Web-enabled Audio-synthesis Development Environment

Rory Walsh
Dundalk Institute of Technology,
Dundalk, Co. Louth
Ireland
rory.walsh@dkit.ie

Abstract

Collaboration and education in the world of digital
audio synthesis has been facilitated in many ways
by the internet and its World Wide Web.
Numerous projects have endeavoured to progress
beyond text-based applications to facilitate wider
modes of collaborative activity such as, network
musical performance and composition. ~When
developing a software application one is faced
with technology decisions which limit the scope
for future development. Similarly, the choice of
one audio synthesis language or engine over
another can limit the potential user base of the
application. This paper will describe how, through
the WADE system architecture it is possible to
integrate existing software in a highly scalable and
deployable way. The current incarnation of the
WADE system, as depicted in the WADE
Examples section below, uses the Csound
synthesis engine and audio synthesis language as
its audio server.

Keywords

Audio-synthesis, collaboration, education, web-
based, OSGi

1 Introduction

The Web-enabled Audio-synthesis Development
Environment, WADE, is a proof of concept
application designed to facilitate collaboration and
education in audio synthesis development. While
the initial goal of this project was to investigate the
creation of a browser based user interface for the
Csound[1] synthesis engine, research and
technology decisions lead to the outlining of a
possible software architecture which was not tied
to any specific synthesis engine, or even to audio
synthesis development itself. The application was
developed wusing the Eclipse Rich Client

Conor Dempsey
Dundalk Institute of Technology,
Dundalk, Co. Louth
Ireland
conor.dempsey @gmail.com

Platform[2], Equinox OSGi[3], Java Servlets,
HTML[4] and javaScript[5].

1.1 Web-enabled Audio Synthesis

In 1995 Ossenbruggen and Eliens proposed the use
of client-side sound synthesis techniques in order
to reduce the amount of resources needed for high
quality music on the web[6]. Their project wrapped
Csound for use with a Tcl/TK (scripting language
and its graphical widget library) based browser or
Tcl browser plugin. This allowed Csound to be
used as a synthesis engine on the client side, thus
removing the amount of data being transferred
from client to server and moving the more
processor intensive task, of synthesising a Csound
Score file, to the client.

This work was closely followed by a network
enabled sound synthesis system created by James
McCartney, (1996) in the guise of his
Supercollider synthesis project. More recent work
done on web enabling existing sound synthesis
engines has been carried out by Jim Hearon[7] and
Victor Lazzarini[8] (independently), using Csound
and Alonso, et al. in their creation of a Pure Data
browser plug-in [9]. The need for web-enabled
audio synthesis as a pedagogical tool or as a means
of offering high quality audio across low
bandwidth networks can now be answered in new
and interesting ways which can lead to unforeseen
future development projects.

1.2 Open Service Gateway Initiative (OSGi)

The OSGi component architecture is a
framework which sits on top of the Java virtual
machine. It is specifically designed to deal with
many of the pitfalls of OOP and the way in which
software applications have historically been
constructed.

Life Cycle g

Execution Environment

(fig.1 OSGi Model)

At the heart of the OSGi (fig.1) ideology is the
bundle; a bundle provides a specific piece of
functionality and advertises this functionality as a
service to other bundles through a well defined
interface. As well as specifying the services they
provide, bundles must specify their dependencies
on other services/ bundles. This allows the OSGi
service registry to determine whether a particular
bundle can be started. In the same vein, a bundle
can specify what functionality it can provide in
circumstances when only some of its dependencies
are satisfied. It is also possible for bundles to
provide extension points, points at which one
bundle can extend or override the functionality of
another bundle.

This tolerance for dynamic service availability
makes OSGi well suited for developing
applications seeking to utilise web services and
diverse hardware. In this specific project one of the
underlying requirements is the reuse of existing
software applications i.e. Csound and the Jetty http
server; the ability to register these as separate
services within the OSGi framework means that
they can be implemented independently of the
overall system, e.g. if future implementations wish
to use a different audio synthesis engine they
would simply have to provide an OSGi bundle for
that synthesis engine, its complementary web-
interface bundle, and choose to use that engine
over any pre-existing one.

1.3 Eclipse RCP

The Eclipse Rich Client Platform is a collection
of OSGi bundles called a target platform. The RCP
specific bundles allow developers to make
contributions to an Eclipse GUI through extension
points, advertised by the Eclipse runtime’s
extension registry.

14 HTML + JavaScript

Hyper Text Mark-up Language is the language
used by web developers and web browsers to
layout web-page content. While book publishing
houses have been using mark-up annotations for
many years, they do not have to contend with
dynamic content changes such as those seen in
web pages. JavaScript or ECMAScript is a
scripting language supported by most web
browsers that allows web developers to create
more dynamic and interactive web pages. This
project extends the CodeMirror JavaScript code
editor[10] to enable parsing and syntax
highlighting of Csound CSD files within the web
browser. The JQuery [11] library and JQueryUI
JavaScript libraries were used to create the web
page user interface.

15 Java Servlets

Java Servlets are Java classes which can be used
to create and extend web based applications. They
have access to a range of http calls and also the
Java APIs. In this particular application they are
used to provide the web facing interface for the
Csound synthesis engine.

2 WADE Architecture

vm

0sGi
Framework

Frontend

=
Application @
o>
‘ ot sﬂ‘
<>
‘ e s]‘
Backend
o S
Synthesis Engine $] - 'w 77777 HTTP Server $]
~lpE——
s il

(fig.2 WADE Architecture)

In explanation of the fig. 2 above; the program
runs within the JVM, on top of this runs the OSGi
framework which manages the bundle
configuration that provides functionality for both
the frontend and the backend of the system. As all
bundles are registered with the OSGi service
registry it is possible for any bundle to request the

functionality of another bundle. As such, the
frontend and backend sections of the diagram are
simply logical compartmentalisations for the
purposes of design thinking.

The frontend contains the specific bundles
required to manage the GUI features of the
application and the backend contains the
functionality desired by the project, e.g. the
synthesis engine, its servlet interface and the
servlet container which will serve the servlets
when requested by the web browser. A benefit of
this configuration is that the applications
functionality can be extended independently of the
user interface.

OSGi enables dynamic service composition
through a number of mechanisms. One of these is
Declarative Services, which can be seen in the
PlayServlet class, where there is no Equinox
specific code required. The component.xml file
and the ServletComponent class are used by the
Equinox DS bundle to weave the services together
at runtime.

public class PlayServlet extends HttpServlet{...

The HTTP POST method needs to be
implemented in order to accept the incoming
Csound file from the web editor.

public void doPost(
HttpServletRequest req,
HttpServletResponse resp){

String csdString = (String)

req.getParameter("csdElement");

try {
if((csnd!=null)&&(!csdString.equalsIgnoreCase(""))){

csnd.setCSDString(csdString);
}

else{
resp.getWriter().write(csnd.getPlaying()?"true": "false");
}
}
catch(IOException e){
e.printStackTrace();

}
}

2.1 Csound API

As can be seen in the code excerpt above, the
csnd object is used by the servlet. This object is
created using the CppCsound interface and uses
the CsoundPerformanceThread and
CsoundCallbackWrapper classes to control real-
time operation of Csound.

The code shown below is from the Csound API
service bundle; it creates the aforementioned
objects, passing the CppSound object to the
CsoundPerformanceThread object and setting up
the callback object for channel input and retrieving
console output messages.

csoundObj= new CppSound();

chanCaller = new CsChansetCB(csoundObj);
chanCaller.SetOutputValueCallback();
chanCaller.SetMessageCallback();
csndSingleThread = new Thread(this);
csndSingleThread.start () ;

When the servlet retrieves the csdElement
parameter from the HttpServletRequest object it
passes this string value to the csnd object via the
setCSDString function. Ultimately the
createCSDFile function is called to create the
temporary .orc and .sco files from the csd string
and prepares the Csound object to run these.

private void createCSDFile(String csdString){
if(csoundObj!=null && (!csdString.equalslgnoreCase("")))
{
CsoundFile csFile = csoundObj.getCsoundFile();
csFile.setCSD(csdString);
csFile.setCommand(csOptionsString);
csoundObj.PreCompile();
csFile.exportForPerformance();
csoundObj.compile();
csdFileString="";
csdFileCreated = true;
}
else{
csdFileCreated = false;

}

While this prototype uses Csound as it's synthesis
engine, it is entirely possible to add OSC to allow
control of any OSC aware synthesis engine such
as, Pure Data or SuperCollider.

3 WADE Examples

The current version of this application is being
tested with the Ubuntu 10.10 Linux distribution
and the Google Chrome web browser.

Welcome to WADE, the Web-based Audio
synthesis Development Environment

Overview ,/\;, Web Resources
5 Get an overview of the features L) read more on web

(fig.3 WADE Application window)
Once the desktop application has started, the
“Welcome” view will be displayed, providing
links to a number of pages informing you about the
WADE application. Along the top of the
application window you will see the obligatory
main toolbar, from which you can access the
preferences and console view.

.....................

(fig. 4 WADE Browser-based Interface)

Next, access the web-based code editor with
slider bank in your web browser (as you would any
web page). Once the page has loaded, click the
“Csound Editor” and “Slider Bank” buttons to
show the editor and associated faders. You will
note that Instrument 2 in the CSD file has two
channels “volChan” and “pitchChan”; these are
controlled by the faders in the slider bank window.
Press the “Play / Pause” button to send the CSD
file to the WADE desktop application for
rendering. It is possible to send live control
information to the WADE desktop application via
the faders in the slider bank.

A pedagogical application of this system, could
see an interactive Csound manual created, or a
large database of interactive Csound instruments

made available to the sound synthesising
community.

S
[oscil +

€ C i O file///CI SDPARSER/sr ilhtml ¥% | A
) Finding All Hosts O Sound Constructio...) lilo: ModuleIndex € Medibuntu - Comm. > (3 Other bookmarks

[

(fig.5 WADE browser-based editor in Csound manual)
Above is an example of the oscil opcode reference
page from the Csound manual in HTML format.

4 Future Developments

Current refactoring efforts are underway to
resolve issues in line with a first public release of
the system. Due to the integration of different open
source technologies, the completed system and
source code will likely be made available under
the LGP licence, with the obvious caveat when
integrating other technologies; that their respective
licences are adhered to and that the use of these
projects is acknowledged. The project releases and
source code will be available from the WADE
project page on Sourceforge:
http://wadesys.sourceforge.net/. The features being
assessed are as follows, the dynamic generation of
a RESTful OSC [12] API on a per instrument
basis, using Apache CXF [13]; dynamic GUI
slider bank generation; the inclusion of a
HyperSQL database which could be used to store
OSC packets for replaying a live performance;
XMPP [14] chat client for real-time
communication with other developers; XML
specification for instruments, including what
graphical widgets should be used to display the
instrument.

The provision for extensibility and deployment
options afforded by OSGi and the Eclipse Rich
Client Platform could lead to the incorporation of
features in the areas of: networked musical
performance, sound installation frameworks,
visual art development, cloud based audio
synthesis and even pseudo-embedded synthesis
systems. In short, it is possible that future
iterations of this project will be deployed on small

http://wadesys.sourceforge.net/

form factor devices such as the BeagleBoard[15]
or PandaBoard[16], to create a Csound based
effects pedal, or across a number of large servers
to provide a cloud synthesis solution.

5 Conclusion

The question of how to integrate these diverse
technologies lead to the identification of the OSGi
framework, which in turn lead to a much greater
consideration of the software architecture of the
project. While it can be shown that systems
designed for a specific task are more likely to be
less bloated and in many cases better suited to that
task than larger programs designed to address
numerous concerns[17] it was concluded that by
designing a system which facilitated future
expansion and development, the long term goal of
creating a system capable of delivering a complete
collaborative environment for audio synthesis
development, learning and performance would be
best satisfied.

6 Acknowledgements

I would like to acknowledge the help I received
from the Csound mailing list, in particular I would
like to thank Jacob Joaquin, Michael Goggins,
Steven Yi and Victor Lazarini(Csound Mailing
List); Dundalk Institute of Technology for their
support of my research and finally, I wish to thank
the contributors of the Eclipse help wiki and Lars
Vogel for his Eclipse RCP programming tutorials.

References

[1] Vercoe B. et al. 2005. The Csound Reference
Manual.

http://www.csounds.com/manual/html/index.html

[2] Ecllpsepedla 2010 Rich Cllent Platform

[3] OSGi Alliance. 2010. Benefits of Using OSGi
http://www.osgi.org/A bout/WhyOSGi

[4W3C. 1999. HTML4.01 Specification.
http://www.w3.0org/TR/html401/

[5] ECMAScript: The language of the web. 2010.
http://www.ecmascript.org/index.php

[6] van Ossenbruggen, J. and Eliens, A. 1995.
Bringing music to the web. In Proceedings of the
Fourth International World Wide Web

Conference, The Web Revolution, pages 309—
314. O'Reilly and Assaciates, Inc

[7] Hearon J. 2009. Processing and csnd.jar.
Csound Journal. 11 (5) -no page numbers.
http://www.csounds.com/journal/issuell/Process
ing.html

[8] Lazzarini, V. 2006, 27-30 April. Scripting
Csound 5. Proceedings of the 4™ Linux Audio
Conference.
http://lac.zkm.de/2006/papers/lac2006_victor_la
Zzarini.pdf

[9] Alonso, Marcos and Geiger, Gunter and Jorda,
Sergi. “An Internet Browser Plug-in for Real-
time Sound Synthesis using Pure Data” In
Proceedings, International Computer Music
Conference, Miami, USA. I nternational
Computer Music Association. 2004
http://www .dtic.upf.edu/~mal onso/pdpl ugin/pdpl
uginl CM C.pdf

[10] CodeMirror. 2010. http://codemirror.net/

[11] JQuery JavaScript Library. 2010.
http://jquery.com/

[12] Freed, Schmeder and Zbyszynski. 2007. Open
Sound Control: A flexible protocol for sensor
networking. Presented at Maker Faire, San

Mateo, CA, USA, 20" October 2007
http://opensoundcontrol.org/filess OSC-Demo.pdf

[13] Apache CXF. 2010. CXF User's Guide
http://cxf.apache.org/docs/index.html

[14] Ignite Realtime. 2008. Smack API.
http://www.igniterealtime.org/projects/smack/

[15] BeagleBoard.org. 2010
http://beagleboard.org/

[16] PandaBoard.org. 2010 http://pandaboard.org/

[17] Samaai S. and Barnes J. 2007. Investigating
the effect of software bloat on users.

http://dk.cput.ac.zalcgi/viewcontent.cgi?
filename=17& article=1004& context=inf_papers

&type=additional

http://dk.cput.ac.za/cgi/viewcontent.cgi?filename=17&article=1004&context=inf_papers&type=additional
http://dk.cput.ac.za/cgi/viewcontent.cgi?filename=17&article=1004&context=inf_papers&type=additional
http://dk.cput.ac.za/cgi/viewcontent.cgi?filename=17&article=1004&context=inf_papers&type=additional
http://beagleboard.org/
http://beagleboard.org/
http://www.igniterealtime.org/projects/smack/
http://cxf.apache.org/docs/index.html
http://opensoundcontrol.org/files/OSC-Demo.pdf
http://jquery.com/
http://codemirror.net/
http://www.dtic.upf.edu/~malonso/pdplugin/pdpluginICMC.pdf
http://www.dtic.upf.edu/~malonso/pdplugin/pdpluginICMC.pdf
http://lac.zkm.de/2006/papers/lac2006_victor_lazzarini.pdf
http://lac.zkm.de/2006/papers/lac2006_victor_lazzarini.pdf
http://www.csounds.com/journal/issue11/Processing.html
http://www.csounds.com/journal/issue11/Processing.html
http://www.ecmascript.org/index.php
http://www.w3.org/TR/html401/
http://www.osgi.org/About/WhyOSGi
http://wiki.eclipse.org/index.php/Rich_Client_Platform
http://wiki.eclipse.org/index.php/Rich_Client_Platform
http://www.csounds.com/manual/html/index.html

	1 Introduction
	1.1 Web-enabled Audio Synthesis
	1.2 Open Service Gateway Initiative (OSGi)
	1.3 Eclipse RCP
	1.4 HTML + JavaScript
	1.5 Java Servlets

	2 WADE Architecture
	2.1 Csound API

	3 WADE Examples
	4 Future Developments
	5 Conclusion
	6 Acknowledgements

