
PulseAudio
on Mac OS X

Daniel Mack for LAC 2011, Maynooth

Why?
• Network transparency

• Application mixing

• Free your Audio

• Interoperability with arbitrary protocols

• More testing of the PulseAudio code

• Yet another way of interacting with PulseAudio server instances in
your network

• Use sound hardware that is unsupported by Linux natively

• Provide a software base for other projects (Jack for instance)

CoreAudio Overview

HALiTunes
(IOAudio based)

IOAudioFamily
(kernel)

IOAudioFamily
driver

Hardware

HALiTunes ?

Logic AudioUnit plugin ?

coreaudiod

(default
sound card
handling)

Preference Pane,
AudioMIDISetup

Darwin Kernel

• In charge to create IOAudio based sound
devices which connect to real hardware

• An IOAudioDevice object represents one
hardware unity

• An IOAudioEngine object represents a set
of synchronously running streams

HAL

• Is loaded in the process space of each
application which uses CoreAudio

• Interfaces to IOAudio based kernel
implementations

• Loads user space plugins
(AudioHardwarePlugin)

• Loads driver plugins (for IOAudio based
drivers)

coreaudiod / System
Sound Server

• Manages default sound card handling

• Plays system alert sounds

• Is always running as background daemon

Possible audio hooks

• Re-direct application to alternative sound
interfaces

• Make the application use a special AudioUnit plugin
(not always possible)

• Library pre-loading (not implemented as part of
PulseAudio for Mac OS X, hackish, unsupported)

• For some application, the only way
to do this is to change the default
sound card (i.e., iTunes)

PulseAudio daemon

• poll() is broken on Mac OS X since 10.3, so we need to
enable the “poll() via select() hack”

• pthread semaphores are unsupported, Apple uses an own
API

• clock and time functions had to be re-implemented

• Mac OS X has a sophisticated real-time scheduling API
which pulseaudiod now uses for its high-priority threads

OS specific module:
module-coreaudio-detect

• Scans for CoreAudio hardware which is
available at load time of the module

• Registers a listener for device connection
and disconnection events

• Loads/unloads modules of type
module-coreaudio-device

OS specific module:
module-coreaudio-device

• Is loaded with an argument specifying the
CoreAudio’s internal object id

• Queries the device for its properties

• Acts as bridge between PulseAudio and
CoreAudio

• Offers as many sources/sinks to PulseAudio
as the actual hardware announces

OS specific module:
module-bonjour-publish

• Uses the native Mac OS X API for
publishing network services instead of the
existing module, because Avahi is not very
portable due to its heavy dependency chain
(DBus etc ...)

PulseAudio.framework

• A Framework bundle to abstract all PulseAudio types

• Purely written in ObjC

• Uses a clean class model, delegates and both local and
remote notifications

• Is also the home for all PulseAudio binaries (such as the
daemon, modules, etc)

• Has objects for service discovery and PulseAudioHelper
PulseAudio server connections

PulseAudioHelper
• Runs in the background

• Reads in the Preferences plist

• Communicates with PAHALPlugin instances and the
PAPreferencePane

• Forwards messages between the PreferencePane
and the HAL plugins

• Can display Growl notifications

• Based on PulseAudio.framework

Preference Pane

• Communicates with PulseAudio HAL plugin
instances

• Can display current settings of each connected
client

• Can be used to re-route an existing connection to
another server instance

• Configures the local sound daemon

• Based on PulseAudio.framework

PulseConsole

• Cocoa base tool that allows introspection
of PulseAudio server instances

• Mixer GUI to make controlling volumes
easy

• Multi-document based

• Listens to announces services and offers a
list of server instances to connect to

PA AudioUnit (not
implemented yet)

• Will ship as AudioUnit bundle

• Can be used by all application that are capable
of handling them (Apple’s Logic, Ableton’s Live,
AULab, etc ...)

• Shall allows selection of the server to connect
to

• This is not yet implemented, helpers welcome

Legacy (ignore that)

• A kernel module (kext) which registers an
IOAudio device

• A user space daemon acting as counterpart

• Are not part of the binary distribution

• Exist due to historical reasons and are left
in the tree as reference for other projects
(you never know ...)

PulseAudio on OS X
Ecosystem

PA Server
(local)

PA HAL Plugin

PA Server
(remote)

iTunes

PA HAL Plugin iChat

PA HAL Plugin Skype

PulseConsole

PreferencePane

PA AudioUnit Ableton Live!

PulseAudioHelperGrowl

Demo

(cross your fingers)

Possible scenarios
• Route Rhythmbox output to OS X machines

• Route iTunes output to your favorite Linux appliance

• Route iDVD output to Airtunes

• Use a LADSPA plugin to route sound to a machine running Mac OS X, and pipe sound
through a AudioUnit host, then send it back to Linux (just an idea)

• Use PulseConsole to control the inputs and outputs of a remote machine running
PulseAudio

• Use a AudioUnit plugin and send selected streams from Logic/AbletonLive!/... to a Linux
host for further processing

• Interaction with uPnP/AV services in your network

• Application-based mixing of native Mac OS X clients

What’s next?
• This is all work in progress and by far not yet finished

• The AudioUnit plugins need to be implemented

• The GUI components needs beautification

• Better documentation

• We need a nice website

• More testing

• Get the latency down

• More helping hands are certainly welcome

• Localization

• Bring it to the AppStore?

That’s it

• Contact the PulseAudio mailing list

• All code is GPLv2

• Documentation will go to the Wiki on the
project website on GitHub

• Wait for the first public release (hopefully
soon)

• Binary distribution will be available

Credits

• Thanks to everyone who contributed to
PulseAudio. Without a solid software base
to start with, this project wouldn’t have
been possible.

• Thanks to Apple for providing clear and
convenient interfaces to their solid audio
system.

