Configuring your system for real-time low latency audio processing

Jeremy JONGEPIER
ICTE department Faculty of Humanities
University of Amsterdam
Spuistraat 134
1012 VB Amsterdam
The Netherlands
jeremy @autostatic.com

Abstract

Just installing GNU/Linux and a real-time kernel
doesn't turn your system in a real-time low latency
environment at once. A properly configured
system demands some more modifications to what
most distributions set up by default. And in a lot of
cases a real-time kernel isn't even necessary. So
besides going through some of the most important
ways to improve the performance of your system
this workshop may also debunk some tenacious
myths.

Keywords

Real-time, low latency, audio processing

1 Introduction

Optimizing your GNU/Linux system for real-
time low latency audio processing can be done on
several levels, from uninstalling or disabling
system services to modifying kernel parameters.

2 The basis

Even though the focus of this workshop is not on
properly setting up a hardware rig there are a few
pitfalls you have to be aware of.

2.1 Hardware

Of course there is the ever important question: is
my hardware supported by GNU/Linux? Most
basic hardware is well supported (CPU, ethernet,
USB, FireWire, harddrive) but other hardware is
either not fully supported (like some external
soundcards) or can be problematic (like WiFi
adapters or GPU's). Therefore it is always wise
when building your audio machine to check
beforehand if all components are supported. Same

goes for acquiring an internal or external
soundcard. You could also ask yourself the
question, do I really need WiFi and a gamer GPU
on my audio machine? As for the GPU, it is
advisable to use a GPU that is supported by open
source drivers (radeon, nouveau) so if you run into
any performance issues you can file a bugreport
that probably gets closed quicker than bugreports
for their closed source counterparts. Besides,
authorative linux audio developers have claimed
the interrupt handlers of both the closed source
nvidia and fglrx drivers are 'evil', i.e. you will most
likely run into performance issues faster than with
the nouveau and radeon drivers.

2.2 PCl(e), USBY/2/3 or FireWire?

When looking for a decent soundcard for your
audio machine you have to find out for yourself
what you exactly want to do with it in order to find
a proper match. Keep in mind also then that there
are actually four types of soundcards to choose
from:

Type Features

FireWire High bandwidth, external,
low latency, synchronous data
streams, significant number of
supported devices (FFADO)

USBI1.1 Low bandwidth, external,
asynchronous data streams,
audio device class
specification (any class
compliant USBI1.1. Audio
device should work on a
GNU/Linux system with the
ALSA driver backend
installed), large number of
supported devices (ALSA)

Medium bandwidth,
external, asynchronous data
streams, no audio device class
specification (so no class
compliant devices which has
resulted in very poor support
for USB2 audio devices in
GNU/Linux), small number of
supported devices (ALSA)

High bandwidth, internal,
large number of supported
devices (ALSA)

USB2.0

PCl(e)

Table 1: Soundcard types

So this leaves FireWire, USB1 and PCl(e)
devices as viable options. If you just need one or
two inputs for your recordings and you're fine with
a maximum of 2 stereo outputs then USB1.1 could
be the best option. If you need more I/O then you
will have to resort to FireWire or PCl(e). For
mobile set-ups FireWire is very suitable, for
desktops PCI(e) could be considered too. One
word on USB2 devices though, there are a few
supported devices available so if you really need
more I/O than USB1.1 can offer and you can't or
don't want to use FireWire the following devices
are supported at the time of writing:

* M-Audio Fast Track Ultra

* M-Audio Fast Track Ultra 8R
* Roland/Cakewalk UA-101

* Roland/Edirol UA-1000

2.3 Which Distribution?

Basically every distribution can be used to set up
a real-time low latency audio environment. But
some distributions are better fitted because of the
availibility of specialized audio packages, a
community interested in multimedia production or
simply because they're specially tailored for
musicians.

Distributions that offer specialized audio
packages or that have access to audio repositories
are for example Ubuntu Studio (either via the
official repositories or via PPA's), Fedora
(PlanetCCRMA), Arch, Gentoo, Debian and
Ubuntu derivates like KX Studio and Tango
Studio. Ubuntu Studio also has an active
community together with multimedia centred
distro's like AV Linux and 64 Studio that aim
specifically at musicians.

24 Desktop Window

Manager s?

Environments,

Complex Desktop Environements like Gnome
and KDE consume a lot of resources. On powerful
workstations this shouldn't necessarily be an issue
but on less powerful machines like notebooks or
more specifically ~ netbooks using the
aforementioned DE's can be a showstopper.
Especially when using 3D compositing Window
Managers like Compiz within these DE's.

So a lot of musicians that work with mobile set-
ups choose lighter Desktop Environments like
XFCE, LXDE or super-light environments like
OpenBox, FluxBox and IceWM. These lighter
DE's mostly come with lighter WM's also, in some
cases these lighter environments are actually mere
Window Managers.

Since Linux Audio applications tend to be
mostly modular you can easily end up with a lot of
opened applications and windows and especially
with smallers screens this could become
cumbersome. That's where tiling Window
Managers like xmonad or awesome could become
handy instead of the more commonly used
compositing Window Managers like Metacity
(Gnome), KWin (KDE) or the 3D compositing
Window Manager Compiz.

In a critical real-time low-latency audio
environment it is probably the wisest option to opt
for a Desktop Environment and/or a Window
Manager that are as light as possible, particularly
when using a mobile set-up with a notebook or
netbook. Generally it is considered bad practice to

use 3D compositing and even the use of the KDE
Desktop Environment is mostly avoided.

3 System Services

There are some system services that might cause
xruns when they are left enabled. Some examples
are for example Gnome NetworkManager, apt-
xapian-index and CPU frequency scaling. The
latter is not a real big issue anymore, there is now
even a frequency scaling daemon available
(jackfreqd) that scales the CPU frequency
according to the DSP load instead of the CPU
load. But if you want to be totally sure CPU
scaling will not interfere with your working
environment than you can always set the CPU
scaling governor to performance.

Gnome NetworkManager keeps scanning in the
background to check if there are any new wireless
networks available. And this background scanning
can cause xruns. Unfortunately Networkmanager
cannot be configured to disable background
scanning so if you need WiFi it is best to use
another wireless network manager or to just use
wpa_supplicant.

On Debian systems that have Synaptic installed
the apt-xapian-index cronjob to build or rebuild the
Quick Search index can be a source of xruns too,
especially on less powerful machines. Best is to
uninstall this package. This will disable the Quick
Search field in Synaptic.

4 The kernel

4.1 Kernel parameters

On a kernel level some modifications could
make a difference. First there is the default swap
behaviour (‘swappiness') of many distributions
which is set too high. So if you use swap the
system will start swapping way too quickly which
might decrease overall performance. To tame this
swap behaviour you could adjust the kernel
swappiness parameter in the sysctl.conf file and set
it to a lower value. Default is 60, 10 is
recommended. While you're at it you could also
adjust the max_user_watches parameter belonging
to the inotify subsystem (not sure how this relates
to system performance, needs some more
research).

4.2 Real-timevspreemptive vsstock kernels

A stock kernel isn't optimized for real-time low-
latency use. Most of the time such a kernel suffices
but in situations where lower latencies are desired
(MIDI, overdubbing, live on stage) using an
unoptimized kernel could be the bottleneck when
xruns occur at lower latencies (=< 10ms). In such
cases one might have to resort to either preemptive
kernels or even real-time kernels. Preemptive
kernels, sometimes referred to as low latency
kernels, are kernels built from upstream,
unpatched kernel sources but configured optimally
for use in environments where lower latencies are
desired.

In some cases preemptive or low latency kernels
still don't manage to provide an xrun free system.
This is mainly the case when soundcards are
connected to a bus that shares its IRQ with other
peripherals or when extremely low latencies are
needed (=< 4ms). More on shared IRQ's later. The
latter case speaks for itself. This is where real-
time kernels come into play, stock kernels that are
patched with the real-time patchset. This patchset
contains optimizations in order for a patched
kernel to meet critical deadlines in environments
where this is necessary, like a real-time low-
latency audio environment where a MIDI note
played live on stage has to be processed by the
system as fast as possible so latency between the
actual keypress and the outgoing sound is as low
as possible.

4.3 Unloading and unbinding unnecessary
drivers

The Linux kernel is monolithic and comes with
a lot of drivers that are either part of the kernel or
that are compiled as separate modules. Most of the
time you won't be needing a lot of drivers that get
loaded by default within your Linux audio
environment. Drivers that are part of the kernel can
be unbound from the device they're bound to and
separate kernel modules can be either blacklisted
so they won't load at all at boot time or they can be
unloaded at any time later on.

4.3.1 Unbinding

Unbinding drivers can be useful if you want to
be absolutely sure your USB MIDI controller is
connected to an USB port that doesn't share its

IRQ with anything else for example. This applies
specifically to stock or preemptive kernels (<
2.6.39) that won't allow you to prioritize IRQ's
since they lack threaded IRQ handling. An
example of unbinding an USB port of its driver:

echo -n “device ID” >
/sys/bus/pci/drivers/ehci_hcd/unbi
nd

This will disable the USB port with the given
device ID. You can find the device ID of the
device you'd like to unbind in the same directory
as the unbind file.

4.3.2 Blacklisting

Blacklisting driver modules means you put
modules on a blacklist so they won't load at boot
time. This can be done in the /etc/modprobe.d/
directory on most distributions. You can either
create a new file or use an existing blacklist file. If
you use an existing blacklist.conf file on a Debian
like system blacklisting a driver module is as easy
as adding as adding a line like:

blacklist module name

This will prevent the module module_name
getting loaded at boot time.

4.4 Building your own kernel

Another possibility to get more out of your
kernel could be to build your own kernel. But
since the starting point of this workshop is package
based distributions I won't elaborate on this
subject.

5 Real-timePriorities

Linux allows to prioritize processes, including
interrupt handlers.

51 Settingreal-timepriorities

On modern Linux distributions real-time
priorities can be set through the PAM (Pluggable
Authentication Modules) framework. By allowing
a system group to use memory locking and setting
real-time priorities any user that is part of that
group can prioritize processes that run in userspace
and any application running in userspace that
needs memory locking is allowed to do so. In most

of the cases an audio system group is used for
this purpose. The following PAM options are
normally added to the /etc/security/limits.conf or
/letc/security/limits.d/audio.conf files:

@audio -
@audio -

rtprio 90
memlock unlimited

These are just example settings, Ubuntu sets
rtprio to 99 for example but others prefer to leave
the 90-100 range for the processes that really need
it and that don't run in userspace, like real-time
clocks (/dev/rtc, /dev/hpet). Also memory locking
doesn't have to be set to unlimited because it might
create a slim change some rogue process locks up
all available memory. So some set it to 70% or
80% of the available RAM they have. This could
result though in applications misbehaving, notably
LMMS and Ardour.

5.2 Processesusing real-time priorities

There are quite some applications, daemons and
services that can be run with real-time priorities, as
set buy either the SCHED_FIFO or SCHED_RR
scheduler policy. A good example is the JACK
sound daemon of which the priority can be set with
the -P command line option. Examples of
applications are PHASEX, Qsynth and Bristol.
Applications that do not have options for running
with real-time priorities can nevertheless be
prioritized with the chrt command.

chrt —-f -p [1..99] {pid}

All this allows for finegrained control over
which process prevails over other processes
regarding execution ie. being runnable. More info
on real-time policies of the kernel scheduler, see
man sched_setscheduler.

5.3 Controlling the priorities of interrupt
handlerswith rtirq

On some systems, especially notebooks, it can
happen that an important controller like a FireWire
controller shares its IRQ with another peripheral
and that the BIOS doesn't offer the possibility to
change the order of the assigned IRQ's (more info
on this) or to disable any peripherals that share the
same IRQ. In these cases resorting to a real-time
kernel might offer a solution. A real-time kernel
(or kernels => 2.6.39) comes with a task

scheduler/tasklet daemon (sirg-tasklet) that allows
for prioritizing the bottom halves of interrupt
handlers. The rtirq script simplifies this task by
offering a single configuration file in which the
affected peripherals can be listed. The rtirq script
can even be used to give a higher priority to the
tasklet daemon itself.

6 Disk1/O

6.1 Filesystems

What filesystem to use? In a Linux audio
environment a filesystem that favours few big files
over many small files and low-latency over long-
term thoughput is preferable. There seems to be a
consensus on using either XFS, Ext3 or Ext4.
Some people favor XFS because it works well
with large files, but most people are good with
what their distribution uses by default which is
mostly Ext3 or Ext4. Using encryption is not
recommended as it may effect the amount of signal
processing the system can handle. And for Ext
filesystems the use noatime filesystem parameter
is generally advised as it reduces the amount of
disk I/O (the inode access times are not updated
each time a file is read) which could improve the
overall performance of your system.

6.2 Hard disk tuning

I admit, this is unchartered territory for me so if
someone could enlighten us, please go ahead!

7 TheJack Audio Connection Kit

The indispensible tool for GNU/Linux to work
with audio on a professional level.

8 Using FireWire

Access to FireWire devices.

9 Conclusion

Concluding text

10 Acknowledgements

Our thanks go to ...

References

[1] M. Kay. 1986. Parsing in Functional
Unification Grammar. In K. Spark Jones B. J.
Grosz and B. L. Webber, editors, Readings in
Natural Language Processing, pages 125-138.
Morgan Kaufmann Publishers, Los Altos,
California.

[2] Frederick Mosteller and David Wallace.
1964. Inference and Disputed Authorship: The
Federalist. Addison-Wesley, Reading,
Massachusetts.

	1 Introduction
	2 The basis
	2.1 Hardware
	2.2 PCI(e), USB1/2/3 or FireWire?
	2.3 Which Distribution?
	2.4 Desktop Environments, Window Managers?

	3 System Services
	4 The kernel
	4.1 Kernel parameters
	4.2 Real-time vs preemptive vs stock kernels
	4.3 Unloading and unbinding unnecessary drivers
	4.3.1 Unbinding
	4.3.2 Blacklisting

	4.4 Building your own kernel

	5 Real-time Priorities
	5.1 Setting real-time priorities
	5.2 Processes using real-time priorities
	5.3 Controlling the priorities of interrupt handlers with rtirq

	6 Disk I/O
	6.1 Filesystems
	6.2 Hard disk tuning

	7 The Jack Audio Connection Kit
	8 Using FireWire
	9 Conclusion
	10 Acknowledgements

