
An LLVM bitcode interface 
between Pure and Faust

Albert Gräf
Department of Music Informatics
Johannes Gutenberg University Mainz



● Faust (“functional audio streams”): programs define the 
block diagrams of signal processors

– turns functional descriptions into dsp code

– supports many different host environments
● Pure (“pure universal rewriting engine”): programs are 

symbolic rewriting systems

– “functional scripting language”, JIT-compiled

– modern FP syntax + Lisp-like dynamic typing and 
metaprogramming capabilities

– interfaces nicely to C, C++, Fortran, Octave, Pd, …

– built-in vector/matrix data structure

http://faust.grame.fr/
http://pure-lang.googlecode.com/


● LLVM (“low-level virtual machine”): cross-platform 
compiler backend

– JIT (just in time) and static compilation

– fairly low-level code model, good for dsp

– sophisticated optimizations, also at link time

– used by llvm-gcc, clang, ghc, OpenCL, ...

http://llvm.org/


● Faust LLVM backend by Stéphane Letz (2010); see 
http://www.grame.fr/~letz/faust_llvm.html

● Direct linkage with LLVM bitcode

● Dynamic loading of Faust modules

Faust dsp faust C++ source

program

object

library

C++ glue code

LLVM bitcode

LLVM host

http://www.grame.fr/~letz/faust_llvm.html


The Pure-Faust Interface

● Basic goal: ability to run Faust dsps in Pure

● Somewhat like Snd-RT, but without restricting the host 
language

● Host only does “soft realtime”, but we still strive for low 
turnaround times to enable livecoding

● Old interface: Compile Faust module to a shared 
library, load in Pure via pure-faust module

– clunky, needs C++ as intermediate language

– high compilation times, not good for livecoding



The Pure-Faust Interface

● New interface: Compile Faust module to LLVM 
bitcode, which can be loaded directly in Pure

– possible to inline Faust code in Pure

– faster turnaround, good (enough) for livecoding
● Benefits for the Faust programmer:

– Use Pure as an interactive frontend to Faust

– Use Pure to interface Faust to other systems



gain = nentry("gain", 0.3
process = + : *(gain);

faust

LLVM IR

LLVM bitcode

using "dsp:example";
let dsp = example::newinit 44100;

pure

LLVM IR

JIT

bitcode linker

batch compiler



Inlining

faust

LLVM IR

LLVM bitcode

%< -*- dsp:example -*-
gain = nentry("gain", 0.3, 0, 10, 0.01);
process = + : *(gain);
%>
let dsp = example::newinit 44100;

pure

LLVM IR

JIT

bitcode linker



Examples



Future Work

● Tighter integration via LLVM IR (skip bitcode files)

● Requires Faust in a library

● Faust as an embedded sublanguage in Pure (skip 
generation of Faust source)

faust

LLVM IR

pure

LLVM IR

JIT

IR linker


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

