Mimesis and Shaping

Imitative Additive Synthesisin Csound

Joachim HEINTZ
Incontri - HMTM Hannover
Emmichplatz 1, 30175 Hannover

Hannover, Germany
joachim.heintz@hmtm-hannover.de

Abstract

This paper is to introduce a realisation of
Imitative Additive Synthesis in Csound, which
can be employed for the realtime analysis of the
spectrum of a sound suitable for additive
synthesis. The implementation described here
can be used for analysing, re-playing and
modifying sounds in a live situation, as well as
saving the analysis results for further use.

Keywords

Spectral analysis, sound synthesis, signal
processing, realtime resynthesis.

1 What is Imitative Additive Synthesis?

Additive Synthesis is known as the method of
synthesizing sound by single sinusoids. Based on a
fundamental frequency and a number of sinusoids,
the main parameters are

1. a frequency multiplier, and

2. arelative amplitude

for each partial. For instance, the well-known
additive synthesized bell by Jean-Claude Risset
has the values listed in table 1.

! From Risset's Introductory Catalogue of Computer
Synthesized Sounds (1969), cited after Dodge/Jerse,
Computer Music, 1985, p. 94

Partial Frequency Amplitude
Number multiplier multiplier
1 0.56 1

2 0.56 +1 Hz 0.67

3 0.92 1

4 092 +1Hz 1.8

5 1.19 2.67

6 1.7 1.67

7 2 1.46

8 2.74 1.33

9 3 1.33

10 3.74 1

11 4.07 1.33

Table 1: Bell spectrum based on Risset 1969

In this case, the frequency/amplitude values
were derived from the analysis of a natural sound.
This is an example of what I call "Imitative
Additive Synthesis", as opposed to creating
spectra which do not exist anywhere in the non-
electronic world of sound.

In real-world sounds, a table like the one given
above is just a snapshot. The actual amplitudes
vary all the time. Or, in other words, each partial
has its own envelope. It is again Jean-Claude
Risset who has described this early, when he
analyzed a trumpet tone. The visualization can be
done in a three-dimensional way like this:

Time /

& 2000

Figure 1. Partial progression of a guitar tone
courtesy of Wolfgang Fohl, Hamburg

The method described here will start with the
imitation of a spectrum. For this reason it is called
imitative additive synthesis. But "imitative" does
not mean that the spectral envelopes of the sound
are to be imitated in their progression. Rather, the
partials can be modified in different ways which is
to be described in more detail.

2 Tasks for Performing Imitative Additive
Synthesis in Realtime

In order to use Imitative Additive Synthesis in
realtime performance, the Csound application
should do these jobs:

* Analyze any sound input - sampled or live -
and retrieve the N strongest partials.

* Let the user switch between live input or
sampled sound. For the latter, let him choose
one sample from a bank of sounds.

e If the input is a sound sample, set the position
of the analysis by means of a pointer. Provide
several options for moving the pointer:

o User-controlled by a slider.

o Continuously moving in defined steps
forwards or backwards.

© Jumping randomly in a given range.

» If the input is a live audio stream, analyze it
whenever a new trigger signal (a midi button
or a mouse click) has been received.

* Resynthesize the sound with additive synthesis
with any number of partials up to N, and with
possible offset (not starting at the strongest
one).

e Allow for variation between resynthesized
notes of the same snapshot by way of random
frequency deviations, amplitude changes and
by modifying the duration of the partials.
» Facilitate playing the synthesis on a usual
midi-keyboard:
© Define one key which plays the sound at
the same pitch it has been recorded.

© Define a transposition range for the other
keys.

o Let the user control a wusual ADSR
envelope.

* Allow to print out the analysis results, and to
export them in different ways for further use.

The following description shows how these
tasks can be realized in Csound. Andrés Cabrera's
QuteCsound frontend will be used. It provides an
easy-to-program graphical interface which gives
the user a visual feedback and lets him control
parameters either by midi or by widgets.

3 Retrieving the N strongest partials of a
sound and triggering the resynthesis with
M partials

The usual way of analyzing the frequency
components of a sound is the Fast Fourier
Transform (FFT). Thanks to the "phase vocoder
streaming" opcodes, FFT in Csound is both simple
and fast. There are several opcodes which
transform an audio input (realtime, buffer or
soundfile) into an "f-signal" which contains the
spectral components.

The problem is how to extract the N strongest
frequency components total number of bins.” This
is done by the following operation:

» After performing the FFT, all the amplitude
and frequency values of the analyzed sound
snapshot are written in the tables giamps and
gifregs. This can be done in Csound by the
opcode pvsfiw.

* Then, the amplitude table is examined to return
the positions of the N strongest values. These
positions are written again in a table

2 The number of bins or analysis channels of the FFT

depends on the size of the analysis window. If the

window size is 1024 (which is a common size), you
will get 512 values with pairs of frequency and
amplitude (bin 0 is omitted).

gimaxindc. This is done by a function which may nevertheless want to keep the same

was programmed for this task.’ output level.

* For each note then, the gimaxindc table is read
for the first M positions - eventually shifted by
an offset -, and for each position one instance
of an instrument is called. This instrument
plays one partial, and it is fed with the relevant
input values: the amplitude and frequency of
this bin, the summed amplitude, the midi
velocity, the midi pitch.

1024 Samples

FFT
Table giamps Table gimaxindc
Bin Amplitude Index Bin midi key (note-on)
0 0.000000 0 3 ‘ triggers one note
amplitude frequency p 0.036234 p P partials required e.g. 11, offset = 2
values values - B oO—— © 4
o] | o1-o© 4
Table giamy Table gifreqs - = = calculate sum of amplitudes 2-13
Bin Amplitude Bin Frequency ?" WRED| | @ | 1
0 0.000000 0 0.000 N S
1 0.036234 1 26.708
Table gimaxindc
2 0.035060 2 52.678 Index Bin
3 0.047610 3 113.166 0 3)))
trigger one sinusoid
! 10 for each partial
0=
512 0.000186 512 22013.346 ® \I"\

3 JiB partial2) partial=3 e partial=13

search for 32 (e.g.) /I
largest amplitudes st [[]a
Table/gigmps

v Bin |/ Afnplitude Siay sinusoid

Table gimaxind 0| doooooo withe@mplitu

" 1 036234 al quenc!

Index Bin ﬁ falugk from tablj

o 3 vl -
ol

1 10 -

P 9 512 | 0.000186

Taple gifreqs

31 7 Bin || Frequency
o [[o0.000000
1] [26708

write each partial

. . i
Figure 2: Analysing a sound snapshot [) 10 the audio outout

512 0.000186

* Whenever a note is to be played, the total sum Figure 3: Triggering the resynthesis

of the amplitudes required for the resynthesis
of M partials* is calculated. This is necessary
for two reasons:

o The sound input may have very different 4 Input and Time Pointer Options
levels, but the user will want the output
volume to depend only on the velocity of Input can be selected from either a bank of
the midi-keyboard. soundfiles, or live input. There is a switch to
o If you decided during playing to reduce the determine which is to be used.

number of sinoids M from say 20 to 2, you
If soundfiles are used, the most important

decision is in what way time pointer should be

3 In Csound, defined functions are called User ; :))
applied. One option is to manually adjust the

Defined Opcodes. After defining in the orchestra

header or an #include file, they can be used like position, either by mouse or by a midi-controller.
usual opcodes. For more information, see the page But it can also be nice to "hop" through a sample,
OrchUDO.html in the Canonical Csound Manual starting at a certain position, in a variable hop size.
(available online at www.csounds.com/manual/). Each time a note is played, the pointer moves a bit

4ntherange1to N

forward or backward. Fast repetitions can cross the
whole file, like a flip-book. The third option
implemented is a random jumping of the pointer,
getting a new position after each note.

[30]}

Figure 4: Analysis and pointer parameters

Live input is streamed continually, and if the
user pushes a button, the incoming sound is
analyzed in the way described above, performing
an FFT and identifying the strongest partials for
additive resynthesis. As long as the button has not
been pushed again, the previous input remains the
basis for the synthesis.

T
a8
Playit| | stop| TN

Get Live
Snapshot!

Figure 5: Input parameters

As can be seen in Figure 5, the user can switch
between the input and pointer choices by keyboard
shortcuts.

5 Playback Options

There are many options for playing back the
sound snapshot. Some basic features have been
implemented; some more ideas are discussed at the
end of this section.

The user can decide how many partials he wants
to use for the additive resynthesis. This part of the
instrument is separated from the analysis, so the
snapshot can be probed for the strongest 32
partials, and then all 32, or 10, 5, or just one can be
used. An offset parameter allows to start not
always at the strongest partial, but at a weaker one.
So you can synthesize a rich spectrum or a more
sine-like one, and choose whether you want to
prefer the most significant or the lesser significant
partials. But the partials will always remain
ordered by their respective amplitudes.

To avoid always producing the same sound, the
user can add random deviations, both to the
frequency and to the amplitude multipliers. The
maximum frequency deviation is given in cent
values, so 100 means that each partial can reach a
frequency deviation of up to one semitone. The
maximum amplitude deviation is given in deciBel,
so 6 means that an amplitude multiplier of 0.5 can
vary in the range between 0.25 and 1. With these
values, you will get a set of sounds which are
different each time, but nevertheless recognizable
as one sound.

This random deviation within a certain range is
also applied to the individual durations of the
partials. Like in natural sounds, each partial has its
own "life span". The simplest way of doing this is
to assign random deviations to each partial. This is
technically possible, because synthesis is carried
out by one instance of a sub-instrument for each
partial. So it is no problem to give each partial its
own duration. The input is given in percent values,
100 meaning that the main duration of 2 seconds
can vary between 0.5 and 4 seconds.

A common user-definable adsr envelope is
applied, defining the attack time, the decay time,
the sustain level, and the release time. It is the
same shape for all the partials, but because of the
duration differences, the overall shape will differ
between the partials.

For playing the sounds via a usual midi
keyboard, a key must be defined which plays the
sound snapshot at the same pitch as it has been
recorded. This reference key can be set by the user
arbitrarily. Every other key will transpose the
sound. The degree of transposition can also be

adjusted by the user, to a semitone, or to any other
value. If you set this parameter to 50, the next key
on the midi keyboard will shift the sound by 50
cent (a quartertone). If you set it to 200, the next
key shifts by a whole tone. If you type 0, the sound
will not be transposed at all, so it will be at the
same pitch on all keys.

This is the user interface for all these options:

Figure 6: Playback parameters

The playback options very much depend on
which kind of music the user wants to play, and
how they want to use the instrument. These are
some ideas for other possibilities:

» Different tuning systems instead of equal steps
from one key to the next.

* Manipulations of the partial relationship to
become more harmonic or more inharmonic.

e Make partial durations depend on the pitch so
that higher partials decay faster.

6 Export Options

The instrument described here can also be used
to perform an FFT analysis and to query for the N
strongest bins in this situation. For later use of the
analysis results, some export options are
implemented.

First, the user can choose to see the results in the
gui. This is just a list of values for frequencies and
amplitudes, like this:

Figure 7: Analysis printout

This list can also be exported to a text file.
Either this file contains the same information as
the gui printout, or the plain frequency and
amplitude data.

If the user wants to use the data in any Csound
context, it can be useful to have them transformed
in two generalized function tables: one containing
the data for the frequency multipliers, one for the
amplitude values, like this:

Amp-Freq multiplier for file 'Glocke_Ganzel.aiff’
at position 0.078838 seconds.

Pitch at frequency multiplier 1 was 887.067261 Hz.
giAmpl ftgen 0, 0, -32, -2, 0.128206, 0.117852,
.109153, ©.105875, ©.104916, ©.092055, 0.083669,

6}

0.079507, 0.066564, 0.064923, 0.063374, 0.063165,
0.055612, 0.054818, 0.050029, 0.043470, 0.042832,
0.036801, 0.035893, 0.033057, 0.028608, 0.025803,
0.025332, 0.023705, ©.023254, 0.023171, 0.022633,
0.021646, 0.021635, 0.018351, 0.018314, 0.016920

giFreql ftgen @, @, -32, -2, 1.000000, 0.670841,

0.530760, 0.422903, ©0.999530, ©.022911, 2.754646,
0.418885, 0.670366, ©.224198, 2.747098, 0.203853,
1.802918, ©.520952, 1.032287, 0.563088, 0.675669,
1.364326, 0.176785, 1.803060, 2.760230, 1.793911,
2.252738, 1.105475, 0.057368, 3.481363, 2.620301,
2.251627, 0.921611, 1.361099, 0.870076, 2.354658

Figure 8: Export as table values

7 Conclusion

This paper is to show how Imitative Additive
Synthesis in realtime can be implemented in
QuteCsound. The different options presented here
likely strain the limits of accessibility; wanting to
show what is possible. For really playing it as a
live instrument, each user will adapt the code and
the gui to their needs, omitting some features and
concentrating on others.

8 Acknowledgements

Thanks to Anna for reading the manuscript.

References

[1] Charles Dodge, Thomas A. Jerse: Computer
Music. Synthesis, Composition, and
Performance. NewYork / London 1985

[2] The Canonical Csound Manual online:
http://www.csounds.com/manual/

The QuteCsound file described here is part of the
official QuteCsound distribution (Examples >
Synths > Imitative_Additive) since march 2011
in the reporitories, or in future releases (after
0.6.1): http://sourceforge.net/projects/qutecsound
It can also be found for download at

http://joachimheintz.de/soft/qcsfiles/Imitative_A
dditive.csd.

	1 What is Imitative Additive Synthesis?
	2 Tasks for Performing Imitative Additive Synthesis in Realtime
	3 Retrieving the N strongest partials of a sound and triggering the resynthesis with M partials
	4 Input and Time Pointer Options
	5 Playback Options
	6 Export Options
	7 Conclusion
	8 Acknowledgements

