Composing a piece for piano and electronics on Linux

Lorenzo Franco Sutton

Rome, Italy
Isutton @libero.it

Abstr act

In this paper the author reports his experience
about a rather complex music-creation scenario
using Linux: successful composition of a piece for
piano and electronics using Free/Libre and Open
Source Software. The whole workflow, from
composition to recording and final production of a
high-quality printed score, is presented describing
the chosen tools, adopted strategies, issues and the
overall experience.

Keywords

electronic music, music composition, piano,
FLOSS, Linux

1 Introduction

In 2003 Daniel James concluded an overview on
Linux audio software in Sound On Sound
magazine stating that those were probably still
“early days for Linux desktop audio applications”,
nonetheless he was also optimistic about the future
of Free/Libre and Open Source Software (FLOSS)
in the music and audio domains [1]. His prediction
seems to have proven true: today Linux appears
mature enough for supporting music creation and
production and is now widely utilised by a wide
spectrum of users ranging from home musicians to
professional music studios.

In the field of electronic art music it seems that
on the one hand many academic institutions
dealing with computer music — such as research
centres, universities and conservatories — are fully
encouraging the use of Linux and Open Source.
On the other hand it appears that, from the author's
experience, the majority of Italian conservatoire
teachers and students are still using other operating
systems and closed-source software, especially in
the composition domain. In 2009 the author started
working on a piece for piano and electronics' for a

1 As opposite to 'live electronics' this is still often
referred as the 'tape’ mostly for historical reasons,

conservatoire assignment in electronic music
composition. He initially started working on
Windows but was soon determined to undertake a
challenge and decided to exclusively use Linux for
the entire composition and creation workflow,
even though he was the only Linux user in his
class. The objective was successfully achieved by
dividing the whole workflow into sub-tasks using
specific software for specific jobs, addressing
arising issues in a precise and focused manner. The
described approach is quite common in the FLOSS
world and related to the Unix philosophy of having
“each program do one thing well” [2], as opposite
to the 'one big software does it all' concept
sometimes seen in the multimedia domain.

2 Background: the piece

Open Cluster [3] is a piece for live piano and
electronics composed in 2009 and partly revised in
2010. It started in 2009 as an assignment under the
guidance of Alessandro Cipriani of the
Conservatoire of Frosinone and was further
developed in 2010 by the author.

In astronomy an open cluster is a group of stars
loosely bound to each other by gravitational
attraction [4]. In music a cluster is a chord which
has three or more consecutive notes. The initial
idea for the piece was to freely explore 9-note
series, called “constellations”, on the piano. These
series, often presented in clusters, are the main
components and formal construction pieces of the
piano part. The piece is conceived for a live player
interacting with a fixed electronic part, the latter
being created by using exclusively sounds from the
piano part. The author's idea was to enable a
performer to engage in an interplay between the
part he/she plays and the electronics, with the
performer always being encouraged to “play” (in
the broadest meaning of the word).

meaning that the electronic part is fixed and played back
aong with the live performance.



3  Workflow for the composition

In the creation workflow for Open Cluster the four
main tasks were: 1. Composition and scoring of
the piano part. 2. Production of a good quality
MIDI performance of the piano part for creation of
the electronic part,” rendered to audio. 3. Audio
recording of the whole composition (piano and
electronics). 4. A final, complete score with both
the piano and electronics ready for high quality
printing.

In the following details on how each step was
tackled are described. Figure 1 shows a diagram of
the general workflow, and the main software
interactions within it.

Piano composition
and score

\

LlnuxSampIer Lilypond

some manua
adaptat:on
Electronics

[Pure Data]/‘_j Ardour ] ~~~~~~ > [ Inkscape
£ ATk ™

JACK i(tor i s(enmg)'

&0 é

Final audio Final score

Figure 1 General workflow diagram with the
main software interactions

4  Composition and scoring of the piano part

The author chose Rosegarden MIDI sequencer
[5] as a composition tool eventually using
LinuxSampler [6] and the "Maestro Concert Grand'
sample library for the sampled piano library [7].
Rosegarden was chosen because of its rich
notation-editing ~ features, @ MIDI  sequencer
capabilities and the ability to export to Lilypond —
a high-quality music engraving system [8]. In fact
in this situation the author felt the need to have a
tool that could on the one hand offer effective
notation writing — through the QWERTY keyboard

2 |dedlly a live performance and recording, but this
was not possible due to practical constraints.

— and on the other hand capable of playing the
results, as well as providing rich MIDI editing
features. Rosegarden does offer the possibility to
use many soft-synths internally and the
Fluydsynth DSSI was initially used for early
experimenting with  SoundFonts. Eventually
LinuxSampler was used together with QSampler
as a graphical front-end: in this way a high quality
piano sample library, chosen as the preferred
'virtual instrument',> could be used since the
beginning. Rosegarden easily connects to
LinuxSampler through JACK [9].* JACK is a very
efficient software for handling audio and MIDI
connections among different music software,
essentially allowing one to interconnect them and
communicate with one another. Additionally it
offers a transport mechanism to synchronise
playback operations.’

Because Rosegarden doesn't natively support
two-staff piano scoring [10] the chosen approach
was to use two separate tracks for left and right
hand, and then undertake full piano notation
directly in Lilypond once the composition process
was completed. To ease synchronisation with the
electronic part, the piece is written in 4/4 with a
metronomic tempo of 240 BPM for the crotchet,
which results in one measure per second. The
piano 'constellations' had been chosen in advance
by the author and the whole composition process
took place in Rosegarden. The setup was very
adequate and comfortable.

5 Creation of the electronic part

Once the piano part was finalised a full
performance was recorded in Ardour, which had
been chosen as the main environment to create the
electronic part. Ardour is a full-featured Digital
Audio Workstation allowing for professional grade
multi-track audio editing [11]. Recording into
Ardour was easily achieved by directly connecting
QSampler's audio outputs to a stereo audio track in
Ardour, again through JACK. As explained earlier,
the author wanted to use exclusively sounds from
the piano performance for the electronic part so

3 In fact the author is not a fully trained pianist and
didn't have the opportunity to work with a performer.

4 Controlled viaQjackCtl:
http://gjackctl.sourceforge.net/

5 For a more precise and technical in-depth
description refer to the JACK homepage in the
references.


http://qjackctl.sourceforge.net/

many of Ardour's editing features were put to work
to layer, cut, collage, etc. pieces of the piano part
and processes them with the many effects Ardour
offers.® Pure Data, a “real-time graphical
programming environment for audio, video, and
graphical processing” [12], was extensively used
for manipulation of the sound both by connecting
the software directly through JACK and working
with it separately. For example a patch for Pure
Data developed by the author [13], which enables
minimalistic granulation of audio files, was used
for creating material of the electronic part.

The advantage of using JACK to seamlessly
connect all the various applications is evident: all
audio and MIDI could easily be routed from one
software to the other in a very flexible and
efficient manner.

6 Audio Rendering of the complete piece

Once the electronic part was concluded, both the
piano recording and the electronics were saved to a
separate Ardour session, so as to have a kind of
master session, and simply exported to a final
wave file. This was the final recording of the
complete piece.

7  Creation of the full score

The full score for Open Cluster consists of a
piano part and an 'expressionistic' representation of
the electronic part. The author decided to use this
representation because on the one hand the piano
performance should be precise enough to match
specific events in the electronic part, on the other
hand some degree of liberty is foreseen, especially
in moments were the piano part is prominent or
where the electronics constitute more of a
background.

Because of the mixed nature of the score,
comprising both traditional music notation and
graphics, the author decided to use specialised
tools for each of the tasks: Lilypond for the music
notation, Inkscape for the graphics. The jEdit text
editor [14] with the LilyPondTool plugin [15] was
used for editing of the LilyPond source file. The
left and right hand parts were kept in two separate
files for easier editing and future adaptation.

6 Ardour natively supports the Linux Audio
Developer's Simple Plugin APl (LADSPA) effects,
which are a de facto standard in Linux as well as other
plugin formats such as LV 2. See www.ladspa.org

Because the electronics representation was to be
stacked vertically below the piano staff, enough
space below each staff had to be ensured. No
straightforward way of achieving this was found
so, after digging into the excellent Lilypond
documentation, the author came up with the
solution of adding a dummy staff to the overall
score: this is an additional staff added three times,
with all notes hidden through the \hideNotes
directive and all staff symbols, such as Clef.
TimeSignature. etc., set to be transparent through a
series of override commands. The general structure
of the Lilypond \ score section is the following:

\score

{

<<
\new StaffGroup
<<
% Right Hand
\newStaff {\include "rightHand.ly"}
% Left Hand
\newStaff {\include"leftHand.ly"}
>>

o)

% dummy space below the piano part
\new Staff
{

[)

% includes the file 3 times

}
>>

LilyPond is able to generate scores in SVG
format [16].” These in turn can be opened by
Inkscape. Two issues arose when opening the
generated SVG file in Inkscape. Firstly a known
bug in Inkscape 0.46 (which was being used at the
time) caused some elements not to show up
properly [17]: the issue was solved by
systematically correcting the SVG source as
suggested by the Lilypond documentation.
Secondly, at the time of score creation Lilypond
was exporting to multipage SVG,* which Inkscape
doesn't support [18]; this was resolved by
following a suggestion from the Lilypond mailing
list [19]: the pages were manually split to multiple
files by editing the SVG XML source and
eventually a unique page created by importing the
separate files in Inkscape and having them all on
the same drawing area. Clearly this is not a very

7 The current Lilypond SVG back-end underwent a
series of changes since the version used for this work.

8 This behaviour seems to differ in different versions:
in fact some versions create afile per page.


http://www.ladspa.org/

straight-forward procedure, but the recent
enhancements to the Lilypond SVG backend and
possible changes to the Inkscape multi-page issue
status may improve the situation.

During creation of the graphics for the electronic
part, the final Ardour session was kept open in the
background and controlled via QjackCtl through
the Jack Transport mechanism. This allowed to
control Ardour's playback and quickly move
through measures, replay sections etc. In fact the
author was drawing the part while listening to it
and precisely synchronising some of the graphical
elements with the piano part.

Q@@ Da® 9&# BT
v (@) w(ms @ wE

P g
4 S
: = .

Figure 2. A screenshot with the score in
Inkscape. At the top QjackCtl and in the
background Ardour playing

As a usability note the ability in the GNOME
desktop environment to put any window “Always
On Top” was very useful, as QjackCtl (which
consumes small screen estate) was always visible
and used as playback interface while working in
Inkscape.

Once the complete score was ready each page
was exported to a single PNG file at 600 DPI (A3
paper size). Combining these into a single PDF file
was easily achieved with the ImageMagick
graphics manipulation suite using the convert
command. The PDF was then taken to a print shop
for final printing.

‘[“93.‘7,7-* f&«—E%iﬂ!ﬂwM—&—r{—!. S A SIS I
- e PEE PR
TETTE——

ok
==
S

= — E— - o § o .m.

Ff‘;ﬁi;}/y = é‘smmﬂm’ 51 e l”“’ ' r' gt .

L ; | ; = = | : | -
Tir——% | i

0000 O 00 0

e s

Figure 3. A page from the final score. The black
'rectangles' are clusters

8 Conclusions

The successful accomplishment of a complex
music creation task using Linux and Free/Libre
and Open Source Software tools was presented.
Clearly, this is only one possible path the author
chose as particularly suited to his needs. The
presented workflow shows that a modular
approach, using specific software for the specific
jobs versus the 'one software does it all' paradigm,
proves to be an effective strategy enabling one to
concentrate on each task and tackle possible issues
separately. Linux as an operating system and the
Free/Libre and Open Source Software presented
show to be mature enough to support such kind of
tasks. Some issues arose especially in the graphics-
related activities for score creation, but it's fair to
say that this isn't a particularly standard task in
music creation: additionally the issues were
overcome thanks to good documentation and
community support (e.g. one of the software's
mailing lists). The presented scenario is rather
complex and certainly non-standard compared to
other music production and composition ones, and
will hopefully be of inspiration and use for anyone
working in similar fields, such as electronic music
or non-standard score production, who is
considering Linux as an operating system for their
creative needs.

9 Acknowledgements

The author would like to acknowledge M.
Alessandro Cipriani for support and helpful advice
during the composition of the piece. He would also
like to thank the Linux Audio Users and



Developers community for continuous support and
inspiration as well as the developers of all the great
software mentioned in this paper. A special thanks
goes to the GnuFunk members for their support.

References

[1] Daniel James. 2003. Open Source Music
Software & The AGNULA Project. In Sound On
Sound.
www.soundonsound.com/sos/feb03/articles/linux
audio.asp

[2] The Bell System Technical Journal. Bell
Laboratories. M. D. Mcllroy, E. N. Pinson, and
B. A. Tague. “Unix Time-Sharing System
Forward”. 1978. 57 (6, part 2). p. 1902. cited in
Eric S. Raymond. 2003. The Art of Unix
Programming, chapter 1 section 6
www.fags.org/docs/artu/ch01s06.html

[3] Lorenzo F. Sutton. 2009-2010. Open Cluster -
For piano and electronics. Score and audio
available at:

http://lorenzosu.altervista.org/music_sound/open
Cluster/

[4] “Open  Cluster”.  Wikipedia, The Free
Encyclopedia. ~ Wikimedia  Foundation -
http://en.wikipedia.org/wiki/Open_cluster
Retrived on 14 Feb 2011

[5] Rosegarden — www.rosegardenmusic.com

[6] LinuxSampler - www.linuxsampler.org

[7] Mats Helgesson, Maestro Concert Grand v2
Gigasampler bank. Available at
www.linuxsampler.org/instruments.html

[8] LilyPond - http://lilypond.org/

[91JACK - Jack Audio Connection Kit -
http://jackaudio.org/

[10] D. Michael MclIntyre. 2008. Piano Notation
by Example.

[11] Ardour — Digital Audio Workstation -
www.ardour.org/

[12] Pure Data - http://puredata.info/
www.rosegardenmusic.com/tutorials/supplement
al/piano/

[13] Granita — minimalist granular synthesis for
Pure Data.
http://lorenzosu.altervista.org/pd/granita/

[14] jEdit — Programmer's Text Editor -
http://www.jedit.org/
[15] LilyPondTool for JEdit -

http://lilypondtool.blogspot.com/

[16] SVG backend. Lilypond Wiki. Retrived on 14
Feb 2011 -
http://wiki.lilynet.net/index.php/SVG backend

[17] Software support in Inkscape Wiki SVG
Backend Retrived on 14 Feb 2011
http://wiki.lilynet.net/index.php/SVG backend#S
oftware support

[18] Multipage support. Inkscape Wiki.
http://wiki.inkscape.org/wiki/index.php/Multipag
e - Retrived 14 Feb 2011

[19] Multi-page SVG file. LilyPond user
discussion mailing list. Message 27334 of 14
Jan 2007 by Vincent. http://www.mail-
archive.com/lilypond-

user @ gnu.org/msg27334.html - Retrived on 14
Feb 2011



http://www.mail-archive.com/lilypond-user@gnu.org/msg27334.html
http://www.mail-archive.com/lilypond-user@gnu.org/msg27334.html
http://www.mail-archive.com/lilypond-user@gnu.org/msg27334.html
http://wiki.inkscape.org/wiki/index.php/Multipage
http://wiki.inkscape.org/wiki/index.php/Multipage
http://wiki.lilynet.net/index.php/SVG_backend#Software_support
http://wiki.lilynet.net/index.php/SVG_backend#Software_support
http://wiki.lilynet.net/index.php/SVG_backend
http://lilypondtool.blogspot.com/
http://www.jedit.org/
http://lorenzosu.altervista.org/pd/granita/
http://www.rosegardenmusic.com/tutorials/supplemental/piano/
http://www.rosegardenmusic.com/tutorials/supplemental/piano/
http://puredata.info/
http://www.ardour.org/
http://jackaudio.org/
http://lilypond.org/
http://www.linuxsampler.org/instruments.html
http://www.linuxsampler.org/
http://www.rosegardenmusic.com/
http://en.wikipedia.org/wiki/Open_cluster
http://lorenzosu.altervista.org/music_sound/openCluster/
http://lorenzosu.altervista.org/music_sound/openCluster/
http://www.faqs.org/docs/artu/ch01s06.html
http://www.soundonsound.com/sos/feb03/articles/linuxaudio.asp
http://www.soundonsound.com/sos/feb03/articles/linuxaudio.asp

	1 Introduction
	2 Background: the piece
	3 Workflow for the composition
	4 Composition and scoring of the piano part
	5 Creation of the electronic part 
	6 Audio Rendering of the complete piece
	7 Creation of the full score
	8 Conclusions
	9 Acknowledgements

