
Background

Running Csound in Parallel
LAC2009

John ffitch

University of Bath

LAC Maynooth, May 2011

ffitch ParCS

Background

Introduction

We are seeing more processors rather than faster ones.

The challenge now is to find ways of using multiple cores
effectively to improve the performance of a single program.

NB: No interest here in efficiency

ffitch ParCS

Background

Historical Note

I first stated this in the early 1970s, and at intervals since, but
now the need is much more imminent!

ffitch ParCS

Background

The Hardware Imperative

Robert S. Barton, one the greats of early computing, said there
is a technological imperative; what hardware requires is a
forcing term on software.

Attempts at parllelism at that time did not succeed, but we can
learn from the experience.

ffitch ParCS

Background

The Hardware Imperative

Robert S. Barton, one the greats of early computing, said there
is a technological imperative; what hardware requires is a
forcing term on software.

Attempts at parllelism at that time did not succeed, but we can
learn from the experience.

ffitch ParCS

Background

A Brief Biased History of Parallelism

Forty years ago I was proposing a parallel functional machine,
and thirty years ago we built to Bath Concurrent LISP Machine,
a cluster of six M68000 processors with each processor having
three shared memory windows with one other.

Twenty years ago we built the a LISP-based Concurrent
Object-Oriented system.

ffitch ParCS

Background

A Brief Biased History of Parallelism

Forty years ago I was proposing a parallel functional machine,
and thirty years ago we built to Bath Concurrent LISP Machine,
a cluster of six M68000 processors with each processor having
three shared memory windows with one other.

Twenty years ago we built the a LISP-based Concurrent
Object-Oriented system.

ffitch ParCS

Background

Concurrent Software

We based our work on the premis that users cannot be
expected (or trusted) to modify their thinking for parallel
execution, and the responsibility needs to be taken by the
software translation system that converts the program or
specification into an executable form.

Compiler analysis can be extended to inform the structure;
described variously in PhD Thesis of Marti (1980), and papers
by me in computer algebra.

ffitch ParCS

Background

Concurrent Software

We based our work on the premis that users cannot be
expected (or trusted) to modify their thinking for parallel
execution, and the responsibility needs to be taken by the
software translation system that converts the program or
specification into an executable form.

Compiler analysis can be extended to inform the structure;
described variously in PhD Thesis of Marti (1980), and papers
by me in computer algebra.

ffitch ParCS

Background

The Two Critical Points

A: Two entities can be run at the same time if they do not
reference/modify shared data

B: Two entities should be run at the same time if the overhead
is less than the gain

ffitch ParCS

Background

The Two Critical Points

A: Two entities can be run at the same time if they do not
reference/modify shared data

B: Two entities should be run at the same time if the overhead
is less than the gain

ffitch ParCS

Background

Ab Initio Parallelism?

Should we just start coding again? I say not as there is too
much already committed.

Two attempts however are worth mentioning;
Csound in real-time using Transputers
Midas streamed DSP network

Both are finer-grained than what I am advocating

ffitch ParCS

Background

Ab Initio Parallelism?

Should we just start coding again? I say not as there is too
much already committed.

Two attempts however are worth mentioning;
Csound in real-time using Transputers
Midas streamed DSP network

Both are finer-grained than what I am advocating

ffitch ParCS

Background

Towards a Parallel Csound

Csound has been in existence and development for 25 years. It
provides instruments that are played following a score.

The instruments are activated, performed and deactivated
using a control cycle (running at a control rate). Instruments are
performed in a defined order, and so interaction between
instruments has defined behaviour.

until end of events do
deal with notes ending
sort new events onto instance list
for each instrument in instance list

calculate instrument

ffitch ParCS

Background

Towards a Parallel Csound

Csound has been in existence and development for 25 years. It
provides instruments that are played following a score.

The instruments are activated, performed and deactivated
using a control cycle (running at a control rate). Instruments are
performed in a defined order, and so interaction between
instruments has defined behaviour.

until end of events do
deal with notes ending
sort new events onto instance list
for each instrument in instance list

calculate instrument

ffitch ParCS

Background

Towards a Parallel Csound (b)

Making this parallel could be to make the loop parallel, as long
as there is no interaction, so....

Following Marti we can use code analysis techniques
Only global variables matter.
For each instrument determine the sets of globals are
read, written, or both
Use this to control the loop

ffitch ParCS

Background

Towards a Parallel Csound (b)

Making this parallel could be to make the loop parallel, as long
as there is no interaction, so....

Following Marti we can use code analysis techniques
Only global variables matter.
For each instrument determine the sets of globals are
read, written, or both
Use this to control the loop

ffitch ParCS

Background

Towards a Parallel Csound (b)

Making this parallel could be to make the loop parallel, as long
as there is no interaction, so....

Following Marti we can use code analysis techniques
Only global variables matter.
For each instrument determine the sets of globals are
read, written, or both
Use this to control the loop

ffitch ParCS

Background

Towards a Parallel Csound (b)

Making this parallel could be to make the loop parallel, as long
as there is no interaction, so....

Following Marti we can use code analysis techniques
Only global variables matter.
For each instrument determine the sets of globals are
read, written, or both
Use this to control the loop

ffitch ParCS

Background

Towards a Parallel Csound (b)

Making this parallel could be to make the loop parallel, as long
as there is no interaction, so....

Following Marti we can use code analysis techniques
Only global variables matter.
For each instrument determine the sets of globals are
read, written, or both
Use this to control the loop

ffitch ParCS

Background

Towards a Parallel Csound (c)

Special case: most instruments add into the output bus, but this
is not an operation that needs ordering (subject to rounding
errors), although it may need a mutex or spin-lock. The
language processing can insert any necessary protections in
these cases.

There are other globals than variables but the idea is the same.

ffitch ParCS

Background

Towards a Parallel Csound (c)

Special case: most instruments add into the output bus, but this
is not an operation that needs ordering (subject to rounding
errors), although it may need a mutex or spin-lock. The
language processing can insert any necessary protections in
these cases.

There are other globals than variables but the idea is the same.

ffitch ParCS

Background

Design

Build a DAG of ordering dependancy, where the arcs represent
the need to be evaluated before the descendents

until end of events do
deal with notes ending
add new events and reconstruct the DAG
until DAG empty
foreach processor

evaluate a root from DAG
wait until all processes finish

ffitch ParCS

Background

Design

Build a DAG of ordering dependancy, where the arcs represent
the need to be evaluated before the descendents

until end of events do
deal with notes ending
add new events and reconstruct the DAG
until DAG empty
foreach processor

evaluate a root from DAG
wait until all processes finish

ffitch ParCS

Background

Compiler Example

Using the new parser the information is “easily” gathered and
the bus-locks inserted.

instr 1
a1 oscil p4, p5, 1

out a1
endin
instr 2
gk oscil p4, p5, 1

endin
instr 3
a1 oscil gk, p5, 1

out a1
endin

ffitch ParCS

Background

21

3

Instr3: [r:{gk}; w:{}; easy]

Instr2: [r:{}; w:{gk}; easy]

Instr1: [r:{}; w:{}; easy]

ffitch ParCS

Background

Maintaining the DAG

This is a major problem. It is consumed on each cycle, but
adding and losing instances means DAG must be remade, not
just copied. The current version of representation and algorithm
is the result of much experimentation and probably could be
improved.

ffitch ParCS

Background

Locking and Barriers

We use the POSIX pthreads library.

One master thread does analysis and DAG construction
A Barrier at the start of each control cycle
Each worker gets a task from the DAG, with a mutex
At end of instrument-cycle DAG is modified
When no work proceed to end Barrier

ffitch ParCS

Background

Locking and Barriers

We use the POSIX pthreads library.

One master thread does analysis and DAG construction
A Barrier at the start of each control cycle
Each worker gets a task from the DAG, with a mutex
At end of instrument-cycle DAG is modified
When no work proceed to end Barrier

ffitch ParCS

Background

Locking and Barriers

We use the POSIX pthreads library.

One master thread does analysis and DAG construction
A Barrier at the start of each control cycle
Each worker gets a task from the DAG, with a mutex
At end of instrument-cycle DAG is modified
When no work proceed to end Barrier

ffitch ParCS

Background

Locking and Barriers

We use the POSIX pthreads library.

One master thread does analysis and DAG construction
A Barrier at the start of each control cycle
Each worker gets a task from the DAG, with a mutex
At end of instrument-cycle DAG is modified
When no work proceed to end Barrier

ffitch ParCS

Background

Locking and Barriers

We use the POSIX pthreads library.

One master thread does analysis and DAG construction
A Barrier at the start of each control cycle
Each worker gets a task from the DAG, with a mutex
At end of instrument-cycle DAG is modified
When no work proceed to end Barrier

ffitch ParCS

Background

Locking and Barriers

We use the POSIX pthreads library.

One master thread does analysis and DAG construction
A Barrier at the start of each control cycle
Each worker gets a task from the DAG, with a mutex
At end of instrument-cycle DAG is modified
When no work proceed to end Barrier

ffitch ParCS

Background

Load Balancing

We would like each task to be equal computation and
sufficiently large.

This is not always true and currently we ignore this problem

Code exists to collect instances together.

ffitch ParCS

Background

Load Balancing

We would like each task to be equal computation and
sufficiently large.

This is not always true and currently we ignore this problem

Code exists to collect instances together.

ffitch ParCS

Background

Load Balancing

We would like each task to be equal computation and
sufficiently large.

This is not always true and currently we ignore this problem

Code exists to collect instances together.

ffitch ParCS

Background

Load Data

We are collecting data on average instruction count for
opcodes, using valgrind.

We calculate three counts; initialisation, per k-cycle, per sample

ffitch ParCS

Background

Costs of a few opcodes

Opcode init Audio Control
table.a 93 23.063 43.998
table.k 93 0 45
butterlp 9 29.005 4 5.478
butterhi 19 30.000 35
butterbp 20 30 71
bilbar 371.5 1856.028 86
ags 497 917.921 79475.155
oscil.kk 69 12 47
oscili.kk 69 21 49
reverb 6963.5 77 158

ffitch ParCS

Background

Current State

Implemented by Chris Wilson, revised by John ffitch. Tested on
Linux (and OSX). Requires the new parser but is available on
Sourceforge as a branch. Can control number of threads.

Some features still missing, like zak and buses.

ffitch ParCS

Background

Current State

Implemented by Chris Wilson, revised by John ffitch. Tested on
Linux (and OSX). Requires the new parser but is available on
Sourceforge as a branch. Can control number of threads.

Some features still missing, like zak and buses.

ffitch ParCS

Background

Linux Quadcore Results

Sound ksmps 1 5 Time
Xanadu 1 31.202 39.291 42.318 43.043 48.304
Xanadu 10 18.836 19.901 20.289 21.386 22.485
Xanadu 100 16.023 17.413 16.999 16.545 15.884
Xanadu 300 17.159 16.137 15.141 15.723 14.905
Xanadu 900 16.004 15.099 13.778 14.364 14.167

CloudStrata 1 173.757 191.421 211.295 214.516 261.238
CloudStrata 10 89.406 80.998 94.023 110.170 98.187
CloudStrata 100 85.966 86.114 81.909 83.258 85.631
CloudStrata 300 87.153 76.045 79.353 78.399 74.684
CloudStrata 900 82.612 76.434 64.368 76.217 74.747

trapped 1 20.931 63.492 81.654 107.982 139.334
trapped 10 3.348 7.724 9.500 12.165 14.937
trapped 100 1.388 1.810 1.928 2.167 2.612
trapped 300 1.319 1.181 1.205 1.386 1.403
trapped 900 1.236 1.025 1.085 1.091 1.112

ffitch ParCS

Background

Performance

As the control rate decreases, corresponding to an increase in
ksmps, the potential gain increases. This suggests that the
current system is using too small a granularity and the
collecting of instruments into larger groups will give a
performance gain.

The performance figures are perhaps a little disappointing, but
they do show that it is possible to get speed improvements, and
more work on the load balance could be useful.

ffitch ParCS

Background

Performance

As the control rate decreases, corresponding to an increase in
ksmps, the potential gain increases. This suggests that the
current system is using too small a granularity and the
collecting of instruments into larger groups will give a
performance gain.

The performance figures are perhaps a little disappointing, but
they do show that it is possible to get speed improvements, and
more work on the load balance could be useful.

ffitch ParCS

Background

Conclusions

A system for parallel execution of Csound has been presented,
that works at the granularity of the instrument, based on
thirty-year old technology.

I believe that the level of granularity is the correct one, and with
more attention to the DAG construction and load balancing it
offers real gains for many users. It does not require specialist
hardware, and can make use of current and projected
commodity systems.

ffitch ParCS

Background

Conclusions

A system for parallel execution of Csound has been presented,
that works at the granularity of the instrument, based on
thirty-year old technology.

I believe that the level of granularity is the correct one, and with
more attention to the DAG construction and load balancing it
offers real gains for many users. It does not require specialist
hardware, and can make use of current and projected
commodity systems.

ffitch ParCS

Background

Acknowledgements

Jed Marti (ex U of Utah and RAND; ARTIS, LLC)
Arthur Norman (Trinity Collge, Cambridge)
Chris Wilson (ex U of Bath; Imagination Technology plc)
Steven Yi
Csound Community

Thanks to Codemist Ltd. This work in unsupported by public agencies

ffitch ParCS

	Background

