PulseAudio on Mac OS X

Daniel Mack
zonque@gmail.com

Abstract

PulseAudio is becoming the standard audio envi-
ronment on many Linux dektops nowadays. As it
offers network transparency as well as other inter-
esting features OS X won’t offer its users natively,
it’s time to have a closer look on possibilities on how
to port this piece of software over to yet another
platform.

In the recent months, I put some effort into at-
tempts to port PulseAudio to Mac OS X, aiming
for cross-platform interoperability between hetero-
gen audio host networks and enabling other features
PulseAudio offers such as uPnP/AV streaming.

This paper will first give a short overview about
how CoreAudio, the native audio system on Mac OS
X, is structured, the various ways that can be used
to plug into this system, and then focus on the steps
it takes to port PulseAudio to Mac OS X.

Keywords

PulseAudio, Mac OS X, network audio, virtual audio
driver, portability

1 CoreAudio essentials
1.1 IOAudio Kernel extensions

e The Darwin kernel is in charge of handling
hardware drivers, abstracted via the IOKit
API framework.

e The kernel’s representation of an audio de-
vice is an object derived from the IOAu-
dioDevice base class, which holds a refer-
ence of an IOAudioEngine (or a derived
type thereof).

e The kernel’s way of adding audio streams
to a device is attaching objects of type
IOAudioStream to an IOAudioEngine.

e The kernel’s API is only one way to provide
an audio device to the system; the other is
a plugin for the HAL (see above).

e Sample material is organized in ring buffers
which are usually shared with the hard-
ware.

e IOAudioEngines are required to report
their sample rate by delivering exact times-
tamps whenever their internal ring buffer
rolls over. The more precise, the better,
as its userspace counterpart (the HAL, see
below) can do better estimation of the de-
vice’s speed and approximate closer to the
actual hardware sample pointer positions,
resulting in smaller latencies.

1.2 HAL

The HAL is part of the CoreAudio framework
and is automatically instanciated within the
process image of each CoreAudio client appli-
cation. During its startup, it scans for plugins
in /Library/Audio/Plugins/HAL and this way
offers the possibility of loading userspace imple-
mentations of audio drivers. The HAL is also
in charge of interfacing to the I0Audio based
kernel drivers and hence acts as their bridge to
userspace clients.

1.3 AudioHardwarePlugins for HAL

Automatically loaded by the HAL code upon
creation of an audio client, AudioHardwarePlu-
gins are instanciated via the standard CFBundle
load mechanisms. An interface must be im-
plemented to provide the hooks needed by the
HAL, and a full-fledged infrastructure of APIs
for adding audio devices, streams and controls
are available. Unlike kernel drivers, virtual
drivers implemented as HAL plugin are working
on a per-client base, so their implementations
must care for mixing and inter-client operabil-
ity themselves.

1.4 System Sound Server

This daemon is in charge for handling system-
internal sound requests such as interface and
alert sounds.

1.5 coreaudiod

coreaudiod is a system-wide daemon that
gives home to the System Sound Server and

provides the AudioHardwareServices API for
querying parameters of available audio drivers.
The daemon also handles the default sound in-
terface configuration on a per-user leve][H

1.6 AudioUnits

AudioUnits are Mac OS X typical CFBundles
which can be installed user-wide or system-wide
to fixed locations in the file system and which
can be accessed by arbitrary applications with
an standarized API for audio processing. They
can also offer a graphical representation for pa-
rameter control and visualization. The two sup-
ported types of AudioUnit plugins are effect
processors and virtual instruments.

2 Possible audio hooks

The purpose of this project is to be able to hook
into the transport channels of all audio applica-
tions - including system sounds, if desired - and
re-route audio through an either local or remote
PulseAudio server connection.

Mac OS X officially offers a number of ways
to access the audio material:

e A virtual sound card interface implemented
as kernel driver which can either be con-
figured as standard sound interface for all
appliactions and/or system sounds. Appli-
cations may let the user decide which sound
card to use for input and output sound
rendering, but for those which don’t (like
iTunes, QuicktimePlayer, iChat, ...), set-
ting the system-wide default is the only op-
tion.

e A virtual sound card interface implemented
as AudioHardwarePlugin for the HAL. The
same rules as for the kernel versions apply:
if an application doesn’t allow its user to
choose the device for audio output, the sys-
tem falls back to the configured default.

e An AudioUnit which is loaded by more ad-
vanced applications such as Logic. For ap-
plication which don’t use this plugin inter-
face, this is no option.

Another possible way of interaction is unof-
ficial, somewhat hackish and based on the idea
of library pre-loading for selected applications.
Binaries are relaunched with their CoreAudio li-
braries temporarily replaced by versions which

"http://lists.apple.com/archives/coreaudio-
api/2007 /Nov/msg00068.html

re-route audio differentely. An example of this
approach is the closed-source shareware utility
AudioHi jackﬂ More research is needed in or-
der to find out whether this approach is also
feasable for PulseAudio sound re-routing. At
the time of writing, this option is not being in-
vestigated on.

3 PulseAudio on OS X

In order to bring PulseAudio to Mac OS X,
some tweaks are needed to the core system,
and some parts have to be re-developed from
scratch.

3.1 pulseaudiod

Porting the daemon is of course the main part
of the work as it is the heart of the whole sys-
tem other pieces connect to. Since a couple of
versions, pulseaudiod, along with a selection of
its essential modules, builds fine on OS X. Some
adoptions were neccessary to make this happen.

e poll() is broken since Mac OS X 10.3, dis-
respecting the timeout argument and re-
turning immediately if no file descriptor
has any pending event. This was circum-
vented by using the select() syscall, just like
PulseAudio does for Windows.

e recv() with MSG_PEEK does in fact eat up
data from the given file descriptor. The
workaround was to use a different ioctl ()
for this purpose.

e OS X lacks a proper implementation of
POSIX locks but implements its own thing
as defined in Multiprocessing.h. A ver-
sion which uses them internally for the
PulseAudio daemon was needed.

e clock functions work differently than on
Linux, so a specialized version for the clock
wrapper functions in PulseAudio was also
neccessary.

e Mac OS X offers a powerful API to give
userland tasks high priority. This is es-
sential for real-time applications just like
PulseAudio, so an implementation using
this API was added to the daemon.

e Some library PulseAudio uses are not suit-
able for OS X. Work on the build system
was done to build some parts of the suite
conditionally.

2http://rogueamoeba. com/audiohijackpro/

http://rogueamoeba.com/audiohijackpro/

3.2 CoreAudio device detection module

In order to make use of audio input and
output devices CoreAudio knows about, a
new pulseaudiod module was written which
uses the CoreAudio specific callback mecha-
nisms to detect hotplugged devices. For each
detected device, a new module instance of
module-coreaudio-device is loaded, and un-
loaded on device removal, accordingly.

This module is part of the offcial PulseAu-
dio sources since some months and is called
module-coreaudio-detect.

3.3 CoreAudio source/sink module

Loaded and unloaded by the house-keeping
module module-coreaudio-detect, this mod-
ule accesses the actual CoreAudio device,
queries its properties and acts as translation
layer between CoreAudio and PulseAudio. An
important implementation detail is that code in
this module has to cope with the fact that audio
is exchanged between different threads.

This module is part of the offcial PulseAu-
dio sources since many months and is called
module-coreaudio—-device.

3.4 Bonjour/ZeroConf service
discovery module

Porting the dependency chain for Avahi (dbus,
...) wasn’t an easy and straight-forward task to
do, and given the fact that Mac OS X features a
convenient API for the same task, a new module
for mDNS service notification was written. The
code for this module purely uses Apple’s own
API for announcing services to members of a
local network.

This module is also part of the official
PulseAudio source tree since a while and is
called module-bonjour-publish.

3.5 Framework

On Mac OS X, libraries, headers and as-
sociated resources are bundled in frame-
work bundles. As PulseAudio libraries and
the libraries they are linked against are
shared amongst several components for this
project, they are all put in one single location
(/Library/Frameworks/pulse.framework).

This path was passed to the configure script
as --prefix= directive when PulseAudio
was built. A script (fixupFramework.sh)
is in charge to resolve libraries dependencies
which are not part of a standard Mac OS X
installation. All libraries that are found to be

dependencies for others are copied to the frame-
work bundle and the tool install_name_tool
which ships with XCode is called to remap the
path locations recursively.

3.6 PulseConsole

PulseConsole is a Cocoa based GUI applica-
tion written in Objective-C that aims to be a
comfortable configuration tool for PulseAudio
servers, both local and remote instances. It of-
fers a way to inspect and possibly modify details
and parameters and a nice GUI for per-stream
mixer controls and routing settings.

The plan is to make this tool as convenient
as possible, also with GUIs for mixer controls,
detailed server inspection and all the like. This
will need some time to finish, but is actively
developed already.

3.7 AudioHardwarePlugin for HAL

CoreAudio allows to add software plugins to
register virtual sound interfaces. Such a plugin
was developed for PulseAudio, with the follow-
ing key features.

e Allows audio routing to both the local and
any remote server instances.

e Multiple plugin instances communicate
with each other over a distributed notifi-
cation center. This is essential for sharing
stream volume information.

e Each plugin instance announces itself to a
system-wide message bus and can receive
setup controls. This way, an existing con-
nection to a sound server can be changed
to some other server instance.

e The plugin is capable of creating multiple
virtual sound interfaces. This can be help-
ful to cope with more than the standard
stereo channel mapping. The configura-
tion of which interfaces are created is con-
trolled by the Preference Pane implemen-
tation (see below).

3.8 PulseAudio AudioUnits

For a more fine-grained way of routing specific
audio pathes through the PulseAudio daemon,
AudioUnit plugins were developed. They con-
nect to the local audio daemon and act as sound
source and sound sink, respectively. All audio
hosts that are capable of dealing with this type
of plugin interface (ie, Apple Logic) can use
this way of connecting specific sound pathes to
PulseAudio.

3.9 Virtual audio driver (kext)

Another way of adding an audio device driver to
a system is hooking up a kernel driver for a vir-
tual device and communicating with this driver
from user space to access the audio material.
This is what the virtual audio driver does.

This part of the project mostly ex-
ists for historical reasons, before the
AudioHardwarePlugin approach was fol-
lowed, which turned out to be much more
interesting and feasible for the purpose. The
code is still left in the source tree for reference
and as proof-of-concept which might act as
reference in the future.

Some of its key features include:

e support for any number of interfaces, fea-
turing a configurable number of input and
output channels each.

e userspace interface to control creation and
deletion of interfaces.

e usage of shared memory between userspace
and kernel space, organized as ring buffer.

e infrastructure to register a stream to
userspace for each client that is connected
to the interface. The framework for this
code exists, but all attempts to actually
make it work failed so far.

The concept of the driver model is to have
one abstract IOService object (instance of
PADriver) which is the root node for all other
objects. Upon creation (at load time of the
driver), the PADriver will be announced to the
userspace.

A IOUserClient class named PADriverUser-
Client can be instanciated by user space, and
commands can be issued to create new and
delete instances of PADevices. A PADevice is
derived from IOAudioDevice and acts as a vir-
tual audio device. To export audio functions, it
has to have an PAEngine (derived from IOAu-
dioEngine).

Depending on the type of audio engine (one
for the mixed audio stream or one for each indi-
vidual user client), the PAEngine can have one
or many references to PAVirtualDevices, respec-
tively.

Once a PAVirtualDevice is created, it is an-
nounced to the userspace, just like a PADriver.
A userclient will create an object of type PAVir-
tualDeviceUserClient which can be used to issue
commands specific to a PAVirtualDevice.

More information can be found in the repos-
itory at github.com.

3.10 virtual audio driver adapter
module

Acting as counterpart of the virtual audio driver
kernel module, a special purpose module for
pulseaudiod takes notice of added and re-
moved virtual sound card instances, maps the
shared memory offered by the kernel and creates
stream instances inside the PulseAudio daemon.
The name for these streams are taken from the
kernel space interface. As the kernel extension
is not currently used anymore, this part of the
source tree is also considered legacy.

3.11 Preference pane

The PulseAudio preference pane hooks itself
into the standard Mac OS X system preferences
and offers the following features:

e control the startup behaviour of the
PulseAudio daemon

e configure authentication settings for net-
work connections

e GUI for adding and deleting virtual sound
interfaces

3.12 Component locations

Mac OS X organizes its file system contents in
a quite different way than Linux installations.
As described above, a framework is built in or-
der to share the PulseAudio libraries amongst
the various components. Components linking
to the PulseAudio libraries have their linker set-
tings configured to this path. Hence, the dae-
mon and command line utilitily binaries as well
as the loadable modules are found at the frame-
work location as well, and if you want to ac-
cess the PulseAudio command line tools (pacmd,
paplay, ...) in the shell, the $PATH environment
variable needs tweaking.

Apart from that, the other components are
expected to be installed into specific locations
so they can be found by the system. There will
be documentation in the source tree to describe
the exacte pathes.

3.13 Installer and packaging

A PackageMaker receipt has been created to
generate installer packages that can be pro-
cessed by the standard Mac OS X package in-
staller, giving the user the general look and feel

https://github.com/zonque/PulseAudioOSX/tree/master/kext
https://github.com/zonque/PulseAudioOSX/tree/master/kext

and procedure as most OS X add-ons. Depend-
ing on Apple’s policy for such tool suites, at-
tempts might be made to publish the package
via Apple’s application store.

3.14 License and source code

All parts of this suite are licensed under the
GNU General Public License in version 2
(GPLv2).

The source code is accessible in the public
git repository found at https://github.com/
zonque/PulseAudio0SX

4 Possible scenarios

Once the whole suite is developed as described
and stable to a acceptable level, interesting au-
dio routing scenarios are imaginable.

e Sound played back by iTunes can be
routed through the virtual PulseAudio
sound interface and from there be sent to
an uPnP/AV audio sink.

e Sound played back by iDVD can be routed
through the virtual PulseAudio sound in-
terface and then be sent to an Airport Ex-
press using PulseAudio’s ROAP module.
Mac OS X can not natively do that.

e A LADSPA proxy plugin could be developed
to communicate with PulseAudio directly
on Linux hosts. The stream for this plugin
could be re-routed to a network host run-
ning PulseAudio on Mac OS X, and there
be used as virtual input stream in Logic,
hence allowing virtual instruments and ef-
fect plugins on Mac OS X to be used in
LADSPA environments.

e Without any network interaction, sim-
ply routing all audio through the virtual
PulseAudio sound interface allows users
to control volumes of all connected audio
clients individually (eg, silence annoying
flash player in your browser, leveling au-
dio applications that don’t offer a way to
do this natively, etc).

e Soundcards that are not supported by
ALSA driver can be accessed from Linux
over the network, using a Mac OS X audio
host.

5 Challenges and TODOs

This project is considered work in progress and
is not yet finished. There are many details
that need to be refined in order to make this

toolchain fully usable. In particular, the follow-
ing topics need to be addressed.

e Get the latency down. There are currently
problems with untight scheduling in the
PulseAudio client implementation, and too
big buffer sizes.

o Considerations for multi-architecture li-
braries and binaries. XCode is not the
problem in this regard, but the auto-
conf/automake build system is.

e The clocking model is subject to reconsid-
eration. While things are comparitively
easy in scenarios dealing with real hard-
ware soundcards, it becomes more obfus-
cated in this virtual case as the PulseAudio
daemon is the driving part for all clocks.
That means that if audio is actually routed
into a null-sink on the PulseAudio side, the
virtual sound card will play at high speed,
which might cause problems with audio ap-
plications that assume real-time playing.

e Cosmetic work on the GUI tools to give
them the look of a nice tool users want to
accept as part of their system. Currently,
they look like debug tools for developers.

e Testing. Of course. The whole project is
rather fresh, so it hasn’t seen a lot of testers
yet.

6 Trademarks

Magc, and Mac OS, Mac OS X, iTunes, iDVD,
Logic, Airport and Cocoa are trademarks of Ap-
ple Inc., registered in the U.S. and other coun-
tries.

7 Acknowledgements

My thanks go to the world-wide Linux audio
community for providing ALSA and PulseAudio
as sophisticated audio layers on Linux, making
this project possible at all.

https://github.com/zonque/PulseAudioOSX
https://github.com/zonque/PulseAudioOSX

	CoreAudio essentials
	IOAudio Kernel extensions
	HAL
	AudioHardwarePlugins for HAL
	System Sound Server
	coreaudiod
	AudioUnits

	Possible audio hooks
	PulseAudio on OS X
	pulseaudiod
	CoreAudio device detection module
	CoreAudio source/sink module
	Bonjour/ZeroConf service discovery module
	Framework
	PulseConsole
	AudioHardwarePlugin for HAL
	PulseAudio AudioUnits
	Virtual audio driver (kext)
	virtual audio driver adapter module
	Preference pane
	Component locations
	Installer and packaging
	License and source code

	Possible scenarios
	Challenges and TODOs
	Trademarks
	Acknowledgements

