels to sliders.

button chan(“chanName”) pos(x,y),
size(width,height),
items(“OnCaption”,“OffCaption”)

Button creates a on-screen button that sends an
alternating value of 0 or 1 when pressed. The
“channel” string identifies the channel on which
the host will communicate with Csound.
“OnCaption” and “OffCaption” determine the
strings that will appear on the button as users
toggle between two states, i.e., 0 and 1. By default
these captions are set to “On” and “Off” but users
can specify any strings they wish. If users wish
they can provide the same string to both the 'on'
and 'off' caption. A trigger button for example
won't need to have its captions changed when
pressed.

checkbox chan(“chanName”), pos(x,y),
size(width, height), value(val),
caption(“Caption”), colour(“Colour”)

Checkboxes function like buttons. The main
difference being that the associated caption will
not change when the user checks it. As with all
controls capable of sending data to an instance of
Csound the “chanName” string is the channel on
which the control will communicate with Csound.
The value attribute defaults to 0.

combobox chan(“chanName”),
caption(“caption”), pos(x,y), size(width, height),
value(val), items(“item1”, “item2”, ...)

Combobox creates a drop-down list of items

which users can choose from. Once the user
selects an item, the index of their selection will be
sent to Csound on a channel named by the string
“chanName”. The default value is 1 and three
items named “item1”, “item2” and “item3” fill the
list by default.

groupbox caption(“Caption”), pos(x,y),
size(width, height), colour(“Colour”)

Groupbox creates a container for other GUI
controls. It does not communicate with Csound but
is useful for organising the layout of widgets.

image pos(x, y), size(width, height), file("file
name"), shape(“type”), colour(“colour”),
outline(“colour”), line(thickness)

Image draws a shape or picture. The file name
passed to file() should be a valid pixmap. If you
don't use the file() identifier image will draw a
shape. Three type of shapes are supported:

• rounded: a rectangle rounded corners
(default)

• sharp: a rectangle with sharp corners
• ellipse: an elliptical shape.

keyboard pos(x,y), size(width, height)

Keyboard creates a virtual MIDI keyboard
widget that can be used to test MIDI driven
instruments. This is useful for quickly developing
and prototyping MIDI based instruments. In order
to use the keyboard component to drive Csound
instruments you must use the MIDI interop
command line flags to pipe the MIDI data to
Csound.

3.1.2 MIDI control
In order to control your Cabbage instruments

with MIDI CC messages you can use the
midictrl(chan, ctrl) identifier. midictrl()
accepts two integer values, a controller channel
and a controller number. As is the case with the
MIDI keyboard widget mentioned above Cabbage
handles all it's own MIDI IO. The following code
will attach a MIDI hardware slider to a Cabbage
slider widget:

slider chan(“oscFreq”), bounds(10, 10, 100, 50),
range(0, 1000, 0), midictrl(1, 1)

By turning on MIDI debugging in the Cabbage
host users can see the channel and controller
numbers for the corresponding MIDI hardware
sliders. Using midictrl() means that you can
have full MIDI control over your Cabbage
instruments while running in the standalone host.
This feature is not included with Cabbage plugins

as the host is expected to take control over the
plugin parameters itself.

3.1.3 Native Plugin Parameters
Most plugin hosts implement a native interface

for displaying plugin parameters. This usually
consists of a number of native sliders that
corresponds to the number of plugin parameters as
can been seen in the following screen-shot.

Fig 3. A Cabbage plugin loaded with Renoise

While slider widgets can be mapped directly to
the plugin host GUI, other widgets must be
mapped differently. Toggling buttons for example
will cause a native slider to jump between
maximum and minimum position. In the case of
widgets such as comboboxes native slider ranges
will be split into several segments to reflect the
number of choices available to users. If for
example a user creates a combobox with 5
elements, the corresponding native slider will
jump a fifth each time the user increments the
current selection.

Figure 4. Host automation in Renoise

The upshot of this is that each native slider can
be quickly and easily linked with MIDI hardware
using the now ubiquitous 'MIDI-learn' function
that ships with almost all of today's top DAWs.
Because care has being taken to map each
Cabbage control with the corresponding native
slider, users can quickly set up Cabbage plugins to
be controlled with MIDI hardware or through host
automation as in fig.4.

4 Cabbage plants
Cabbage plants are GUI abstractions that contain

one or more widgets. A simple plant might look
like this:

Figure 5. A basic ADSR abstraction.

An ADSR is a component that you may want to
use over and over again. If so you can group all the
child components together to form an abstraction.
These abstractions, or plants, are used as anchors
to the child widgets contained within. All widgets
contained within a plant have top and left positions
which are relative the the top left position of the
parent.

While all widgets can be children of an
abstraction, only groupboxes and images can be
used as plants. Adding the identifier
plant(“plantName”) to an image or groupbox
widget definition will cause them to act as plants.
Here is the code for a simple LFO example:

image plant("OSC1"), bounds(10, 10, 100, 120),
colour("black"), outline("orange"), line(4)
{
rslider channel("Sigfreq1"), bounds(10, 5, 80,
80), caption("OSC 1") colour("white")
combobox channel("Sigwave1"), bounds(10, 90,
80, 20), items("Sin", "Tri", "Sqr Bi"),
colour("black"), textcolour("white")
}

Fig 6. The code above represents the LFO on the far left.

The plant() identifier takes a string that
denotes the name of the plant. This is important
because all the widgets that are contained between
the pair of curly brackets are now bound to the
plant in terms of their position. The big advantage
to building abstractions is that you can easily move
them around without needing to move all the child
components too. Once a plant has been created any
widget can link to it by overloading the pos()
identifier so that it takes a third parameter, the
name of the plant as in pos(0, 0, “LFO”).

Apart from moving plants around you can also
resize them, which in turn automatically resizes its
children. To resize a plant we use the
scale(newWidth, newHeight) identifier.
It takes new width and height values that overwrite
the previous ones causing the plant and all its
children to resize. Plants are designed to be reused
across instruments so you don't have to keep
rebuilding them from scratch. They can also be
used to give your applications a unique look and
feel. As they can so easily be moved and resized
they can be placed into almost any instrument.

Figure 5. An example using several plants together.

5 Examples
The easiest way to start developing Cabbage

instruments and plugins is with WinXound.

WinXound is an open-source editor for Csound
and is available on all major platforms.
Communication between Cabbage and WinXound
is made possible through interprocess
communication. Once a named pipe has been
established users can use WinXound to take
complete control of the Cabbage host meaning
they can update and export plugins from the
Cabbage host without having to leave the
WinXound editor.

When writing Cabbage plugin users need to add
-n and -d to the CsOptions section of their .csd file.
-n causes Csound to bypass writing of sound to
disk. Writing to disk is solely the responsibility of
the host application(including the Cabbage native
host). If the user wishes to create an instrument
plugin in the form of a MIDI synthesiser they
should use the MIDI-interop command line flags
to pipe MIDI data from the host to the Csound
instrument. Note that all Cabbage plugins are
stereo. Therefore one must ensure to set nchnls
to 2 in the header section of the csd file. Failure to
do so will results in extraneous noise being added
to the output signal.

The first plugin presented below is a simple
effect plugin. It makes use of the PVS family of
opcodes. These opcodes provide users with a
means of manipulating spectral components of a
signal in realtime. In the following example the
opcodes pvsanal, pvsblur and pvsynth are
used to manipulate the spectrum of an incoming
audio stream. The plugin averages the amp/freq
time functions of each analysis channel for a
specified time. The output is then spatialised using
a jitter-spline generator.

<Cabbage>
form caption("PVS Blur") size(450, 80)
hslider pos(1, 1), size(430, 50) \ channel("blur"), min(0),
max(1), \ caption("Blur time")
</Cabbage>
<CsoundSynthesizer>
<CsOptions>
-d -n -+rtmidi=null -M0 -b1024
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2

instr 1

kblurtime chnget "blur"
asig inch 1
fsig pvsanal asig, 1024, 256, 1024, 1
ftps pvsblur fsig, kblurtime, 2
atps pvsynth ftps
apan jspline 1, 1, 3
outs atps*apan, atps*(1-apan)
endin

</CsInstruments>
<CsScore>
f1 0 1024 10 1
i1 0 3600
</CsScore>
</CsoundSynthesizer>

Figure 6. A simple spectral blurring audio effect

The second plugin is a MIDI-driven plugin
instrument. You will see how this instrument uses
the MIDI-interop command line parameters in
CsOptions to pipe MIDI data from the host into
Csound. This plugin also makes use of the virtual
MIDI keyboard. The virtual MIDI keyboard is an
invaluable tool when it comes to prototyping
instruments as it sends MIDI data to the plugin just
as a regular host would.

<Cabbage>
form caption("Subtractive Synth") size(474, \ 270),
colour("black")
groupbox caption(""), pos(10, 1), size(430, \ 130)
rslider pos(30, 20), size(90, 90) \ channel("cf"), min(0),
max(20000), \ caption("Centre Frequency"), \
colour("white")
rslider pos(130, 20), size(90, 90) \ channel("res"),
size(350, 50), min(0), max(1),\ caption("Resonance"),
colour("white")
rslider pos(230, 20), size(90, 90) \ channel("lfo_rate"),
size(350, 50), min(0), \ max(10), caption("LFO Rate"),
colour("white")
rslider pos(330, 20), size(90, 90) \ channel("lfo_depth"),
size(350, 50), min(0), \ max(10000), caption("LFO
Depth"), \ colour("white")
keyboard pos(1, 140), size(450, 100)
</Cabbage>
<CsoundSynthesizer>
<CsOptions>
-d -n -+rtmidi=null -M0 -b1024 \
--midi-key-cps=4 --midi-velocity-amp=5
;-+rtaudio=alsa -odac
</CsOptions>
<CsInstruments>
; Initialize the global variables.
sr = 44100
ksmps = 32
nchnls = 2

massign 0, 1

instr 1
kcf chnget "cf"
kres chnget "res"
klforate chnget "lfo_rate"
klfodepth chnget "lfo_depth"

aenv linenr 1, 0.1, 1, 0.01
asig vco p5, p4, 1
klfo lfo klfodepth, klforate, 5
aflt moogladder asig, kcf+klfo, kres
outs aflt*aenv, aflt*aenv
endin

</CsInstruments>
<CsScore>
f1 0 1024 10 1
f0 3600
</CsScore>
</CsoundSynthesizer>

 Figure 7. A simple plugin instrument.

6 Conclusion
The system has been shown to work quite well

in a vast number of hosts across all platforms. It is
currently being tested on undergraduate and
postgraduate music technology modules in the
Dundalk Institute of Technology and the feedback
among users has been very positive. The latest
alpha version of Cabbage, including a version of
WinXound with support for Cabbage can be found
at http://code.google.com/p/cabbage/. A full beta
version is expected to be released very soon.

7 Acknowledgements
I'd like to express my sincere thanks to everyone

on the Csound, Renoise and Juce mailing lists.
Without their help and assistance this project
would not have been possible. I'd also like to thank
the author of WinXound, Stefano Bonetti for his
kind help and assistance over the past few months.

References
[1] Linux VST Homepage

http://www.linux-vst.com/
[2] Steinberg Website http://ygrabit.steinberg.de/

~ygrabit/public_html/index.html
[3] Apple Audio units Developer Homepage

http://developer.apple.com/audio/audiounits.htm
l

[4] WinXound Homepage
http://winxound.codeplex.com/

[5] ffitch, J. “On The Design of Csound5.”
Proceeedings of Linux Audio Developers

Conferencence. ZKM, Karlsruhe, Germany.
2004

[6] Cycling 74 Homepage
http://cycling74.com/products/maxmspjitter/

[7] PdVst Homepage
http://crca.ucsd.edu/~jsarlo/pdvst/

[8] CsoundVST
http://michael-gogins.com

[9] Lazzarini, Walsh “Developing LADSPA
plugins with Csound” Proceedings of the Linux
Audio Developers Conference TU Berlin,
Germany. 2007

[10] Walsh, Lazzarni, Brogan. “Csound-based
cross-platform plugin toolkits'. Proceedings of
the Internation Computer Music Conference,
Belfast, NI. 2008

[11] Walsh, R. “Cabbage, a new GUI framework
for Csound”. Proceedings of the Linux Audio
Conference KHM Cologne, Germany. 2008.

[12] WxWidgets Homepage
www.wxwidgets.org

[13] Juce website
http://www.rawmaterialsoftware.com/juce.php

http://michael-gogins.com/
http://crca.ucsd.edu/~jsarlo/pdvst/
http://cycling74.com/products/maxmspjitter/

	1 Introduction
	1.1 The Csound host API

	2 Background
	2.1 csLADSPA/csVST
	2.2 Cabbage 2008

	3 Cabbage 2011
	3.1 The Cabbage native host
	3.1.1 Cabbage Syntax

	3.1 Cabbage widgets
	3.1.2 MIDI control
	3.1.3 Native Plugin Parameters

	4 Cabbage plants
	5 Examples
	6 Conclusion
	7 Acknowledgements

