
An Interface for Realtime Music Using Interpreted Haskell

Renick Bell
independent researcher

Chuo-ku, Shinkawa, 2-27-4-2414
Tokyo, 104-0033

Japan
renick@gmail.com

Abstract

Graphical sequencers have limits in their use as live
performance tools. It is hypothesized that those
limits can be ovecome through live coding or text-
based interfaces. Using a general purpose program-
ming language has advantages over that of a domain-
specific language. However, a barrier for a musician
wanting to use a general purpose language for com-
puter music has been the lack of high-level music-
specific abstractions designed for realtime manipu-
lation, such as those for time. A library for Haskell
was developed to give computer musicians a high-
level interface for a heterogenous output enviroment.

Keywords

live coding, realtime performance, Haskell, text-
based interface

1 Introduction

In this paper, a usability problem of live com-
puter music will be briefly examined, and the
solution of using a general purpose program-
ming language as a shell for music will be pre-
sented. The necessary components created by
other developers which were used will be intro-
duced. A library called Conductive1, developed
to make a Haskell interpreter into such a shell,
will then be described in some detail. A con-
ceptual example and some actual code examples
will be presented. Finally, conclusions reached
through the development of this library will be
presented.

2 The Problem

Graphical sequencers are poor tools for live
musical performance in the judgement of this
author. Users interact with them primarily
through a mouse or a limited number of key-
board shortcuts and allow limited customiza-
tions to the manner in which they are con-
trolled. Previous experiences with GUI tools in
performance showed them to be inflexible and

1http://www.renickbell.net/conductive/

awkward when trying to execute complex sets
of parameter changes simultaneously.

This problem is exacerbated when consider-
ing the wide variety of synths which exist. Mu-
sicians would like to use them together freely,
but coordinating them is difficult. For use with
graphical sequencers, synths employ separate
GUIs which are almost always point-and-click
and thus cannot be easily manipulated simulta-
neously with other parameters.

One possible solution to this problem may be
the use of a programming language as a tool
for live coding of music or as a text-based in-
terface [Collins et al., 2003]. A general purpose
programming language which has abstractions
for music can serve as a control center or shell
for a heterogeneous set of outputs. In text, the
user can write out complex parameter changes
and then execute them simultaneously. A wide
variety of existing programming tools and text-
manipulation utilities can be used to make this
process more efficient.

Computer music languages, such as Super-
Collider [McCartney, 2010] and Chuck [Wang,
2004] exist. McCartney, the creator of Super-
Collider, says a specialized language for com-
puter music isn’t necessary, but general pur-
pose programming languages aren’t ready yet
practically [Mccartney, 2002]. Musicians man-
age to make music with domain-specific tools,
but those are unsatisfactory in many ways, such
as lack of libraries and development tools and
slow performance.

General purpose programming languages
have libraries for dealing with music, but they
are particularly limited in number regarding
real-time music systems. Some which al-
ready have such capabilities through libraries
include Scheme through Impromptu [Sorensen
and Brown, 2007] or Lua through LuaAV
[Wakefield and Smith, 2007].

The Haskell programming language was seen
as a good candidate because of several factors:

Figure 1: A screenshot of Conductive in use

expressivity, speed, static type system, large
number of libraries, and ability to be either in-
terpreted or compiled. It lacked a library suit-
able for this author for realtime manipulation of
musical processes. McClean is also developing
Tidal [McLean and Wiggins, 2010], a Haskell
library with a similar aim.

3 The Solution

A Haskell library called Conductive was cre-
ated. It contains abstractions for musical time,
musical events, and event loops. This gives the
Haskell interpreter the ability to function as a
code-based realtime sequencer for any output
targets which can be connected to the system.
Conductive does not aim to be an audio lan-
guage, but a controller for audio output targets.
The user is free to choose any OSC-aware out-
put target, and this library is proposed as a way
to coordinate those outputs. Another way to
think of it is as a shell or scripting environment
for realtime music.

A library for getting, composing, and send-
ing messages to JackMiniMix, an OSC-based
mixer for JACK developed by Nicholas Hum-
frey [Humfrey, 2005], was created2.

A simple terminal-based clock visualization
was also created.

2http://www.renickbell.net/doku.php?id=jackminimix

Figure 2: The terminal clock display

4 Utilized Tools from Other
Developers

Before explaining the details of Conductive, it
is necessary to list the components it was inte-
grated with. The Glasgow Haskell Compiler In-
terpreter (ghci) [Peyton Jones et al., 1992] was
the core component used for executing Haskell
code. Code was composed in vim [Moolenaar,
2011], and sent to ghc via the tslime plugin
[Coutinho, 2010]. For OSC communication,
Rohan Drape’s hosc library was used [Drape,
2010]. Output targets used were scsynth, the
synthesizer component of SuperCollider [Mc-
Cartney, 2010], and JackMiniMix. Drape pro-
vides a library for communicating with scsynth
via OSC called hsc3 [Drape, 2009].

5 Conductive in Detail

5.1 Overview

This library exists to wrap concurrent process
manipulation in a way that makes controlling
their timing more intuitive for musicians. At the
same time, the library aims at being as concise
as possible to lessen the burden on the user.

The core components of the library are the
data structures Player and MusicalEnvironment
and a set of functions using these data struc-
tures. A user designs a set of functions carrying
out musical actions, such as playing a note on a
synth or adjusting the parameter of synth. The
user defines TempoClocks which have a tempo
and time signature. The user also defines func-
tions, called IOI (interonset interval) functions,
describing how long to wait between executions
of actions. These functions are stored in a Mu-
sicalEnvironment. A Player is a collection of
one action function, one IOI function, and one
TempoClock and other related data. A Player
is put into an event loop in which actions are
executed after every defined IOI by using the
play function.

Conceptually, it has similarities with the con-
cepts in SuperCollider of Routines, Tasks, and
Patterns. Some key similarities and differences
are noted below, along with details on each of
these components.

5.2 TempoClock

The tempo is part of a TempoClock, a concept
from SuperCollider which is reimplemented here
in Haskell. A TempoClock is like a metronome
keeping the current tempo but also contain-
ing information about time signature and when
tempo or time signature has been changed.

A TempoClock is a record of the time the
clock was started, a list of TempoChanges, and
a list of TimeSignature changes. This allows a
user to independently manipulate both tempo
and time signature and to use these for com-
posing and performance in addition to regular
POSIX time.

TempoClocks are stored in the MusicalEnvi-
ronment.

5.3 Players

A data structure called a Player was designed as
a way to sequence IO actions. Players contain
references to particular data which is stored in
the MusicalEnvironment. The collection of data
referenced by the Player results in a series of ac-
tions being produced once the Player is played.
This data consists of:

• the name of the Player

• its status (stopped, playing, pausing,
paused, stopping, resetting)

• a counter of how many times it has run an
action

Figure 3: Player: a data structure filled with
references

• which clock it is following

• which IOI function it is using

• which action function it is using

• which interrupt function it is using

• which beat its next action occurs on

• which beat it started on

• the POSIX time at which it was last paused

An action function is a function that describes
an event. An action function outputs a value
of the IO unit type. This basically means some
kind of side effect is produced without return-
ing a value like a double or a string. In practical
terms, this could be a synthesis event, a param-
eter change, or the action of playing, pausing,
or stopping other Players or itself. It is thought
that the user would use functions which send
OSC messages to connected OSC-aware appli-
cations. The action named in the Player can
only take two parameters: the Player trigger-
ing the action and the MusicalEnvironment it
should read from. Beyond that, the design of
the action is left to the user. A user might pre-
fer to have many Players with simple actions, a
few Players with complex actions, or some other
combination.

A fundamental concept is that of the time in-
terval between the start times of two events, or
interonset interval (IOI). [Parncutt, 1994] Su-
perCollider refers to this as “delta” with regard
to Patterns or “wait” for Routines. The IOI is
defined in beats, and the actual time between
events is calculated using the IOI value and the

TempoClock referenced by the Player it is as-
sociated with. IOI functions should also be de-
signed to read the data from a Player and a Mu-
sicalEnvironment. They can be designed in any
way the user desires, including always return-
ing a particular value, stepping through a list
of values stored in a list somewhere, randomly
choosing a value, or anything else the composer
can imagine.

An interrupt function is a function which is
run once every time the play loop runs. It is
useful for debugging purposes, and may be used
to trigger other actions, such as stopping the
player on a condition.

Players bear some resemblance to Tasks or
Patterns in SuperCollider; they can be played,
paused, and stopped to produce music. How-
ever, while Patterns in sclang can produce
streams of any kind of data, Players in Con-
ductive are designed to produce streams of side
effects. While the data in a Pbind in SuperCol-
lider is generally private [Harkins, 2009], all the
data contained by a Player is visible.

Players are stored in the Player store, a mu-
table key-value store where the keys are Player
name strings and the values are the Players
themselves. This in turn is part of the Mu-
sicalEnvironment. How patterns are stored in
SuperCollider is up to the individual user. This
library provides a readymade structure for that
purpose.

5.4 MusicalEnvironment

Figure 4: MusicalEnvironment: a data struc-
ture for storage

The MusicalEnvironment is a place to store

data which is used by any of the user-initiated
event loops. This data consists of:

• the name of the environment

• a store of Players

• a store of TempoClocks

• a store of IOI functions

• a store of action functions

• a store of interrupt functions

5.5 Play

Figure 5: The play event loop

The play function starts a thread which forks
other processes according to a schedule deter-
mined by the IOI function referenced in the
Player. It takes a MusicalEnvironment, a
Player store, and a Player name as arguments.
First, the play function checks which action is
referenced in the Player. It retrieves that func-
tion from the MusicalEnvironment and forks it
to a thread. It then checks which IOI function
is referenced in the Player. It runs that func-
tion and receives a numeric value specifying how
long to wait in terms of beats. It then corrects
that amount for jitter and sleeps for the cor-
rected length of time. When the thread wakes
up, the loop — checking the action and so on
— repeats.

It produces roughly similar results to calling
play on a Pattern in SuperCollider in that it
begins a process; however it is structured differ-
ently.

The problem of dealing with the delays in
scheduled events is significant. Because various
processes, including garbage collection, can con-
ceivably interfere with correct timing, correc-
tion of jitter is included in the play event loop.
This library does not introduce a novel method
for managing such delay, but rather adopts a
design from McLean [McLean, 2004]. An event
intended to occur at time x actually occurs at
time x + y, where y is the amount of time by

which the event is late. The next event is sched-
uled to occur at time x + z, where z is the IOI,
so to account for the jitter, the wait time is set
for x + (z-y). In practice, this delay is generally
permissible for control data, while it would not
be appropriate for audio data.

The number of simultaneous play event loops
is limited only by the memory and CPU of the
host machine. Since at every loop the data used
is refreshed, they can be manipulated in real
time by changing the data stored in the Player
or MusicalEnvironment. Which action function
or IOI function is referenced in a Player can be
changed. The action functions or IOI functions
themselves can be modified. Any of the other
data in the Players or MusicalEnvironment can
be changed. By changing this data, the result-
ing musical output can be changed. It is in this
manner that a livecoded musical performance is
realized.

Such manipulation results in many threads
and the potential exists for one thread to be
writing data which is accessed by another. One
problem of real-time multi-threaded systems is
guaranteeing the thread safety of data. Haskell
provides safe concurrency in the standard li-
braries of the Glasgow Haskell Compiler (GHC).

5.6 An Example of How Players Work

Here is an example of how Players work, shown
in figure 6.

Consider a timpani Player called “A” who has
only two jobs. The first job is to hit the timpani.
The second job is to wait for a given amount of
time, like that written on a score. He hits the
timpani, then he waits, then he hits the timpani
again and waits, in a loop until he is asked to
stop. Now imagine that this Player is joined
by another: Player “B”. The second Player has
only two jobs. The first is to adjust the tuning
of the timpani; the second job is the same as
that of the first Player. He tunes the timpani
and waits, and then tunes it again and waits,
repeating like the first Player.

The first timpani Player is a Player stored un-
der the key “A” in the Player store. Its action
function is “hit the timpani”, which may corre-
spond to triggering a synthdef on scserver called
“timpani”, which results in a timpani sound be-
ing played. The second Player is called “B”, and
its action function, “tune timpani”, is to change
the frequency parameter used by the “hit the
timpani” function. Each of them has its own
IOI function.

Let’s expand the situation to include two
more Players, Players “C” and “D”, who corre-
spond to Players “A” and “B” but are involved
with another timpani. The resulting sound is
two timpanis being played at the same time. In
this case, the “hit the timpani” action is de-
signed to use the name of the Player to deter-
mine which frequency should be used. In the
same way, the “tune timpani” function uses the
Player name to determine which frequency it is
tuning and which frequency to tune to.

Now, interestingly, we’ll add a fifth Player,
who is starting and stopping the Players above.
Its action function cycles through a list of ac-
tions. Its first action is to start Player “A”. Its
second action is to start Player “B”. Its third
action could be to start Players “C” and “D”
simultaneuously. Its fourth action could be to
pause Players “A”, “B”, and “D”. The design
of any action is up to the intentions of the mu-
sician.

Figure 6: An example of Players at work

5.7 Code Examples of Conductive
Usage

A rudimentary sample of usage and correspond-
ing code is given below.

First, the relevant Haskell modules must be

imported, which is accomplished by loading a
Haskell document containing the necessary im-
port statements.

:load Conductive.hs

This example uses SuperCollider, so a conve-
nience command which sets up a group on sc-
server is called.

defaultSCGroup

A default MusicalEnvironment is instantiated.
It is assigned to the variable “e”.

e <- defaultMusicalEnvironment

An scserver-based sampler is instantiated using
this command, which also creates the necessary
Players and action functions in the MusicalEn-
vironment. The function takes a path and the
MusicalEnvironment as arguments.

s <- initializeSampler "../sounds/*" e

All of the Players in a specified MusicalEnviron-
ment can be started with the playAll function.
The argument, like above, is the MusicalEnvi-
ronment.

playAll e

The status of all the players in a specified Mu-
sicalEnvironment can be viewed with the dis-
playPlayers command.

displayPlayers e

A list of players can be paused using the pauseN
function. The specified players will be looked up
in the MusicalEnvironment.

pauseN e ["sampler1","sampler2"]

Those players could be restarted at a specified
time, in this case the first beat of the 16th mea-
sure, using the playNAt function. The string
after “e” is the specified time, given in terms of
measure and beat.

playNAt e "15.0" ["sampler1","sampler2"]

The tempo of a particular TempoClock can be
changed with the changeTempo function. The
string “default” is the name of the TempoClock
that is to be manipulated.

changeTempo e "default" 130

A new IOI function can be created. This func-
tion call gives the name “newIOI” to an IOI
function which will be stored in the MusicalEn-
vironment. That string is followed by the offset,
the number of beats before the first event takes
place. The list contains IOI values; in this case,
an interval of three beats passes between the
first two events.

newIOIFunctionAndIOIList e "newIOI"
0 [3,0.25,1,0.5,2,0.25,3]

A player can be told to use this new IOI function
by calling the swapIOI function. After specify-
ing the MusicalEnvironment, the name of the
player and the name of the IOI function are
given.

swapIOI e "sampler2" "newIOIPattern"

All of the players can be stopped with the
stopAll function.

stopAll e

6 Conclusion and Future Directions

Rudimentary livecoding performances were
made possible. The timing was found to be
adequate for musical performances, though mil-
lisecond timing errors remain. While the library
was sufficient for very basic performances, it was
necessary to create additional libraries for con-
trol and algorithmic composition to achieve a
usable interface and more sophisticated perfor-
mances.

This library alone was far from sufficient to
replace current GUI sequencers for most users,
though it is hoped this is a good foundation for
further research in this direction.

An evaluation method to quantify the usabil-
ity of this approach should be considered. Ad-
ditionally, determining the performance of this
system versus sclang, Impromptu and others
may be valuable.

The library will be tested in performance sit-
uations and expanded to be a more complete
integrated development environment and per-
formance tool for livecoding performers. Its use
in other real-time music applications will also
be tested.

The jitter described above is believed to be
at least in part due to the garbage collection
routines of GHC. Improvements to the GHC

garbage collector are currently being made by
its developers. [Marlow, 2010] It is hoped that
the gains they make will carry over positively to
the performance of this system in terms of re-
duced delays. There could be other contributing
factors, but they have not yet been identified. A
deeper investigation into potential causes of jit-
ter and their solutions needs to be undertaken.

Another serious problem involves tempo
changes. If the tempo is changed while a play
process is sleeping, the next event in that pro-
cess will be out of sync: early if the tempo is
reduced, or late if the tempo is increased. Fol-
lowing events, however, will occur at the correct
times. This is because the function for awak-
ening the sleeping Player is unaware of tempo
changes and thus cannot adjust the time accord-
ingly. A revised method for sleeping threads
which is tempo-aware should be developed.

An important next step is developing a li-
brary to make it easy to use MIDI devices with
Conductive.

Use of this library by visually-impaired users
should be examined, as this text interface may
offer such users increased usability. It will be
necessary to find users with a braille display and
familiarity with vim or emacs for usability test-
ing.

7 Acknowledgements

Thanks are due to Masaaki Tsuji, who pro-
vided a great deal of valuable discussion during
the development of this library, Naotoshi Os-
aka for feedback and pushing me ahead, and
Michael Chinen, who provided a helpful evalu-
ation. Thanks also to Marvin Wardi for assis-
tance in proofreading.

References

Nick Collins, Alex McLean, Julian Rohrhu-
ber, and Adrian Ward. 2003. Live cod-
ing in laptop performance. Organised Sound,
8(03):321–330.

C. Coutinho. 2010. tslime.vim.
http://www.vim.org/scripts/script.
php?script_id=3023, March.

Rohan Drape. 2009. Haskell supercollider, a
tutorial. http://www.slavepianos.org/rd/
sw/hsc3/.

Rohan Drape. 2010. hosc 0.8. http://
hackage.haskell.org/package/hosc-0.8,
March.

H. James Harkins, 2009. A Practical Guide to
Patterns. http://www.dewdrop-world.net/
sc3/sym09/.

Nicholas J. Humfrey. 2005. JackMin-
iMix. http://www.aelius.com/njh/
jackminimix/, June.

Simon Marlow. 2010. First results
from GHC’s new garbage collector.
http://hackage.haskell.org/trac/
ghc/blog/new-gc-preview, September.

James Mccartney. 2002. Rethinking the Com-
puter Music Language: SuperCollider. Com-
put. Music J., 26(4):61–68.

J. McCartney. 2010. SuperCollider Documen-
tation. http://www.audiosynth.com.

Alex McLean and Geraint Wiggins. 2010.
Tidal - Pattern Language for the Live Coding
of Music. In Proceedings of the 7th Sound and
Music Computing conference.

Alex McLean. 2004. Hacking Perl in night-
clubs. http://www.perl.com/pub/a/2004/
08/31/livecode.html.

Bram Moolenaar. 2011. Vim. http://www.
vim.org/.

Richard Parncutt. 1994. A Perceptual Model
of Pulse Salience and Metrical Accent in Mu-
sical Rhythms. Music Perception: An Inter-
disciplinary Journal, 11(4).

Simon L. Peyton Jones, Cordy Hall, Kevin
Hammond, Jones Cordy, Hall Kevin, Will
Partain, and Phil Wadler. 1992. The Glas-
gow Haskell compiler: a technical overview.

A. Sorensen and A. R. Brown. 2007. aa-cell in
Practice: An approach to musical live coding.
In Proceedings of the International Computer
Music Conference.

Graham Wakefield and Wesley Smith. 2007.
Using Lua for Audiovisual Compostion. In
International Computer Music Conference.

Ge Wang. 2004. On-the-fly Programming:
Using Code as an Expressive Musical Instru-
ment. In In Proceedings of the International
Conference on New Interfaces for Musical Ex-
pression, pages 138–143.

