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Why?
• Network transparency

• Application mixing

• Free your Audio

• Interoperability with arbitrary protocols

• More testing of the PulseAudio code

• Yet another way of interacting with PulseAudio server instances in 
your network

• Use sound hardware that is unsupported by Linux natively

• Provide a software base for other projects (Jack for instance)
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Darwin Kernel

• In charge to create IOAudio based sound 
devices which connect to real hardware

• An IOAudioDevice object represents one 
hardware unity

• An IOAudioEngine object represents a set 
of synchronously running streams



HAL

• Is loaded in the process space of each 
application which uses CoreAudio

• Interfaces to IOAudio based kernel 
implementations

• Loads user space plugins 
(AudioHardwarePlugin)

• Loads driver plugins (for IOAudio based 
drivers)



coreaudiod / System 
Sound Server

• Manages default sound card handling

• Plays system alert sounds

• Is always running as background daemon



Possible audio hooks

• Re-direct application to alternative sound 
interfaces

• Make the application use a special AudioUnit plugin 
(not always possible)

• Library pre-loading (not implemented as part of 
PulseAudio for Mac OS X, hackish, unsupported)

• For some application, the only way 
to do this is to change the default 
sound card (i.e., iTunes)



PulseAudio daemon

• poll() is broken on Mac OS X since 10.3, so we need to 
enable the “poll() via select() hack”

• pthread semaphores are unsupported, Apple uses an own 
API

• clock and time functions had to be re-implemented

• Mac OS X has a sophisticated real-time scheduling API 
which pulseaudiod now uses for its high-priority threads



OS specific module: 
module-coreaudio-detect

• Scans for CoreAudio hardware which is 
available at load time of the module

• Registers a listener for device connection 
and disconnection events

• Loads/unloads modules of type       
module-coreaudio-device



OS specific module: 
module-coreaudio-device

• Is loaded with an argument specifying the 
CoreAudio’s internal object id

• Queries the device for its properties

• Acts as bridge between PulseAudio and 
CoreAudio

• Offers as many sources/sinks to PulseAudio 
as the actual hardware announces



OS specific module: 
module-bonjour-publish

• Uses the native Mac OS X API for 
publishing network services instead of the 
existing module, because Avahi is not very 
portable due to its heavy dependency chain 
(DBus etc ...)



PulseAudio.framework

• A Framework bundle to abstract all PulseAudio types

• Purely written in ObjC

• Uses a clean class model, delegates and both local and 
remote notifications

• Is also the home for all PulseAudio binaries (such as the 
daemon, modules, etc)

• Has objects for service discovery and PulseAudioHelper 
PulseAudio server connections



PulseAudioHelper
• Runs in the background

• Reads in the Preferences plist

• Communicates with PAHALPlugin instances and the 
PAPreferencePane

• Forwards messages between the PreferencePane 
and the HAL plugins

• Can display Growl notifications

• Based on PulseAudio.framework



Preference Pane 

• Communicates with PulseAudio HAL plugin 
instances

• Can display current settings of each connected 
client

• Can be used to re-route an existing connection to 
another server instance

• Configures the local sound daemon

• Based on PulseAudio.framework



PulseConsole

• Cocoa base tool that allows introspection 
of PulseAudio server instances

• Mixer GUI to make controlling volumes 
easy

• Multi-document based

• Listens to announces services and offers a 
list of server instances to connect to



PA AudioUnit (not 
implemented yet)

• Will ship as AudioUnit bundle

• Can be used by all application that are capable 
of handling them (Apple’s Logic, Ableton’s Live, 
AULab, etc ...)

• Shall allows selection of the server to connect 
to

• This is not yet implemented, helpers welcome



Legacy (ignore that)

• A kernel module (kext) which registers an 
IOAudio device

• A user space daemon acting as counterpart

• Are not part of the binary distribution

• Exist due to historical reasons and are left 
in the tree as reference for other projects 
(you never know ...)



PulseAudio on OS X 
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Demo

(cross your fingers)



Possible scenarios
• Route Rhythmbox output to OS X machines

• Route iTunes output to your favorite Linux appliance

• Route iDVD output to Airtunes

• Use a LADSPA plugin to route sound to a machine running Mac OS X, and pipe sound 
through a AudioUnit host, then send it back to Linux (just an idea)

• Use PulseConsole to control the inputs and outputs of a remote machine running 
PulseAudio

• Use a AudioUnit plugin and send selected streams from Logic/AbletonLive!/... to a Linux 
host for further processing

• Interaction with uPnP/AV services in your network

• Application-based mixing of native Mac OS X clients



What’s next?
• This is all work in progress and by far not yet finished

• The AudioUnit plugins need to be implemented

• The GUI components needs beautification

• Better documentation

• We need a nice website

• More testing

• Get the latency down

• More helping hands are certainly welcome

• Localization

• Bring it to the AppStore?



That’s it

• Contact the PulseAudio mailing list

• All code is GPLv2

• Documentation will go to the Wiki on the 
project website on GitHub

• Wait for the first public release (hopefully 
soon)

• Binary distribution will be available
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