
Semantic Aspects of Parallelism for SuperCollider

Tim BLECHMANN
Vienna, Austria
tim@klingt.org

Abstract

Supernova is a new implementation of the Super-
Collider server scsynth, with a multi-threaded audio
synthesis engine. To make use of this thread-level
parallelism, two extensions have been introduced to
the concept of the SuperCollider node graph, expos-
ing parallelism explicitly to the user. This paper
discusses the semantic inplications of these exten-
sions.

Keywords

SuperCollider, Supernova, parallelism, multi-core

1 Introduction

These days, the development of audio synthe-
sis applications is mainly focussed on off-the-
shelf hardware and software. While some em-
bedded, low-power or mobile systems use single-
core CPUs, most computer systems which are
actually used in musical production use multi-
core hardware. Except for some netbooks, most
laptops use dual-core CPUs, single-core work-
stations are getting rare.

Traditionally, audio synthesis engines are de-
signed to use a single thread for audio computa-
tion. In order to use multiple CPU cores for au-
dio computation, this design has to be adapted
by parallelizing the signal processing work.

This paper is divided into the following sec-
tions: Section 2 describes the SuperCollider
node graph which is the base for the paralleliza-
tion of Supernova. Sections 3 introduces the
Supernova extensions to SuperCollider with a
focus on their semantic aspects. Section 4 dis-
cusses different approaches of other parallel au-
dio synthesis systems.

2 SuperCollider Node Graph

SuperCollider has a distinction between instru-
ment definitions, called SynthDefs, and their
instantiations, called Synths. Synths are orga-
nized in groups, which are linked lists of nodes

(synths or nested groups). The groups there-
fore form a hierarchical tree data structure, the
node graph with a group as root of the tree.

Groups are used for two purposes. First,
they define the order of execution of their child
nodes, which are evalutated sequentially from
head to tail using a depth-first traversal algo-
rithm. The node graph therefore defines a to-
tal order, in which synths are evaluated. The
second use case for groups is to structure the
audio synthesis and to be able to address multi-
ple synths as one entity. When sending a node
command to a group it is applied to all its child
nodes. Groups can be moved inside the node
graph like a single node.

2.1 Semantic Constraints for
Parallelization

The node graph is designed as data structure
for structuring synths in a hierarchical man-
ner. Traversing the tree structure is used to
determine the order of execution, but it does
not contain any notion of parallelism. While
synths may be able to run in parallel, it is im-
possible for the synthesis engine to know this
in advance. Synths do not communicate with
each other directly, but instead they use global
busses to exchange audio data. So any auto-
matic parallelization would have to create a de-
pendency graph depending on the access pat-
tern of synths to global resources. The current
implementation lacks a possibility to determine,
which global resources are accessed by a synth.
But even if it would be possible, the resources
which are accessed by a synth are not constant,
but can change at control rate or even at au-
dio rate. Introducing automatic parallelization
would therefore introduce a constant overhead
and the parallelism would be limited by the
granularity in which resource access could be
predicted by the runtime system.

Using pipelining techniques to increase the
throughput would only be of limited use, ei-



ther. The synthesis engine dispatches com-
mands at control rate and during the execu-
tion of each command, it needs to have a syn-
chronized view of the node graph. In order
to implement pipelining across the boundaries
of control rate blocks, a speculative pipelining
with a rollback mechanism would have to be
used. This approach would only be interesting
for non-realtime synthesis. Introducing pipelin-
ing inside control-rate blocks would only be of
limited use, since control rate blocks are typi-
cally small (usually 64 samples). Also the whole
unit generator API would need to be restruc-
tured, imposing considerable rewrite effort.

Since neither automatic graph parallelization
nor pipelining a feasible, we introduced new
concepts to the node graph in order to expose
parallelism explicitly to the user.

3 Extending the SuperCollider Node
Graph

To make use of thread-level parallelism, Super-
nova introduces two extensions to the SuperCol-
lider node graph. This enables the user to for-
mulate parallelism explicitly when defining the
synthesis graph.

3.1 Parallel Groups

The first extension to the node graph are par-
allel groups. As described in Section 2, groups
are linked lists of nodes which are evaluated in
sequential order. Parallel groups have the same
semantics as groups, but with the exception,
that their child nodes are not ordered. This im-
plies that they can be executed in in separate
threads. This concept is similar to the SEQ
and PAR statements, which specify blocks of
sequential and parallel statements in the con-
current programming language [Hyde, 1995].

Parallel groups are very easy to use in ex-
isting code. Especially for additive synthesis
or granular synthesis with many voices, it is
quite convenient to instantiate synths inside a
parallel groups, especially since many users al-
ready use groups for these use cases in order
to structure the synthesis graph. For other use
cases like polyphonic phrases, all independent
phrases could be computed inside groups, which
are themselves part of a parallel group.

Listing 1 shows a simple example, how paral-
lel groups can be used to write a simple poly-
phonic synthesizer of 4 synths, which are evalu-
ated before a effect synth.

3.2 Satellite Nodes

Parallel groups have one disadvantage. Each
member of a parallel group is still synchronized
with two other nodes, it is executed after the
parallel group’s predecessor and before its suc-
cessor. For many use cases, only one relation
is actually required. Many generating synths
can be started without waiting for any prede-
cessor, while synths for disk recording or peak
followers for GUI applications can start running
after their predecessor has been executed, but
no successor has to wait for its result.

These use cases can be formulated using
satellite nodes. These satellite nodes, are
nodes which are in dependency relation with
only one reference node. The resulting depen-
dency graph has a more fine-grained structure,
compared to a dependency graph, which is only
using parallel groups.

Listing 2 shows, how the example of Listing 1
can be formulated with satellite nodes under the
assumption, that none of the generator synths
depends on the result of any earlier synth. In-
stead of packing the generators into a parallel
group, they are simply defined as satellite pre-
decessors of the effect synth.

It is even possible to prioritize dependency
graph nodes to optimize graph progress. In or-
der to achive the best throughput, we need to
ensure, that there are always at least as many
parallel jobs available as audio threads. To en-
sure this, a simple heuristic can be used, which
always tries to increase the number of jobs, that
are actually runnable.

• Nodes with successors have a higher prior-
ity than nodes without.

• Nodes with successors early in the depen-
dency graph have a high priority.

These rules can be realized with a heuris-
tic that splits the nodes into three categories

Listing 1: Parallel Group Example

var generator_group , fx;
generator_group = ParGroup.new;
4.do {

Synth.head(generator_group ,
\myGenerator)

};
fx = Synth.after(generator_group ,

\myFx);



with different priorities: ‘regular’ nodes having
the highest priority, satellite predecessors with
medium priority and satellite successors with
low priority. While it is far from optimal, this
heuristic can easily be implemented with three
lock-free queues, so it is easy to use it in a real-
time context.

3.3 Common Use Cases & Library
Integration

The SuperCollider language contains a huge
class library. Some parts of the library are de-
signed to help with the organization of the au-
dio synthesis like the pattern sequencer library
or the Just-In-Time programming environment
JITLIB.

The pattern sequencer library is a powerful
library, that can be used to create sequences of
Events. Events are dictionaries, which can be
interpeted as musical events, with specific keys
having predefined semantics as musical parame-
ters [McCartney, ]. Events may contain are the
keys group and addAction, which if present are
used to specify the position of a node on the
server. With these keys, both parallel groups
and satellite nodes can be used from a pattern
environment. In many cases, the pattern se-
quencer library is used in a way that the created
synths are mutually independent and do not re-
quire data from other synths. In these cases
both parallel groups and satellite predecessors
can safely be used.

The situation is a bit different with JITLIB.
When using JITLIB, the handling of the syn-
thesis graph is completely hidden from the user,
since the library wraps every syntesis node in-
side a proxy object. JITLIB nodes communi-
cate with each other using global busses. This
approach makes it easy to take the output of
one node as input of another and to quickly re-
configure the synthesis graph. JITLIB therefore
requires a deterministic order for the read/write
access to busses, which cannot be guaranteed
when instantiating nodes in parallel groups, un-

Listing 2: Satellite Node example

var fx = Synth.new(\myFx);

4.do {
Synth.preceeding(fx,

\myGenerator)
};

less additional functionality is implemented to
read always those data, which are written dur-
ing the previous cycle. Satellite nodes cannot
be used to model the data flow between JITLIB
nodes, since they cannot be used to formulate
cycles.

4 Related Work

During the last few years, support for multi-
core audio synthesis has been introduced into
different systems, that impose different seman-
tic constraints.

4.1 Max/FTS, Pure Data & Max/MSP

One of the earliest computer-music systems, the
Ircam Signal Processing Workstation (ISPW)
[Puckette, 1991], used the Max dataflow lan-
guage to control the signal processing engine,
running on a multi-processor extension board
of a NeXT computer. FTS was implementing
explicit pipelining, so patches could be defined
to run on a specific CPU. When audio data was
sent from one CPU to another, it was delayed
by one audio block size.

Recently a similar approach has been imple-
mented for Pure Data [Puckette, 2008]. The pd~
object can be used to load a subpatch as a sep-
arate process. Moving audio data between par-
ent and child process adds one block of latency,
similar to FTS. Therefore it is not easily possi-
ble to modify existing patches without changing
the semantics, unless a latency compensation is
taken into account.

The latest versions of Max/MSP contains a
poly~ object, which can run several instances of
the same abstraction in multiple threads. How-
ever, it is not documented, if the signal is de-
layed by a certain ammount of samples or not.
And since only the same abstraction can be dis-
tributed to multiple processors, it is not a gen-
eral purpose solution.

An automatic parallelization of max-like sys-
tems is rather difficult to achieve, because max-
graphs have both explicit dependencies (the sig-
nal flow) and implicit ones (resource access). In
order to keep the semantics of the sequential
program, one would have to introduce implicit
dependencies between all objects, which access
a specific resource.

4.2 CSound

Recent versions of CSound implement auto-
matic parallelization in order to make use of
multicore hardware [ffitch, 2009]. This is fea-
sible, because the CSound parser has a lot of



knowledge about resource access patterns and
the instrument graph is more constrained com-
pared to SuperCollider. Therefore the CSound
compiler can infer many dependencies automat-
ically, but if this is not the case, the sequential
implementation needs to be emulated.

The automatic parallelization has the advan-
tage, that existing code can make use of multi-
core hardware without any modifications.

4.3 Faust

Faust supports backends for parallelization, an
open-mp based code generator and a custom
work-stealing scheduler [Letz et al., 2010]. Since
Faust is only a signal processing language, with
little notion of control structures. Since Faust
is a compiled language, it cannot be used to dy-
namically modify the signal graph.

5 Conclusions

The proposed extensions to the SuperCollider
node graph enable the user to formulate signal
graph parallelism explicitly. They integrate well
into the concepts of SuperCollider and can be
used to parallelize many use cases, which regu-
larly appear in computer music applications.

References

John ffitch. 2009. Parallel Execution of
Csound. In Proceedings of the International
Computer Music Conference.

Daniel C. Hyde, 1995. Introduction to the pro-
gramming language Occam.

Stphane Letz, Yann Orlarey, and Dominique
Fober. 2010. Work Stealing Scheduler for Au-
tomatic Parallelization in Faust. In Proceed-
ings of the Linux Audio Conference.

James McCartney. SuperCollider Manual.

Miller Puckette. 1991. Combining Event
and Signal Processing in the MAX Graphical
Programming Environment. Computer Music
Journal, 15(3):68–77.

Miller Puckette. 2008. Thoughts on Parallel
Computing for Music. In Proceedings of the
International Computer Music Conference.


