Airtime: Scheduled Audio Playout for Broadcast Radio

Paul Baranowski
CTO, Sourcefabric
720 Bathurst St. #203
Toronto, ON M5S 2R4
paul.baranowski@sourcefabric.org

Abstract

We present Airtime[1], a new open source web
application targeted at broadcast radio for
automated audio playout. Airtime's workflow is
adapted to a multi-user environment found at
radio stations with program managers and DJs.
Airtime is written in PHP and Python and uses
Liquidsoap to drive the audio playout.

Keywords

Radio, broadcast, scheduled playout, web apps.

1 Introduction

Airtime is an open source web application
targeted at radio stations who need to automate
part or all of their audio playout. Its first release
happened on Valentine's Day February 2011.

Airtime is funded by Sourcefabric, a non-profit
organization dedicated to making the best open
source tools for independent journalism around
the world. One of it's primary missions is to
support independent media in developing
democracies. Sourcefabric is currently funded
by grants and has guaranteed funding for at least
two more years. Within that time we expect to
become self-sustaining.

In this paper we present a common workflow
found at radio stations, then present how
Airtime's workflow matches that model. We
then cover a number of non-workflow based
features as well as the technology used to build
both the web interface and backend player. We
finish up with a preview of future development.

2 Radio Station Workflow

We have designed the interface workflow in a
way that many multi-person radio stations work.
The two roles present in radio stations related to
Airtime are program managers and DJs.
Program managers are responsible for
organizing the schedule for the DJs and making
sure that the schedule is fully booked. They
usually plan out the schedule weeks or months
in advance. DIJs are responsible for preparing
and presenting the audio during their assigned
time slots(“time slots” are also known as
“shows™). If the show is live, quite often DJs
will bring their own equipment for playout such
as turn tables, CDs, or iPods. If the show is
automated, the DJ has the responsibility to fill in
their show with audio.

3 Airtime Overview

Before we present the Airtime workflow, we
present a few of the key concepts in the
application: shows, playlists, and roles.

3.1 Shows

A “show” in Airtime corresponds to a block of
time allocated to a DJ. It is also a container for
audio clips. Shows can be assigned to one or
more users, in which case only those users are
able to modify the audio within that show. Itis
possible to create repeating shows on a daily,
weekly, bi-weekly, or monthly basis.

3.2 Playlists

Airtime also has playlists, which can be inserted
into a show. Playlists can be created before the
shows have been scheduled and can be reused.
Playlists and shows are completely separated — if
a user schedules a playlist inside a show and
then deletes the playlist, the schedule still has it's
own copy of the song list and playout will not be
affected.

3.3 Roles

Airtime has three roles: admin, host, and guest.

The “admin” role corresponds to the program
manager job; this role has the ability to add,
change, or delete shows. They also have the
rights of a DJ.

The “host” role is equivalent to a DJ. They have
the ability to create playlists and schedule them
within the shows they have been assigned.

The “guest” role is a read-only role that allows
someone to log in and see what is going on
without being able to change anything.

4 Airtime Workflow

The expected workflow for Airtime works as
follows: the program manger logs in under the
admin role and creates the shows in the calendar
for all the DJs. Repeating shows can be
scheduled on a daily, weekly, bi-weekly, or
monthly basis. The interface in the calendar is
very similar to Google Calendar, where the user
has the ability to move shows around by drag
and drop as well as resize shows with the mouse
to change their length.

The DJs log in at their leisure, upload their
audio, use the audio library to create playlists,
and add their playlists to a show. Any uploaded
audio files are automatically scanned for
metadata and additional metadata is retrieved
from online databases. Replay gain is calculated
on the audio files to normalize the output
volume.

A status area at the top of the screen displays
what song and show is currently playing along
with timing and progress information. A more
detailed list of the upcoming audio tracks can be
viewed on the “Now Playing” screen, which also
allows you to see the full list of planned audio
for any given day. Any breaks of silence are
displayed in red.

Shows that have already played cannot be
removed, as this information is typically needed
for various regulation purposes.

The backend audio player looks to see what
show is scheduled for a specified time and starts
playing it. It is completely disconnected from
the web interface in that it fetches all the
information it needs via HTTP requests and
downloads a copy of the music it needs to play.

5 Non-workflow Features

The non-workflow features available in Airtime
are internationalization and live show recording.

5.1 Internationalization

The Airtime interface can be internationalized
into any language.

5.2 Show Recording and Archiving

Airtime ships with a separate application that
hooks into Airtime's schedule which will record
the audio during a live show if the user requests
it. The audio is saved to a file, and inserted
back into the audio database with metadata
attached. These audio files can then be replayed
again in future shows.

6 Technology

Airtime is written in PHP using the Zend
Framework and Propel as the ORM layer. The
web interface makes heavy use of jQuery and
various jQuery plugins. The playout engine is
Liquidsoap controlled by Python scripts. By
default we output to both the sound card via

ALSA and to an Icecast stream. We currently
only support the Linux operating system at the
moment, which is mainly due to the fact that
Liquidsoap is primarily supported on *UNIX
platforms.

6.1 Design of the Playout System

The scripts used to drive Liquidsoap are
collectively called “pypo” for Python PlayOut.
These scripts were developed in conjunction
with Open Broadcast in Switzerland. There are
three separate processes which drive the playout:

1. Liquidsoap
2. Pypo-fetch
3. Pypo-push

Liquidsoap is an open source programmable
audio stream engine for radio stations. It expects
to always be playing something. We have
written custom Liquidsoap scripts to drive the
playout based on what Airtime users have
scheduled. The Liquidsoap developers have
been kind enough to add functionality for our
playout model.

Pypo-fetch is responsible for fetching the
playout schedule and downloading the music
tracks before playout starts. There are
configuration values for how far in advance to
start downloading the audio as well as how long
to keep the audio after the playout has occurred.

Pypo-push is responsible for controlling
Liquidsoap and switching the playlist at the right
time. It connects to Liquidsoap via a local telnet
connection and switches between playlists using
the queuing technology found in Liquidsoap.

Each of these programs is installed as a daemon
via daemontools under a separate Linux user
named “pypo”.

7 Future Development

The first release of Airtime has been made for
one narrowly defined use case. In the coming
year we are planning to develop the additional
functionality shown below.

7.1 Very Near Term (3 months)

7.1.1 Scheduling Webstreams

The ability to automatically connect to
webstream at a certain time and rebroadcast it.

7.1.2 Jingle Support

Users have requested a quick and easy way to
add jingles to a playlist.

7.1.3 AutoDJ (Smart/Random Playlists)

Automatically generate playlists based on
certain criteria.

7.1.4 RDS Support

RDS is the technology that displays the name of
the song on your radio.

7.2 Mid-term (3-6 months)

7.2.1 Advertising Support

We plan to make Airtime understand the
difference between ads and songs. The
advertising manager will be able to put ads in
the schedule with time boundaries within which
those ads must be played. Ads will have
different rights than audio and cannot be
removed by someone without “advertising
manager” rights.

7.2.2 RESTful API

Allow 3™ party applications to get the data out of
the database via a REST interface. This would
allow others to create other views of the data,
such as a Web widget which would display the
currently playing audio and display the
upcoming schedule.

7.2.3 Playlist Import/Export

This is the ability to export a playlist to a file
and import it back in.

7.2.4 Airtime/Newscoop Integration

Newscoop is Sourcefabric's enterprise
newsroom software. Integrating with this would
allow a station to run it's web site and control it's
playout with an integrated set of tools.

7.2.5 SaaS Hosting

We plan on offering a hosted version of Airtime.

7.3 Longer Term (6 months — 1 year)

7.3.1 Live Shows

We are planning to support live shows by
allowing 3" party playout software to access the
audio files through a FUSE filesystem. We are
also planning on implementing a “live mode” in
the browser to allow a DJ to play songs on-
demand.

7.3.2 Graphical Crossfading Interface

Display the waveform for an audio file in the
browser and allow the user to drag and drop the
crossfade points with their mouse and preview
it.

7.3.3 Smartphone/Tablet Interface

Allow users to create playlists and schedule
them on their favorite smartphone or tablet.

7.3.4 Networked Stations

Allow stations to share content with each other.

8 Conclusion

Airtime is under active development by three
developers, a graphic designer, a QA engineer,
and a manager. We are engaged with radio
stations around the world to listen to feedback
and make the most useful project possible. Since
it is open source, outside developer participation
is welcome in the project. You can try out
Airtime right now be going to the demo site[2].

References

[1] Link to Airtime homepage:

sourcefabric.org/en/products/airtime overview/

[2] Airtime demo site:

airtime-demo.sourcefabric.org

http://www.sourcefabric.org/en/products/airtime_overview/
http://airtime-demo.sourcefabric.org/

	1 Introduction
	2 Radio Station Workflow
	3 Airtime Overview
	3.1 Shows
	3.2 Playlists
	3.3 Roles

	4 Airtime Workflow
	5 Non-workflow Features
	5.1 Internationalization
	5.2 Show Recording and Archiving

	6 Technology
	6.1 Design of the Playout System

	7 Future Development
	7.1 Very Near Term (3 months)
	7.1.1 Scheduling Webstreams
	7.1.2 Jingle Support
	7.1.3 AutoDJ (Smart/Random Playlists)
	7.1.4 RDS Support

	7.2 Mid-term (3-6 months)
	7.2.1 Advertising Support
	7.2.2 RESTful API
	7.2.3 Playlist Import/Export
	7.2.4 Airtime/Newscoop Integration
	7.2.5 SaaS Hosting

	7.3 Longer Term (6 months – 1 year)
	7.3.1 Live Shows
	7.3.2 Graphical Crossfading Interface
	7.3.3 Smartphone/Tablet Interface
	7.3.4 Networked Stations

	8 Conclusion

