
An LLVM-based Signal-Processing-Compiler embedded in Haskell

Henning Thielemann
Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg,

Von-Seckendorff-Platz 1,
06110 Halle,

Germany,
henning.thielemann@informatik.uni-halle.de

Abstract
We discuss a programming language for real-time
audio signal processing that is embedded in the func-
tional language Haskell and uses the Low-Level Vir-
tual Machine as back-end. With that framework
we can code with the comfort and type safety of
Haskell while achieving maximum efficiency of fast
inner loops and full vectorisation. This way Haskell
becomes a valuable alternative to special purpose
signal processing languages.

Keywords
Functional progamming, Haskell, Low-Level Virtual
machine, Embedded Domain Specific Language

1 Introduction

Given a data flow diagram as in Figure 1 we
want to generate an executable machine pro-
gram. First we must (manually) translate the
diagram to something that is more accessible
by a machine. Since we can translate data
flows almost literally to function expressions,
we choose a functional programming language
as the target language, here Haskell [Pey-
ton Jones, 1998]. The result can be seen in
Figure 2. The second step is to translate the
function expression to a machine oriented pre-
sentation. This is the main concern of our pa-
per.

Since we represent signals as sequences of
numbers, signal processing algorithms are usu-
ally loops that process these numbers one after
another. Thus our goal is to generate efficient
loop bodies from a functional signal processing
representation. We have chosen the Low-Level
Virtual-Machine (LLVM) [Lattner and Adve,
2004] for the loop description, because LLVM
provides a universal representation for machine
languages of a wide range of processors. The
LLVM library is responsible for the third step,
namely the translation of portable virtual ma-
chine code to actual machine code of the host
processor.

Our contributions are

oscillator

exponential

amplifier

Figure 1: Data flow for creation of a very sim-
ple percussive sound

amplify
(exponential halfLife amp)
(osci Wave.saw phase freq)

Figure 2: Functional expression for the dia-
gram in Figure 1

• a representation of an LLVM loop body
that can be treated like a signal, described
in Section 3.1,

• a way to describe causal signal processes,
which is the dominant kind of signal trans-
formations in real-time audio processing
and which allows us to cope efficiently with
multiple uses of outputs and with feedback
of even small delays, guaranteed deadlock-
free, developed in Section 3.2,

• and the handling of internal filter param-
eters in a way that is much more flexible
than traditional control rate/sample rate
schemes, presented in Section 3.3.

Due to space constraints we omitted some parts,
like the use of vector arithmetic and according
benchmarks, that you can find in [Thielemann,
2010b].

2 Background

We want to generate LLVM code from a sig-
nal processing algorithm written in a declarative
way. We like to write code close to a data flow
diagram and the functional paradigm seems to
be appropriate.

We could design a new language specifically
for this purpose, but we risk the introduction
of design flaws. We could use an existing signal
processing language, but usually they do not
scale well to applications other than signal pro-
cessing. Alternatively we can resort to an ex-
isting general purpose functional programming
language or a subset of it, and write a compiler
with optimisations adapted to signal processing
needs. But writing a compiler for any modern
“real-world” programming language is a task of
several years, if not decades. A compiler for a
subset of an existing language however would
make it hard to interact with existing libraries.
So we can still tune an existing compiler for an
existing language, but given the complexity of
modern languages and their respective compil-
ers this is still a big effort. It might turn out
that a change that is useful for signal process-
ing kills performance for another application.

A much quicker way to adapt a language to a
special purpose is the Embedded Domain Spe-
cific Language (EDSL) approach [Landin, 1966].
In this terminology “embedded” means, that the
domain specific (or “special purpose”) language
is actually not an entirely new language, but
a way to express domain specific issues using
corresponding constructs and checks of the host
language. For example, writing an SQL com-
mand as string literal in Java and sending it to
a database, is not an EDSL. In contrast to that,
Hibernate [Elliott, 2004] is an EDSL, because
it makes database table rows look like ordinary
Java objects and it makes the use of foreign keys
safe and comfortable by making foreign refer-
ences look like Java references.

In the same way we want to cope with signal
processing in Haskell. In the expression

amplify
(exponential halfLife amp)
(osci Wave.saw phase freq)

the call to osci shall not produce a signal, but
instead it shall generate LLVM code that be-
comes part of a signal generation loop later. In
the same way amplify assembles the code parts
produced by exponential and osci and defines
the product of their results as its own result. In
the end every such signal expression is actually
a high-level LLVM macro and finally, we pass it
to a driver function that compiles and runs the
code. Where Hibernate converts Java expres-
sions to SQL queries, sends them to a database
and then converts the database answers back to

Java objects, we convert Haskell expressions
to LLVM bitcode, send it to the LLVM Just-In-
Time (JIT) compiler and then execute the re-
sulting code. We can freely exchange signal data
between pure Haskell code and LLVM gener-
ated code.

The EDSL approach is very popular among
Haskell programmers. For instance interfaces
to the Csound signal processing language [Hu-
dak et al., 1996] and the real-time software syn-
thesiser SuperCollider [Drape, 2009] are written
this way. This popularity can certainly be at-
tributed to the concise style of writing Haskell
expressions and to the ease of overloading num-
ber literals and arithmetic operators. We shall
note that the EDSL method has its own short-
comings, most notably the sharing problem that
we tackle in Section 3.2.

In [Thielemann, 2004] we have argued exten-
sively, why we think that Haskell is a good
choice for signal processing. Summarised, the
key features for us are polymorphic but strong
static typing and lazy evaluation. Strong typ-
ing means that we have a wide range of types
that the compiler can distinguish between. This
way we can represent a trigger or gate signal by
a sequence of boolean values (type Bool) and
this cannot be accidentally mixed up with a
PCM signal (sample type Int8), although both
types may be represented by bytes internally.
We can also represent internal parameters of
signal processes by opaque types that can be
stored by the user but cannot be manipulated
(cf. Section 3.3). Polymorphic typing means
that we can write a generic algorithm that can
be applied to single precision or double preci-
sion floating point numbers, to fixed point num-
bers or complex numbers, to serial or vectorised
signals. Static typing means that the Haskell
compiler can check that everything fits together
when compiling a program or parts of it. Lazy
evaluation means, that we can transform audio
data, as it becomes available, while program-
ming in a style, that treats those streams, as if
they would be available at once.

The target of our embedded compiler is
LLVM. It differs from Csound and SuperCol-
lider in that LLVM is not a signal processing
system. It is a high-level assembler and we
have to write the core signal processing build-
ing blocks ourselves. However, once this is done,
assembling those blocks is as simple as writing
Csound orchestra files or SuperCollider SCLang
programs. We could have chosen a concrete

machine language as target, but LLVM does a
much better job for us: It generates machine
code for many different processors, thus it can
be considered a portable assembler. It also sup-
ports the vector units of modern processors and
target dependent instructions (intrinsics) and
provides us with a large set of low-level to high-
level optimisations, that we can even select and
arrange individually. We can run LLVM code
immediately from our Haskell programs (JIT),
but we can also write LLVM bitcode files for
debugging or external usage.

3 Implementation

We are now going to discuss the design of our
implementation [Thielemann, 2010a].

3.1 Signal generator
In our design a signal is a sequence of sample
values and a signal generator is a state transi-
tion system, that ships a single sample per re-
quest while updating the state. E.g. the state
of an exponential curve is the current ampli-
tude and on demand it returns the current am-
plitude as result while decreasing the amplitude
state by a constant factor. In the same way an
oscillator uses the phase as internal state. Per
request it applies a wave function on the phase
and delivers the resulting value as current sam-
ple. Additionally it increases the phase by the
oscillator frequency and wraps around the re-
sult to the interval [0, 1). This design is much
inspired by [Coutts et al., 2007].

According to this model we define an LLVM
signal generator in Haskell essentially as a pair
of an initial state and a function, that returns
a tuple containing a flag showing whether there
are more samples to come, the generated sample
and the updated state.

type Generator a = forall state.
(state,
state -> Code (V Bool, (a, state)))

Please note, that the actual type definition in
the library is a bit different and much larger for
technical reasons.

The lower-case identifiers are type variables
that can be instantiated with actual types. The
variable a is for the sample type and state for
the internal state of the signal generator. Since
Generator is not really a signal but a descrip-
tion for LLVM code, the sample type cannot
be just a Haskell number type like Float or
Double. Instead it must be the type for one

of LLVM’s virtual registers, namely V Float or
V Double, respectively. The types V and Code
are imported from a Haskell interface to LLVM
[O’Sullivan and Augustsson, 2010]. Their real
names are Value and CodeGenFunction, respec-
tively.

The type parameter is not restricted in
any way, thus we can implement a generator
of type Generator (V Float, V Float) for a
stereo signal generator or Generator (V Bool,
V Float) for a gate signal and a continuous sig-
nal that are generated synchronously. We do
not worry about a layout in memory of an ac-
cording signal at this point, since it may be just
an interim signal that is never written to mem-
ory. E.g. the latter of the two types just says,
that the generated samples for every call to the
generator can be found in two virtual registers,
where one register holds a boolean and the other
one a floating point number.

We like to complement this general descrip-
tion with the simple example of an exponential
curve generator.

exponential ::
Float -> Float -> Generator (V Float)

exponential halfLife amp =
(valueOf amp,
\y0 -> do
y1 <- mul y0 (valueOf

(2**(-1/halfLife)))
return (valueOf True, (y0, y1)))

For simplification we use the fixed type Float
but in the real implementation the type is flex-
ible. The implementation is the same, only the
real type of exponential is considerably more
complicated because of many constraints to the
type parameters.

The function valueOf makes a Haskell value
available as constant in LLVM code. Thus the
power computation with ** in the mul instruc-
tion is done by Haskell and then implanted
into the LLVM code. This also implies that
the power is computed only once. The whole
transition function, that is the second element
of the pair, is a lambda expression, also known
as anonymous function. It starts with a back-
slash and its argument y0, which identifies the
virtual register, that holds the current internal
state. It returns always True because the curve
never terminates and it returns the current am-
plitude y0 as current sample and the updated
amplitude computed by a multiplication to be
found in the register identified by y1.

We have seen, how basic signal generators
work, however, signal processing consists largely
of transforming signals. In our framework a sig-
nal transformation is actually a generator trans-
formation. That is, we take apart given gener-
ators and build something new from them. For
example the controlled amplifier dissects the en-
velope generator and the input generator and
assembles a generator for the amplified signal.

amplify ::
Generator (V Float) ->
Generator (V Float) ->
Generator (V Float)

amplify (envInit, envTrans)
(inInit, inTrans) =

((envInit, inInit),
(\(e0,i0) -> do

(eCont,(ev,e1)) <- envTrans e0
(iCont,(iv,i1)) <- inTrans i0
y <- mul ev iv
cont <- and eCont iCont
return (cont, (y, (e1,i1)))))

So far our signals only exist as LLVM code,
but computing actual data is straightforward:

render ::
Generator (V Float) ->
V Word32 -> V (Ptr Float) ->
Code (V Word32)

render (start, next) size ptr = do
(pos,_) <- arrayLoop size ptr start $

\ ptri s0 -> do
(cont,(y,s1)) <- next s0
ifThen cont () (store y ptri)
return (cont, s1)

ret pos

The ugly branching that is typical for assembly
languages including that of LLVM is hidden in
our custom functions arrayLoop and ifThen.
Haskell makes a nice job as macro assembler.
Again, we only present the most simple case
here. The alternative to filling a single buffer
with signal data is to fill a sequence of chunks,
that are created on demand. This is called
lazy evaluation and one of the key features of
Haskell.

At this point, we might wonder, whether the
presented model of signal generators is gen-
eral enough to match all kinds of signals, that
can appear in real applications. The answer is
“yes”, since given a signal there is a generator
that emits that signal. We simply write the sig-
nal to a buffer and then use a signal generator,

that manages a pointer into this buffer as inter-
nal state. This generator has a real-world use
when reading a signal from a file. We see that
our model of signal generators does not impose
a restriction on the kind of signals, but it well
restricts the access to the generated data: We
can only traverse from the beginning to the end
of the signal without skipping any value. This
is however intended, since we want to play the
signals in real-time.

3.2 Causal Processes
While the above approach of treating signal
transformations as signal generator transforma-
tions is very general, it can be inefficient. For
example, for a signal generator x the expression
mix x x does not mean that the signal repre-
sented by x is computed once and then mixed
with itself. Instead, the mixer runs the signal
generator x twice and adds the results of both
instances. I like to call that the sharing prob-
lem. It is inherent to all DSLs that are embed-
ded into a purely functional language, since in
those languages objects have no identity, i.e. you
cannot obtain an object’s address in memory.
The sharing problem also occurs, if we process
the components of a multi-output signal pro-
cess individually, for instance the channels of
a stereo signal or the lowpass, bandpass, high-
pass components of a state variable filter. E.g.
for delaying the right channel of a stereo sig-
nal we have to write stereo (left x) (delay
(right x)) and we run into the sharing prob-
lem, again.

We see two ways out: The first one is relying
on LLVM’s optimiser to remove the duplicate
code. However this may fail since LLVM cannot
remove duplicate code if it relies on seemingly
independent states, on interaction with memory
or even on interaction with the outside world.
Another drawback is that the temporarily gen-
erated code may grow exponentially compared
to the code written by the user. E.g. in

let y = mix x x
z = mix y y

in mix z z

the generator x is run eight times.
The second way out is to store the results

of a generator and share the storage amongst
all users of the generator. We can do this by
rendering the signal to a lazy list, or preferably
to a lazily generated list of chunks for higher
performance. This approach is a solution to the

general case and it would also work if there are
signal processes involved that shrink the time
line, like in mix x (timeShrink x).

While this works in the general case, there are
many cases where it is not satisfying. Especially
in the example mix x x we do not really need
to store the result of x anywhere, since it is
consumed immediately by the mixer. Storing
the result is at least inefficient in case of a plain
Haskell singly linked list and even introduces
higher latency in case of a chunk list.

So what is the key difference between mix x
x and mix x (timeShrink x)? It is certainly,
that in the first case data is processed in a syn-
chronous way. Thus it can be consumed (mixed)
as it is produced (generated by x). However,
the approach of signal transformation by signal
generator transformation cannot model this be-
haviour. When considering the expression mix
x (f x) we have no idea whether f maintains
the “speed” of its argument generator. That is,
we need a way to express that f emits data syn-
chronously to its input. For instance we could
define

type Map a b = a -> Code b

that represents a signal transformation of type
Generator a -> Generator b. It could be ap-
plied to a signal generator by a function apply
with type

Map a b -> Generator a -> Generator b

and where we would have written f x before,
we would write apply f x instead.

It turns out that Map is too restrictive. Our
signal process would stay synchronous if we al-
low a running state as in a recursive filter and if
we allow termination of the signal process before
the end of the input signal as in the Haskell list
function take. Thus, what we actually use, is a
definition that boils down to

type Causal a b = forall state.
(state, (a, state) ->

Code (V Bool, (b, state))) .

With this type we can model all kinds of causal
processes, that is, processes where every out-
put sample depends exclusively on the current
and past input samples. The take function may
serve as an example for a causal process with
termination.

take :: Int -> Causal a a
take n =

(valueOf n,
\(a,toDo) -> do
cont <- icmp IntULT (valueOf 0) toDo
stillToDo <- sub toDo (valueOf 1)
return (cont, (a, stillToDo)))

The function apply for applying a causal pro-
cess to a signal generator has the signature

apply :: Causal a b ->
Generator a -> Generator b

and its implementation is straightforward. The
function is necessary to do something useful
with causal processes, but it loses the causal-
ity property. For sharing we want to make use
of facts like that the serial composition of causal
processes is causal, too, but if we have to express
the serial composition of processes f and g by
apply f (apply g x), then we cannot make
use of such laws. The solution is to combine pro-
cesses with processes rather than transforma-
tions with signals. E.g. with >>> denoting the
serial composition we can state that g >>> f is
a causal process.

In the base Haskell libraries there is already
the Arrow abstraction, that was developed for
the design of integrated circuits in the Lava
project, but it proved to be useful for many
other applications. The Arrow type class pro-
vides a generalisation of plain Haskell func-
tions. For making Causal an instance of Arrow
we must provide the following minimal set of
methods and warrant the validity of the arrow
laws [Hughes, 2000].

arr :: (a -> b) -> Causal a b
(>>>) :: Causal a b ->

Causal b c -> Causal a c
first :: Causal a b -> Causal(a,c)(b,c)

The infix operator >>> implements (serial) func-
tion composition, the function first allows for
parallel composition, and the function arr gen-
erates stateless transformations including rear-
rangement of tuples as needed by first. It
turns out, that all of these combinators main-
tain causality. They allow us to express all kinds
of causal processes without feedback. If f and
mix are causal processes, then we can translate
the former mix x (f x) to

arr (\x -> (x,x)) >>> second f >>> mix
where second p = swap >>> p >>> swap

swap = arr (\(a,b) -> (b,a)) .

For implementation of feedback we need only
one other combinator, namely loop.

loop ::
c -> Causal (a,c) (b,c) -> Causal a b

The function loop feeds the output of type c
of a process back to its input channel of the
same type. In contrast to the loop method
of the standard ArrowLoop class we must de-
lay the value by one sample and thus need an
initial value of type c for the feedback signal.
Because of the way, loop is designed, it cannot
run into deadlocks. In general deadlocks can
occur whenever a signal processor runs ahead
of time, that is, it requires future input data
in order to compute current output data. Our
notion of a causal process excludes this danger.

In fact, feedback can be considered another
instance of the sharing problem and loop is
its solution. For instance, if we want to com-
pute a comb filter for input signal x and out-
put signal y, then the most elegant solution in
Haskell is to represent x and y by lists and
write the equation let y = x + delay y in
y which can be solved lazily by the Haskell
runtime system. In contrast to that if x and y
are signal generators, this would mean to pro-
duce infinitely large code since it holds

y = x + delay y
= x + delay (x + delay y)
= x + delay (x + delay (x + delay y))
...

With loop however we can share the output sig-
nal y with its occurrences on the right hand side.
Therefore, the code would be

y = apply (mixFanout >>> second delay) x
where mixFanout =

arr (\(a,b) -> (a+b,a+b)) .

Since the use of arrow combinators is some-
how less intuitive than regular function applica-
tion and Haskell’s recursive let syntax, there
is a preprocessor that translates a special arrow
syntax into the above combinators. Further on
there is a nice abstraction of causal processes,
namely commutative causal arrows [Liu et al.,
2009].

We like to note that we can even express sig-
nal processes that are causal with respect to one
input and non-causal with respect to another
one. E.g. frequency modulation is causal with
respect to the frequency control but non-causal
with respect to the input signal. This can be
expressed by the type

freqMod :: Generator (V a) ->
Causal (V a) (V a) .

In retrospect, our causal process data type
looks very much like the signal generator type.
It just adds a parameter to the transition func-
tion. Vice versa the signal generator data type
could be replaced by a causal process with no
input channel. We could express this by

type Generator a = Causal () a

where () is a nullary tuple. However for clarity
reasons we keep Generator and Causal apart.

3.3 Internal parameters
It is a common problem in signal processing
that recursive filters [Hamming, 1989] are cheap
in execution, but computation of their internal
parameters (mainly feedback coefficients) is ex-
pensive. A popular solution to this problem
is to compute the filter parameters at a lower
sampling rate [Vercoe, 2009; McCartney, 1996].
Usually, the filter implementations hide the ex-
istence of internal parameters and thus they
have to cope with the different sampling rates
themselves.

In this project we choose a more modular
way. We make the filter parameters explicit
but opaque and split the filtering process into
generation of filter parameters, filter parameter
resampling and actual filtering. Static typing
asserts that filter parameters can only be used
with the respective filters.

This approach has several advantages:
• A filter only has to treat inputs of the same

sampling rate. We do not have to duplicate
the code for coping with input at rates dif-
ferent from the sample rate.

• We can provide different ways of specify-
ing filter parameters, e.g. the resonance of
a lowpass filter can be controlled either by
the slope or by the amplification of the res-
onant frequency.

• We can use different control rates in the
same program.

• We can even adapt the speed of filter pa-
rameter generation to the speed of changes
in the control signal.

• For a sinusoidal controlled filter sweep we
can setup a table of filter parameters for
logarithmically equally spaced cutoff fre-
quencies and traverse this table at varying
rates according to arcus sine.

• Classical handling of control rate filter pa-
rameter computation can be considered as

resampling of filter parameters with con-
stant interpolation. If there is only a small
number of internal filter parameters, then
we can resample with linear interpolation
of the filter parameters.

The disadvantage of our approach is that we
cannot write something simple like lowpass
(sine controlRate) (input sampleRate)
anymore, but with Haskell’s type class mech-
anism we let the Haskell compiler choose the
right filter for a filter parameter type and thus
come close to the above concise expression.

4 Related Work

Our goal is to make use of the elegance of
Haskell programming for signal processing.
Our work is driven by the experience, that to-
day compiled Haskell code cannot compete
with traditional signal processing packages writ-
ten in C. There has been a lot of progress in
recent years, most notably the improved sup-
port for arrays without overhead, the elimina-
tion of temporary arrays (fusion) and the Data-
Parallel Haskell project that aims at utilising
multiple cores of modern processors for array
oriented data processing. However there is still
a considerable gap in performance between id-
iomatic Haskell code and idiomatic C code. A
recent development is an LLVM-backend for the
Glasgow Haskell Compiler (GHC), that adds all
of the low-level optimisations of LLVM to GHC.
However we still need some tuning of the high-
level optimisation and a support for processor
vector types in order to catch up with our EDSL
method.

In Section 2 we gave some general thoughts
about possible designs of signal processing lan-
guages. Actually for many combinations of
features we find instances: The two well-
established packages Csound [Vercoe, 2009] and
SuperCollider [McCartney, 1996] are domain
specific untyped languages that process data
in a chunky manner. This implies that they
have no problem with sharing signals between
signal processors, but they support feedback
with short delay only by small buffers (slow) or
by custom plugins (more development effort).
Both packages support three rates: note rate,
control rate and sample rate in order to reduce
expensive computations of internal (filter) pa-
rameters. With the Haskell wrappers [Hudak
et al., 1996; Drape, 2009] it is already possible
to control these programs as if they were part of
Haskell, but it is not possible to exchange au-

dio streams with them in real-time. This short-
coming is resolved with our approach.

Another special purpose language is ChucK
[Wang and Cook, 2004]. Distinguishing features
of ChucK are the generalisation to many dif-
ferent rates and the possibility of programming
while the program is running, that is while the
sound is playing. As explained in Section 3.3 we
can already cope with control signals at differ-
ent rates, however the management of sample
rates at all could be better if it was integrated
in our framework for physical dimensions. Since
the Haskell systems Hugs and GHC both have
a fine interactive mode, Haskell can in prin-
ciple also be used for live coding. However it
still requires better support by LLVM (shared
libraries) and by our implementation.

Efficient short-delay feedback written in
a declarative manner can probably only be
achieved by compiling signal processes to a ma-
chine loop. This is the approach implemented
by the Structured Audio Orchestra Language of
MPEG-4 [Scheirer, 1999] and Faust [Orlarey et
al., 2004]. Faust started as compiler to the C++
programming language, but it does now also
support LLVM. Its block diagram model very
much resembles Haskell’s arrows (Section 3.2).
A difference is, that Faust’s combinators contain
more automatisms, which on the one hand sim-
plifies binding of signal processors and on the
other hand means, that errors in connections
cannot be spotted locally.

Before our project the compiling approach
embedded in a general purpose language was
chosen by Common Lisp Music [Schottstaedt,
2009], Lua-AV [Smith and Wakefield, 2007],
and Feldspar (Haskell) [programming group at
Chalmers University of Technology, 2009].

Of all listed languages only ChucK and
Haskell are strongly and statically typed, and
thus provide an extra layer of safety. We like
to count Faust as being weakly typed, since it
provides only one integer and one floating point
type.

5 Conclusions and further work

The speed of our generated code is excel-
lent, yet the generating Haskell code looks id-
iomatic. The next step is the integration of
the current low-level implementation into our
existing framework for signal processing, that
works with real physical quantities and stati-
cally checked physical dimensions. There is also
a lot of room for automated optimisations by

GHC rules, be it for vectorisation or for reduc-
tion of redundant computations of frac.

6 Acknowledgments

I like to thank the careful proofreaders of the
draft for their valuable suggestions.

References

Duncan Coutts, Roman Leshchinskiy, and
Don Stewart. 2007. Stream fusion: From lists
to streams to nothing at all. In Proceedings
of the ACM SIGPLAN International Con-
ference on Functional Programming, ICFP
2007, apr.

Rohan Drape. 2009. hsc3: Haskell Su-
perCollider. http://hackage.haskell.org/
package/hsc3-0.7, June.

James Elliott. 2004. Hibernate: a developer’s
notebook. O’Reilly Media, Inc., 1005 Graven-
stein Highway North, Sebastopol, CA 95472,
USA.

Richard W. Hamming. 1989. Digital Filters.
Signal Processing Series. Prentice Hall, Jan-
uary.

Paul Hudak, T. Makucevich, S. Gadde, and
B. Whong. 1996. Haskore music notation –
an algebra of music. Journal of Functional
Programming, 6(3), June.

John Hughes. 2000. Generalising monads to
arrows. Science of Computer Programming,
37:67–111, May.

Peter J. Landin. 1966. The next 700 pro-
gramming languages. Communications of the
ACM, 9(3):157–166.

Chris Lattner and Vikram Adve. 2004.
LLVM: A Compilation Framework for Life-
long Program Analysis & Transformation. In
Proceedings of the 2004 International Sympo-
sium on Code Generation and Optimization
(CGO’04), Palo Alto, California, March.

Hai Liu, Eric Cheng, and Paul Hudak. 2009.
Causal commutative arrows and their opti-
mization. In ICFP ’09: Proceedings of the
14th ACM SIGPLAN international confer-
ence on Functional programming, pages 35–
46, New York, NY, USA. ACM.

James McCartney. 1996. Super Collider.
http://www.audiosynth.com/, March.

Yann Orlarey, Dominique Fober, and
Stephane Letz. 2004. Syntactical and seman-
tical aspects of Faust. In Soft Computing.

Bryan O’Sullivan and Lennart Augusts-
son. 2010. llvm: Bindings to the LLVM
compiler toolkit. http://hackage.haskell.
org/package/llvm-0.9.0.1, November.

Simon Peyton Jones. 1998. Haskell 98 lan-
guage and libraries, the revised report. http:
//www.haskell.org/definition/.

Functional programming group at
Chalmers University of Technology. 2009.
feldspar-language: A functional embed-
ded language for DSP and parallelism.
http://hackage.haskell.org/package/
feldspar-language-0.1, November.

Eric Scheirer. 1999. Iso/iec 14496-3:1999: In-
formation technology – coding of audio-visual
objects – part 3: Audio – subpart 5: Struc-
tured audio orchestra language. Technical re-
port, International Organization of Standard-
ization.

Bill Schottstaedt. 2009. Common lisp music.
http://ccrma.stanford.edu/software/
clm/.

Wesley Smith and Graham Wakefield. 2007.
Real-time multimedia composition using lua.
In Proceedings of the Digital Art Weeks 2007.
ETH Zurich.

Henning Thielemann. 2004. Audio process-
ing using Haskell. In Gianpaolo Evangelista
and Italo Testa, editors, DAFx: Conference
on Digital Audio Effects, pages 201–206. Fed-
erico II University of Naples, Italy, October.

Henning Thielemann. 2010a. Audio signal
processing embedded in Haskell via LLVM:
Darcs repository. http://code.haskell.
org/synthesizer/llvm/.

Henning Thielemann. 2010b. Compiling Sig-
nal Processing Code embedded in Haskell via
LLVM. http://arxiv.org/abs/1004.4796.

Barry Vercoe. 2009. CSound. http://www.
csounds.com/.

Ge Wang and Perry Cook. 2004. Chuck: a
programming language for on-the-fly, real-
time audio synthesis and multimedia. In
MULTIMEDIA ’04: Proceedings of the 12th
annual ACM international conference on
Multimedia, pages 812–815, New York, NY,
USA. ACM.

http://hackage.haskell.org/package/hsc3-0.7
http://hackage.haskell.org/package/hsc3-0.7
http://www.audiosynth.com/
http://hackage.haskell.org/package/llvm-0.9.0.1
http://hackage.haskell.org/package/llvm-0.9.0.1
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://hackage.haskell.org/package/feldspar-language-0.1
http://hackage.haskell.org/package/feldspar-language-0.1
http://ccrma.stanford.edu/software/clm/
http://ccrma.stanford.edu/software/clm/
http://code.haskell.org/synthesizer/llvm/
http://code.haskell.org/synthesizer/llvm/
http://arxiv.org/abs/1004.4796
http://www.csounds.com/
http://www.csounds.com/

	1 Introduction
	2 Background
	3 Implementation
	3.1 Signal generator
	3.2 Causal Processes
	3.3 Internal parameters

	4 Related Work
	5 Conclusions and further work
	6 Acknowledgments

