
An LLVM bitcode interface between Pure and Faust

Albert Gräf
Dept. of Computer Music, Institute of Musicology

Johannes Gutenberg University
55099 Mainz, Germany
Dr.Graef@t-online.de

Abstract
This paper discusses the new LLVM bitcode inter-
face between Faust and Pure which allows direct
linkage of Pure code with Faust programs, as well as
inlining of Faust code in Pure scripts. The interface
makes it much easier to integrate signal processing
components written in Faust with the symbolic pro-
cessing and metaprogramming capabilities provided
by the Pure language. It also opens new possibilities
to leverage Pure and its LLVM-based JIT (just-in-
time) compiler as an interactive frontend for Faust
programming.

Keywords
Functional programming, Faust, Pure, LLVM, signal
processing.

1 Introduction
Pure and Faust are two functional programming
languages which are useful in creating signal
processing applications of various kinds. The
two languages complement each other. While
Faust is a statically typed domain-specific lan-
guage for creating numeric signal processing
components which work at the sample level [7],
Pure is a dynamically typed general-purpose
language tailored for symbolic processing, which
can be used to tackle the higher-level compo-
nents of computer music and other multime-
dia applications [2]. Both Pure and Faust have
compilers producing native code; however, while
Faust is batch-compiled, Pure has a just-in-time
(JIT) compiler and is typically used in an inter-
active fashion, either as a standalone program-
ming environment or as an embedded scripting
language in other environments such as Pd.

Faust has had a Pure plugin architecture for
some time already. However, this has been
somewhat awkward to use since the programmer
always has to go through an edit-compile-link
cycle in order to create a shared library object
of the Faust plugin, which can then be loaded in
Pure. The new LLVM bitcode interface makes
this much easier.

LLVM, the “Low-Level Virtual Machine”, is
an open-source cross-platform compiler backend
available under a BSD-style license [4], which
forms the backbone of a number of important
compiler projects, including Apple’s latest in-
carnations of the GNU compiler collection as
well as clang, a new C/C++ compiler featur-
ing various improvements over gcc [1]. In the
past few years, the LLVM project has attracted
a number of compiler writers who are retarget-
ing compilers and interpreters to use LLVM.
Google’s Python compiler “UnladenSwallow” [9]
and David A. Terei’s backend for the Glasgow
Haskell Compiler [8] are just two notable exam-
ples. Pure has used LLVM as its backend since
the very first Pure release in 2008.

LLVM exposes a fairly low-level code model
(somewhere between real assembler and C) to
client frontends. This makes it a useful tar-
get for signal processing languages where the
generation of efficient output code is very im-
portant. Thus an LLVM backend has been on
the wishlist of Faust developers and users alike
for some time, and this backend was finally de-
signed and implemented by Stéphane Letz at
Grame in 2010. The new backend is now avail-
able in the “faust2” branch in Faust’s git repos-
itory [5]. During a brief visit of the author at
Grame last year, we started working on lever-
aging the LLVM support of Faust and Pure to
build a better bridge between the two languages.
This paper reports on the results of this coop-
eration.

In Sections 2 and 3 we first take a brief look at
the Faust and Pure sides of the new Pure-Faust
bridge, respectively, discussing Faust’s LLVM
backend and Pure’s LLVM bitcode loader. In
Section 4 we walk the reader through the steps
required to run a Faust module in Pure. Section
5 explains how to inline Faust code in Pure pro-
grams. A complete example is shown in Section
6. Section 7 concludes with some remarks on
the current status of the interface and possible

future enhancements.

2 The Faust backend
To take advantage of Faust’s new LLVM back-
end, you currently need a fairly recent snapshot
of the “faust2” branch of the compiler in the
Faust git repository [5]. Install this on your sys-
tem with the usual make && sudo make install
commands.

The -lang llvm option instructs Faust to out-
put LLVM bitcode (instead of the usual C++
code). Also, you want to add the -double option
to make the compiled Faust module use dou-
ble precision floating point values for samples
and control values. So you’d compile an exist-
ing Faust module in the source file example.dsp
as follows:

faust -double -lang llvm example.dsp -o
example.bc

The -double option isn’t strictly necessary,
but it makes interfacing between Pure and Faust
easier and more efficient, since the Pure inter-
preter uses double as its native floating point
format. This option is also added automatically
when inlining Faust code (see Section 5).

Note that LLVM code actually comes in three
distinct flavours:

• as an internal representation (LLVM IR),
i.e., a C++ data structure in main memory
used in most LLVM client applications such
as compilers and interpreters;

• as a compact binary code (LLVM bitcode),
which provides a serialized form of LLVM
IR which can be passed from one LLVM ap-
plication to another, either in main memory
or as a disk file;

• and, last but not least, as a kind of human-
readable assembler source code (LLVM as-
sembler), which is rarely used directly in
LLVM applications, but very useful for doc-
umentation purposes.

A description of the LLVM assembler code
format can be found on the LLVM website [4],
but the code examples shown in this paper
should be rather self-explanatory, at least for C
programmers. For the sake of a simple example,
let us consider the following little Faust module
which mixes two input signals and multiplies the
resulting mono signal with a gain value supplied
as a control parameter:

gain = nentry("gain", 0.3, 0, 10, 0.01);
process = + : *(gain);

From this the Faust compiler creates an
LLVM bitcode file containing several LLVM as-
sembler routines whose call interfaces are listed
in Figure 1. If you want to see all the gory de-
tails, you can put the above code into a text file
example.dsp and run Faust as follows to have
it print the complete LLVM assembler code on
standard output:

faust -double -lang llvm example.dsp

At the beginning of the LLVM module you
see some data type definitions and global vari-
ables. The assembler routines roughly corre-
spond to the various methods of the dsp classes
Faust creates when generating C++ code. The
central routine is compute_llvm which contains
the actual assembler code for the signal process-
ing function implemented by the Faust program.
This routine gets invoked with the pointer to
the dsp instance, the number of samples to be
processed in one go (i.e., the block size), and
the vectors of input and output buffers hold-
ing the sample values. The other routines are
used for managing and inspecting dsp instances
as well as the interface to the control variables
(the “user interface” of a dsp in Faust parlance).

Note that the names of the assembler rou-
tines are currently hard-wired in Faust. Thus
an LLVM application which wants to link in
the Faust-generated code must be prepared to
perform some kind of name mangling to make
multiple Faust dsps coexist in a single LLVM
module. This is handled transparently by Pure’s
bitcode loader.

3 The Pure bitcode interface
The nice thing about LLVM bitcode is that it
can be readily loaded by LLVM applications
and compiled to native machine code using the
LLVM JIT compiler. This doesn’t require any
special linker utilities, only the LLVM library is
needed.

The Pure compiler has a built-in bitcode
loader which handles this. The ability to load
Faust modules is in fact just a special instance
of this facility. Pure can import and inline code
written in a number of different programming
languages supported by LLVM-capable compil-
ers (C, C++ and Fortran at present), but in the
following we concentrate on the Faust bitcode
loader which has special knowledge about the
Faust language built into it.

%struct.UIGlue = { ... }
%struct.dsp_llvm = type { double }

@fSamplingFreq = private global i32 0
@example = private constant [8 x i8] c"example\00"
@gain = private constant [5 x i8] c"gain\00"

define void @destroy_llvm(%struct.dsp_llvm* %dsp) { ... }
define void @delete_llvm(%struct.dsp_llvm* %dsp) { ... }
define %struct.dsp_llvm* @new_llvm() { ... }
define void @buildUserInterface_llvm(%struct.dsp_llvm* %dsp,
%struct.UIGlue* %interface) { ... }

define i32 @getNumInputs_llvm(%struct.dsp_llvm*) { ... }
define i32 @getNumOutputs_llvm(%struct.dsp_llvm*) { ... }
define void @classInit_llvm(i32 %samplingFreq) { ... }
define void @instanceInit_llvm(%struct.dsp_llvm* %dsp,
i32 %samplingFreq) { ... }

define void @compute_llvm(%struct.dsp_llvm* %dsp, i32 %count,
double** noalias %inputs, double** noalias %outputs) { ... }

define void @init_llvm(%struct.dsp_llvm* %dsp, i32 %samplingFreq) { ... }

Figure 1: Outline of the LLVM assembler code for a sample Faust module.

Loading a Faust bitcode module in Pure is
easy. You only need a special kind of import
clause which looks as follows (assuming that you
have compiled the example.dspmodule from the
previous section beforehand):

using "dsp:example";

The above statement loads the bitcode mod-
ule, links it into the Pure program, and makes
the Faust interface functions callable from Pure.
It also mangles the function names and puts
them into their own Pure namespace, so that
different Faust modules can be called in the
same Pure program. Note that it’s not necessary
to supply the .bc bitcode extension, it will be
added automatically. Also, the bitcode module
will be searched on Pure’s library search path
as usual. You can repeat this statement as of-
ten as you want; the bitcode loader then checks
whether the module has changed (i.e., was re-
compiled since it was last loaded) and reloads it
if necessary.

On the Pure side, the callable functions look
as shown in Figure 2. (You can also ob-
tain this listing yourself by typing show -g
example::* in the Pure interpreter after load-
ing the module.) Note that despite the generic
struct_dsp_llvm pointer type, the Pure com-
piler generates code that ensures that the dsp in-
stances are fully typechecked at runtime. Thus
it is only possible to pass a dsp struct pointer
to the interface routines of the Faust module it
was created with.

The most important interface routines are
new, init and delete (used to create, initial-
ize and destroy an instance of the dsp) and
compute (used to apply the dsp to a given block
of samples). Two useful convenience functions
are added by the Pure compiler: newinit (which
combines new and init) and info, which yields
pertinent information about the dsp as a Pure
tuple containing the number of input and out-
put channels and the Faust control descriptions.
The latter are provided in a symbolic format
ready to be used in Pure; more about that in
the following section. Also note that there’s
usually no need to explicitly invoke the delete
routine in Pure programs; the Pure compiler
makes sure that this routine is added automat-
ically as a finalizer to all dsp pointers created
through the new and newinit routines so that
dsp instances are destroyed automatically when
the corresponding Pure objects are garbage-
collected.

4 Running Faust dsps in Pure

Let’s now have a look at how we can actually use
a Faust module in Pure to process some samples.
We present this in a cookbook fashion, using the
example.dsp from the previous sections as a run-
ning example. We assume here that you already
started the Pure interpreter in interactive mode
(just run the pure command in the shell to do
this), so the following input is meant to be typed
at the ‘>’ command prompt of the interpreter.

extern void buildUserInterface(struct_dsp_llvm*, struct_UIGlue*) = example::buildUserInterface;
extern void classInit(int) = example::classInit;
extern void compute(struct_dsp_llvm*, int, double**, double**) = example::compute;
extern void delete(struct_dsp_llvm*) = example::delete;
extern void destroy(struct_dsp_llvm*) = example::destroy;
extern int getNumInputs(struct_dsp_llvm*) = example::getNumInputs;
extern int getNumOutputs(struct_dsp_llvm*) = example::getNumOutputs;
extern expr* info(struct_dsp_llvm*) = example::info;
extern void init(struct_dsp_llvm*, int) = example::init;
extern void instanceInit(struct_dsp_llvm*, int) = example::instanceInit;
extern struct_dsp_llvm* new() = example::new;
extern struct_dsp_llvm* newinit(int) = example::newinit;

Figure 2: Call interfaces for the sample Faust module on the Pure side.

Step 1: Compile the Faust dsp We already
discussed this in Section 2. You can execute
the necessary command in the Pure interpreter
using a shell escape as follows:

> ! faust -double -lang llvm example.dsp -o
example.bc

Step 2: Load the Faust dsp in Pure This
was already covered in Section 3:

> using "dsp:example";

Please note that the first two steps can be
omitted if you inline the Faust program in the
Pure script, see Section 5.

Step 3: Create and initialize a dsp in-
stance After importing the Faust module you
can now create an instance of the Faust signal
processor using the newinit routine, and assign
it to a Pure variable as follows:

> let dsp = example::newinit 44100;

Note that the constant 44100 denotes the de-
sired sample rate in Hz. This can be an arbitrary
integer value, which is available in the Faust
program by means of the SR variable. It’s com-
pletely up to the dsp whether it actually uses
this value in some way (our example doesn’t,
but we need to specify a value anyway).

The dsp is now fully initialized and we can use
it to compute some samples. But before we can
do this, we’ll need to know how many channels
of audio data the dsp consumes and produces,
and which control variables it provides. This in-
formation can be extracted with the info func-
tion, and be assigned to some Pure variables as
follows:

> let k,l,ui = example::info dsp;

Step 4: Prepare input and output buffers
Pure’s Faust interface allows you to pass Pure
double matrices as sample buffers, which makes
this step quite convenient. For given numbers
k and l of input and output channels, respec-
tively, we’ll need a k × n matrix for the input
and a l × n matrix for the output, where n is
the desired block size (the number of samples to
be processed per channel in one go). Note that
the matrices have one row per input or output
channel. Here’s how we can create some suitable
input and output matrices using a Pure matrix
comprehension and the dmatrix function avail-
able in Pure’s standard library:
> let n = 10; // the block size
> let in = {i*10.0+j | i = 1..k; j = 1..n};
> let out = dmatrix (l,n);

In our example, k = 2 and l = 1, thus we
obtain the following matrices:
> in;
{11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0;
21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0}
> out;
{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}

Step 5: Apply the dsp to compute some
samples With the in and out matrices as
given above, we can now apply the dsp by in-
voking its compute routine:
> example::compute dsp n in out;

This takes the input samples specified in the
in matrix and stores the resulting output in the
out matrix. Let’s take another look at the out-
put matrix:
> out;
{9.6,10.2,10.8,11.4,12.0,12.6,13.2,13.8,14.4,15.0}

Note that the compute routine also modifies
the internal state of the dsp instance so that

a subsequent call will continue with the output
stream where the previous call left off. Thus we
can now just keep on calling compute (possibly
with different in buffers) to compute as much of
the output signal as we need.
Step 6: Inspecting and modifying control
variables Recall that our sample dsp also has
a control variable gain which lets us change the
amplification of the output signal. We’ve al-
ready assigned the corresponding information to
the ui variable, let’s have a look at it now:
> ui;
vgroup ("example",[nentry #<pointer 0xd81820>
("gain",0.3,0.0,10.0,0.01)])

In general, this data structure takes the form
of a tree which corresponds to the hierarchical
layout of the control groups and values in the
Faust program. In this case, we just have one
toplevel group containing a single gain param-
eter, which is represented as a Pure term con-
taining the relevant information about the type,
name, initial value, range and stepsize of the
control, along with a double pointer which can
be used to inspect and modify the control value.
While it’s possible to access this information
in a direct fashion, there’s also a faustui.pure
module included in the Pure distribution which
makes this easier. First we extract the mapping
of control variable names to the corresponding
double pointers as follows:
> using faustui;
> let ui = control_map $ controls ui; ui;
{"gain"=>#<pointer 0xd81820>}

The result is a Pure record value indexed
by control names, thus the pointer which be-
longs to our gain control can be obtained with
ui!"gain" (note that ‘!’ is Pure’s indexing op-
erator). There are also convenience functions to
inspect a control and change its value:
> let gain = ui!"gain";
> get_control gain;
0.3
> put_control gain 1.0;
()
> get_control gain;
1.0

Finally, let’s rerun compute to get another
block of samples from the same input data, us-
ing the new gain value:
> example::compute dsp n in out;
> out;
{32.0,34.0,36.0,38.0,40.0,42.0,44.0,46.0,48.0,
50.0}

As you can see, all these steps are rather
straightforward. Of course, in a real program
we would probably run compute in a loop which
reads some samples from an audio device or
sound file, applies the dsp, and writes back the
resulting samples to another audio device or file.
This can all be done quite easily in Pure using
the appropriate addon modules available on the
Pure website.

Also note that you could change the Faust
source at any time, by editing the example.dsp
file accordingly and returning to step 1. You
don’t even need to exit the Pure interpreter to
do this.

5 Inlining Faust code
The process sketched out in the preceding sec-
tion can be made even more convenient by inlin-
ing the Faust program in Pure. The Pure inter-
preter then handles the compilation of the Faust
program automatically, invoking the Faust com-
piler when needed. (The command used to in-
voke the Faust compiler can be customized using
the PURE_FAUST environment variable. The de-
fault is faust -double; the -lang llvm option
is always added automatically.)

To add inline Faust code to a Pure program,
the foreign source code is enclosed in Pure’s in-
line code brackets, %< ... %>. You also need to
add a ‘dsp’ tag identifying the contents as Faust
source, along with the name of the Faust module
(which, as we’ve seen, becomes the namespace
into which the Pure compiler places the Faust
interface routines). The inline code section for
our previous example would thus look as follows:
%< -*- dsp:example -*-
gain = nentry("gain", 0.3, 0, 10, 0.01);
process = + : *(gain);
%>

You can insert these lines into a Pure script,
or just type them directly at the prompt of the
Pure interpreter. If you later want to change
the Faust source of the module, it is sufficient
to just enter the inline code section again with
the appropriate edits.

6 Example
As a more substantial but still self-contained ex-
ample, Figures 3 and 4 show the source code of
a complete stereo amplifier stage with bass, tre-
ble, gain and balance controls and a dB meter.
The dsp part is implemented as inlined Faust
code, as discussed in the previous section. The
Pure part implements a Pd “tilde” object named

amp~. This requires the pd-pure plugin loader
(available as an addon module from the Pure
website) which equips Pd with the capability to
run external objects written in Pure. A sample
patch showing this object in action can be seen
in Figure 5.

A complete discussion of this example is be-
yond the scope of this paper, but note that the
amp_dsp function of the program is the main
entry point exposed to Pd which does all the
necessary interfacing to Pd. Besides the audio
processing, this also includes setting the control
parameters of the Faust dsp in response to in-
coming control messages, and the generation of
output control messages to send the dB meter
values (also computed in the Faust dsp) to Pd.

By using the interactive live editing facilities
provided by pd-pure, we could now start adding
more sophisticated control processing or even
change the Faust program on the fly, while the
Pd patch keeps running. We refer the reader to
the pd-pure documentation for details [3].

7 Conclusion

The facilities described in this paper are fully
implemented in the latest versions of the Pure
and Faust compilers. We also mention in pass-
ing that Pure doesn’t only support dynamic ex-
ecution of mixed Pure and Faust code in its
interactive interpreter environment, but Pure
scripts containing Faust code can also be batch-
compiled to native executables. This eliminates
the JIT compilation phase and thus makes pro-
grams start up faster.

The present interface is still fairly low-level.
Except for the automatic support for handling
Faust control variables, the call interfaces to the
Faust routines follows the code generated by
Faust very closely. In the future, we might add
more convenience functions at the Pure level
which make the operation of Faust dsps easier
for the Pure programmer.

Another interesting avenue for further re-
search is to employ Pure as an interactive fron-
tend to Faust. This is now possible (and in fact
quite easy), since Pure allows Faust source to be
created under program control and then com-
piled on the fly using Pure’s built-in eval func-
tion. Taking this idea further, one might embed
Faust as a domain-specific sublanguage in Pure.
This would provide an alternative to other in-
teractive signal processing environments based
on Lisp dialects such as Snd-Rt [6].

Acknowledgements
Many thanks to Stéphane Letz for his work
on the Faust LLVM interface which made this
project possible in the first place. Special thanks
are also due to Yann Orlarey for inviting me to
Grame to work on improving our arsenal of func-
tional signal processing tools.

References
[1] clang: a C language family frontend for

LLVM. http://clang.llvm.org, 2011.

[2] A. Gräf. Signal processing in the Pure pro-
gramming language. In Proceedings of the
7th International Linux Audio Conference,
Parma, 2009. Casa della Musica.

[3] A. Gräf. pd-pure: Pd loader for Pure scripts.
http://docs.pure-lang.googlecode.com/
hg/pd-pure.html, 2011.

[4] C. Lattner et al. The LLVM compiler infra-
structure. http://llvm.org, 2011.

[5] S. Letz. LLVM backend for Faust. http:
//www.grame.fr/~letz/faust_llvm.html,
2011.

[6] K. Matheussen. Realtime music program-
ming using Snd-Rt. In Proceedings of the In-
ternational Conference on Computer Music,
Belfast, 2008. Queen’s University.

[7] Y. Orlarey, D. Fober, and S. Letz. Syntac-
tical and semantical aspects of Faust. Soft
Computing, 8(9):623–632, 2004.

[8] D. A. Terei and M. M. Chakravarty. An
LLVM backend for GHC. In Proceedings of
the third ACM SIGPLAN Haskell Sympo-
sium, Haskell ’10, pages 109–120, New York,
NY, USA, 2010. ACM.

[9] UnladenSwallow: a faster implementa-
tion of Python. http://unladen-swallow.
googlecode.com, 2011.

%< -*- dsp:amp -*-
import("math.lib");
import("music.lib");

// bass and treble frequencies
bass_freq = 300;
treble_freq = 1200;
// bass and treble gain controls in dB
bass_gain = nentry("bass", 0, -20, 20, 0.1);
treble_gain = nentry("treble", 0, -20, 20, 0.1);
// gain and balance controls
gain = db2linear(nentry("gain", 0, -96, 96, 0.1));
bal = hslider("balance", 0, -1, 1, 0.001);
// stereo balance
balance = *(1-max(0,bal)), *(1-max(0,0-bal));

// generic biquad filter
filter(b0,b1,b2,a0,a1,a2) = f : (+ ~ g)
with { f(x) = (b0/a0)*x+(b1/a0)*x’+(b2/a0)*x’’;

g(y) = 0-(a1/a0)*y-(a2/a0)*y’; };

/* Low and high shelf filters, straight from Robert Bristow-Johnson’s "Audio
EQ Cookbook". */

low_shelf(f0,g) = filter(b0,b1,b2,a0,a1,a2)
with { S = 1; A = pow(10,g/40); w0 = 2*PI*f0/SR;

alpha = sin(w0)/2 * sqrt((A + 1/A)*(1/S - 1) + 2);
b0 = A*((A+1) - (A-1)*cos(w0) + 2*sqrt(A)*alpha);
b1 = 2*A*((A-1) - (A+1)*cos(w0));
b2 = A*((A+1) - (A-1)*cos(w0) - 2*sqrt(A)*alpha);
a0 = (A+1) + (A-1)*cos(w0) + 2*sqrt(A)*alpha;
a1 = -2*((A-1) + (A+1)*cos(w0));
a2 = (A+1) + (A-1)*cos(w0) - 2*sqrt(A)*alpha; };

high_shelf(f0,g) = filter(b0,b1,b2,a0,a1,a2)
with { S = 1; A = pow(10,g/40); w0 = 2*PI*f0/SR;

alpha = sin(w0)/2 * sqrt((A + 1/A)*(1/S - 1) + 2);
b0 = A*((A+1) + (A-1)*cos(w0) + 2*sqrt(A)*alpha);
b1 = -2*A*((A-1) + (A+1)*cos(w0));
b2 = A*((A+1) + (A-1)*cos(w0) - 2*sqrt(A)*alpha);
a0 = (A+1) - (A-1)*cos(w0) + 2*sqrt(A)*alpha;
a1 = 2*((A-1) - (A+1)*cos(w0));
a2 = (A+1) - (A-1)*cos(w0) - 2*sqrt(A)*alpha; };

// the tone control
tone = low_shelf(bass_freq,bass_gain)

: high_shelf(treble_freq,treble_gain);

// envelop follower (1 pole LP with configurable attack/release time)
t = 0.1; // attack/release time in seconds
g = exp(-1/(SR*t)); // corresponding gain factor
env = abs : *(1-g) : + ~ *(g) : linear2db;

// dB meters for left and right channel (passive controls)
left_meter(x) = attach(x, env(x) : hbargraph("left", -96, 10));
right_meter(x) = attach(x, env(x) : hbargraph("right", -96, 10));

// the main program of the Faust dsp
process = (tone, tone) : (_*gain, _*gain) : balance

: (left_meter, right_meter);
%>

Figure 3: Amplifier plugin, Faust part.

// These are provided by the Pd runtime.
extern float sys_getsr(), int sys_getblksize();
// Provide some reasonable default values in case the above are missing.
sys_getsr = 48000; sys_getblksize = 64;

// Get Pd’s default sample rate and block size.
const SR = int sys_getsr;
const n = sys_getblksize;

using faustui, system;

amp_dsp = k,l,amp with
// The dsp loop. This also outputs the left and right dbmeter values for
// each processed block of samples on the control outlet, using messages of
// the form left <value> and right <value>, respectively.
amp in::matrix = amp::compute dsp n in out $$
out,[left (get_control left_meter),right (get_control right_meter)];

// Respond to control messages of the form <control> <value>. <control> may
// be any of the input controls supported by the Faust program (bass,
// treble, gain, etc.).
amp (c@_ x::double) = put_control (ui!str c) x $$ x;

end when
// Initialize the dsp.
dsp = amp::newinit SR;
// Get the number of inputs and outputs and the control variables.
k,l,ui = amp::info dsp;
ui = control_map $ controls ui;
{left_meter,right_meter} = ui!!["left","right"];
// Create a buffer large enough to hold the output from the dsp.
out = dmatrix (l,n);

end;

Figure 4: Amplifier plugin, Pure part.

Figure 5: Amplifier plugin, Pd patch.

