
INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

INTRODUCING KRONOS: A NOVEL APPROACH

TO SIGNAL PROCESSING LANGUAGES

Vesa Norilo

Centre for Music & Technology
Sibelius–Academy

Linux Audio Conference, 2011



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

OUTLINE

INTRODUCTION

MOTIVATION
The Current State of DSP Programming
Why Yet Another Programing Language?

KRONOS – AN OVERVIEW
A Language Specification
A Just-in-Time Compiler
Type Determinism

CASE STUDIES
Examples



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

INTRODUCTION

• Research background: PWGL

• Musical programming environment by Laurson,
Kuuskankare, Norilo, Sprotte

• High level visual interface to LISP programming
• Synthesizer component in C++ written by the author:

PWGLSynth
• Kronos began as a bunch of aspirations for PWGLSynth 2

• Generic computation engine
• High level abstraction
• Great performance

• Since then, Kronos has morphed into a standalone
compiler/language

• Doctoral study project since 2010



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

INTRODUCTION

• Research background: PWGL
• Musical programming environment by Laurson,

Kuuskankare, Norilo, Sprotte
• High level visual interface to LISP programming
• Synthesizer component in C++ written by the author:

PWGLSynth

• Kronos began as a bunch of aspirations for PWGLSynth 2
• Generic computation engine
• High level abstraction
• Great performance

• Since then, Kronos has morphed into a standalone
compiler/language

• Doctoral study project since 2010



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

INTRODUCTION

• Research background: PWGL
• Musical programming environment by Laurson,

Kuuskankare, Norilo, Sprotte
• High level visual interface to LISP programming
• Synthesizer component in C++ written by the author:

PWGLSynth
• Kronos began as a bunch of aspirations for PWGLSynth 2

• Generic computation engine
• High level abstraction
• Great performance

• Since then, Kronos has morphed into a standalone
compiler/language

• Doctoral study project since 2010



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

INTRODUCTION

• Research background: PWGL
• Musical programming environment by Laurson,

Kuuskankare, Norilo, Sprotte
• High level visual interface to LISP programming
• Synthesizer component in C++ written by the author:

PWGLSynth
• Kronos began as a bunch of aspirations for PWGLSynth 2

• Generic computation engine
• High level abstraction
• Great performance

• Since then, Kronos has morphed into a standalone
compiler/language

• Doctoral study project since 2010



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

INTRODUCTION

• Research background: PWGL
• Musical programming environment by Laurson,

Kuuskankare, Norilo, Sprotte
• High level visual interface to LISP programming
• Synthesizer component in C++ written by the author:

PWGLSynth
• Kronos began as a bunch of aspirations for PWGLSynth 2

• Generic computation engine
• High level abstraction
• Great performance

• Since then, Kronos has morphed into a standalone
compiler/language

• Doctoral study project since 2010



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

INTRODUCTION

• Research background: PWGL
• Musical programming environment by Laurson,

Kuuskankare, Norilo, Sprotte
• High level visual interface to LISP programming
• Synthesizer component in C++ written by the author:

PWGLSynth
• Kronos began as a bunch of aspirations for PWGLSynth 2

• Generic computation engine
• High level abstraction
• Great performance

• Since then, Kronos has morphed into a standalone
compiler/language

• Doctoral study project since 2010



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

MOTIVATION



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

THE CURRENT STATE OF DSP PROGRAMMING

• The industry standard for DSP is C
• Plugins and DSP chips tend to have C toolchains

• AU, VST, LADSPA
• Motorola 56k
• etc..

• C is relatively hostile to casual programmers
• Casual programmers make a lot of musical applications!
• Getting audio out of C is very difficult for learners

• High performance programs are low level
• Many powerful abstractions have performance penalties
• Tedious to write for professionals



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

THE CURRENT STATE OF DSP PROGRAMMING

• The industry standard for DSP is C

• Plugins and DSP chips tend to have C toolchains
• AU, VST, LADSPA
• Motorola 56k
• etc..

• C is relatively hostile to casual programmers
• Casual programmers make a lot of musical applications!
• Getting audio out of C is very difficult for learners

• High performance programs are low level
• Many powerful abstractions have performance penalties
• Tedious to write for professionals



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

THE CURRENT STATE OF DSP PROGRAMMING

• The industry standard for DSP is C
• Plugins and DSP chips tend to have C toolchains

• AU, VST, LADSPA
• Motorola 56k
• etc..

• C is relatively hostile to casual programmers
• Casual programmers make a lot of musical applications!
• Getting audio out of C is very difficult for learners

• High performance programs are low level
• Many powerful abstractions have performance penalties
• Tedious to write for professionals



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

THE CURRENT STATE OF DSP PROGRAMMING

• The industry standard for DSP is C
• Plugins and DSP chips tend to have C toolchains

• AU, VST, LADSPA
• Motorola 56k
• etc..

• C is relatively hostile to casual programmers
• Casual programmers make a lot of musical applications!
• Getting audio out of C is very difficult for learners

• High performance programs are low level
• Many powerful abstractions have performance penalties
• Tedious to write for professionals



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

THE CURRENT STATE OF DSP PROGRAMMING

• The industry standard for DSP is C
• Plugins and DSP chips tend to have C toolchains

• AU, VST, LADSPA
• Motorola 56k
• etc..

• C is relatively hostile to casual programmers

• Casual programmers make a lot of musical applications!
• Getting audio out of C is very difficult for learners

• High performance programs are low level
• Many powerful abstractions have performance penalties
• Tedious to write for professionals



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

THE CURRENT STATE OF DSP PROGRAMMING

• The industry standard for DSP is C
• Plugins and DSP chips tend to have C toolchains

• AU, VST, LADSPA
• Motorola 56k
• etc..

• C is relatively hostile to casual programmers
• Casual programmers make a lot of musical applications!
• Getting audio out of C is very difficult for learners

• High performance programs are low level
• Many powerful abstractions have performance penalties
• Tedious to write for professionals



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

THE CURRENT STATE OF DSP PROGRAMMING

• The industry standard for DSP is C
• Plugins and DSP chips tend to have C toolchains

• AU, VST, LADSPA
• Motorola 56k
• etc..

• C is relatively hostile to casual programmers
• Casual programmers make a lot of musical applications!
• Getting audio out of C is very difficult for learners

• High performance programs are low level

• Many powerful abstractions have performance penalties
• Tedious to write for professionals



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

THE CURRENT STATE OF DSP PROGRAMMING

• The industry standard for DSP is C
• Plugins and DSP chips tend to have C toolchains

• AU, VST, LADSPA
• Motorola 56k
• etc..

• C is relatively hostile to casual programmers
• Casual programmers make a lot of musical applications!
• Getting audio out of C is very difficult for learners

• High performance programs are low level
• Many powerful abstractions have performance penalties
• Tedious to write for professionals



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

WHY YET ANOTHER PROGRAMMING LANGUAGE?
OR what if it would be possible to...

• easily learn an audio language
• write abstract, reusable code that runs fast
• design all your algorithms down to the arithmetic primitive
• have a single filter for any combination of single or double

precision, real or complex, mono or multichannel...

Many of us here are working on a subset of these problems.
The final solution is not yet here.



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

WHY YET ANOTHER PROGRAMMING LANGUAGE?
OR what if it would be possible to...

• easily learn an audio language

• write abstract, reusable code that runs fast
• design all your algorithms down to the arithmetic primitive
• have a single filter for any combination of single or double

precision, real or complex, mono or multichannel...

Many of us here are working on a subset of these problems.
The final solution is not yet here.



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

WHY YET ANOTHER PROGRAMMING LANGUAGE?
OR what if it would be possible to...

• easily learn an audio language
• write abstract, reusable code that runs fast

• design all your algorithms down to the arithmetic primitive
• have a single filter for any combination of single or double

precision, real or complex, mono or multichannel...

Many of us here are working on a subset of these problems.
The final solution is not yet here.



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

WHY YET ANOTHER PROGRAMMING LANGUAGE?
OR what if it would be possible to...

• easily learn an audio language
• write abstract, reusable code that runs fast
• design all your algorithms down to the arithmetic primitive

• have a single filter for any combination of single or double
precision, real or complex, mono or multichannel...

Many of us here are working on a subset of these problems.
The final solution is not yet here.



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

WHY YET ANOTHER PROGRAMMING LANGUAGE?
OR what if it would be possible to...

• easily learn an audio language
• write abstract, reusable code that runs fast
• design all your algorithms down to the arithmetic primitive
• have a single filter for any combination of single or double

precision, real or complex, mono or multichannel...

Many of us here are working on a subset of these problems.
The final solution is not yet here.



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

WHY YET ANOTHER PROGRAMMING LANGUAGE?
OR what if it would be possible to...

• easily learn an audio language
• write abstract, reusable code that runs fast
• design all your algorithms down to the arithmetic primitive
• have a single filter for any combination of single or double

precision, real or complex, mono or multichannel...

Many of us here are working on a subset of these problems.
The final solution is not yet here.



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

KRONOS
an Overview



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

A LANGUAGE SPECIFICATION
SYNTAX

• Simple syntax
• Familiar function notation
SomeFunction(param1 param2)

• Infix functions for arithmetics
a + b * 3 / Sqrt(c)

• Algebraic data structure yields pairs, lists and trees
list = (a b c d)

• Tie-in allows for partial decomposition too
(first-element other-elements) = list



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

A LANGUAGE SPECIFICATION
SYNTAX

• Simple syntax

• Familiar function notation
SomeFunction(param1 param2)

• Infix functions for arithmetics
a + b * 3 / Sqrt(c)

• Algebraic data structure yields pairs, lists and trees
list = (a b c d)

• Tie-in allows for partial decomposition too
(first-element other-elements) = list



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

A LANGUAGE SPECIFICATION
SYNTAX

• Simple syntax
• Familiar function notation
SomeFunction(param1 param2)

• Infix functions for arithmetics
a + b * 3 / Sqrt(c)

• Algebraic data structure yields pairs, lists and trees
list = (a b c d)

• Tie-in allows for partial decomposition too
(first-element other-elements) = list



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

A LANGUAGE SPECIFICATION
SYNTAX

• Simple syntax
• Familiar function notation
SomeFunction(param1 param2)

• Infix functions for arithmetics
a + b * 3 / Sqrt(c)

• Algebraic data structure yields pairs, lists and trees
list = (a b c d)

• Tie-in allows for partial decomposition too
(first-element other-elements) = list



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

A LANGUAGE SPECIFICATION
SYNTAX

• Simple syntax
• Familiar function notation
SomeFunction(param1 param2)

• Infix functions for arithmetics
a + b * 3 / Sqrt(c)

• Algebraic data structure yields pairs, lists and trees
list = (a b c d)

• Tie-in allows for partial decomposition too
(first-element other-elements) = list



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

A LANGUAGE SPECIFICATION
SYNTAX

• Simple syntax
• Familiar function notation
SomeFunction(param1 param2)

• Infix functions for arithmetics
a + b * 3 / Sqrt(c)

• Algebraic data structure yields pairs, lists and trees
list = (a b c d)

• Tie-in allows for partial decomposition too
(first-element other-elements) = list



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

A LANGUAGE SPECIFICATION
CLASSIFICATION

• Functional Programming
• No state
• No variables
• Similar to audio signal routing
• Powerful abstraction

• Reactive Paradigm
• Action is followed by reaction
• Reactive graphs are used to optimize signal rates
• Implicit inferral of control and audio signals



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

A LANGUAGE SPECIFICATION
CLASSIFICATION

• Functional Programming

• No state
• No variables
• Similar to audio signal routing
• Powerful abstraction

• Reactive Paradigm
• Action is followed by reaction
• Reactive graphs are used to optimize signal rates
• Implicit inferral of control and audio signals



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

A LANGUAGE SPECIFICATION
CLASSIFICATION

• Functional Programming
• No state

• No variables
• Similar to audio signal routing
• Powerful abstraction

• Reactive Paradigm
• Action is followed by reaction
• Reactive graphs are used to optimize signal rates
• Implicit inferral of control and audio signals



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

A LANGUAGE SPECIFICATION
CLASSIFICATION

• Functional Programming
• No state
• No variables

• Similar to audio signal routing
• Powerful abstraction

• Reactive Paradigm
• Action is followed by reaction
• Reactive graphs are used to optimize signal rates
• Implicit inferral of control and audio signals



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

A LANGUAGE SPECIFICATION
CLASSIFICATION

• Functional Programming
• No state
• No variables
• Similar to audio signal routing

• Powerful abstraction
• Reactive Paradigm

• Action is followed by reaction
• Reactive graphs are used to optimize signal rates
• Implicit inferral of control and audio signals



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

A LANGUAGE SPECIFICATION
CLASSIFICATION

• Functional Programming
• No state
• No variables
• Similar to audio signal routing
• Powerful abstraction

• Reactive Paradigm
• Action is followed by reaction
• Reactive graphs are used to optimize signal rates
• Implicit inferral of control and audio signals



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

A LANGUAGE SPECIFICATION
CLASSIFICATION

• Functional Programming
• No state
• No variables
• Similar to audio signal routing
• Powerful abstraction

• Reactive Paradigm

• Action is followed by reaction
• Reactive graphs are used to optimize signal rates
• Implicit inferral of control and audio signals



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

A LANGUAGE SPECIFICATION
CLASSIFICATION

• Functional Programming
• No state
• No variables
• Similar to audio signal routing
• Powerful abstraction

• Reactive Paradigm
• Action is followed by reaction

• Reactive graphs are used to optimize signal rates
• Implicit inferral of control and audio signals



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

A LANGUAGE SPECIFICATION
CLASSIFICATION

• Functional Programming
• No state
• No variables
• Similar to audio signal routing
• Powerful abstraction

• Reactive Paradigm
• Action is followed by reaction
• Reactive graphs are used to optimize signal rates

• Implicit inferral of control and audio signals



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

A LANGUAGE SPECIFICATION
CLASSIFICATION

• Functional Programming
• No state
• No variables
• Similar to audio signal routing
• Powerful abstraction

• Reactive Paradigm
• Action is followed by reaction
• Reactive graphs are used to optimize signal rates
• Implicit inferral of control and audio signals



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

A LANGUAGE SPECIFICATION
AN EXAMPLE

Listing 1: Fold, a higher order function for reducing lists with
example replies.

Fold(folding-function x)
{

Fold = x
}

Fold(folding-function x xs)
{

Fold = Eval(folding-function x Fold(folding-function xs))
}

/* Add several numbers */
Fold(Add 1 2 3 4) => 10
/* Multiply several numbers */
Fold(Mul 5 6 10) => 300



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

A JUST-IN-TIME COMPILER

• Kronos compiles programs on the fly to native x86
• Some enhancements to SoftWire, a LGPL dynamic

assembler written by Nicolas Capens

• Programs are configured on the fly for the present I/O
configuration

• Good runtime performance using SSE4.2
• Comparable and often superior to an optimizing C-compiler



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

A JUST-IN-TIME COMPILER

• Kronos compiles programs on the fly to native x86
• Some enhancements to SoftWire, a LGPL dynamic

assembler written by Nicolas Capens

• Programs are configured on the fly for the present I/O
configuration

• Good runtime performance using SSE4.2
• Comparable and often superior to an optimizing C-compiler



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

A JUST-IN-TIME COMPILER

• Kronos compiles programs on the fly to native x86
• Some enhancements to SoftWire, a LGPL dynamic

assembler written by Nicolas Capens

• Programs are configured on the fly for the present I/O
configuration

• Good runtime performance using SSE4.2
• Comparable and often superior to an optimizing C-compiler



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

A JUST-IN-TIME COMPILER

• Kronos compiles programs on the fly to native x86
• Some enhancements to SoftWire, a LGPL dynamic

assembler written by Nicolas Capens

• Programs are configured on the fly for the present I/O
configuration

• Good runtime performance using SSE4.2

• Comparable and often superior to an optimizing C-compiler



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

A JUST-IN-TIME COMPILER

• Kronos compiles programs on the fly to native x86
• Some enhancements to SoftWire, a LGPL dynamic

assembler written by Nicolas Capens

• Programs are configured on the fly for the present I/O
configuration

• Good runtime performance using SSE4.2
• Comparable and often superior to an optimizing C-compiler



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

TYPE DETERMINISM
...OR THE CATCH

• ...too good to be true?

• To achieve performance, a rigorous constraint;
• TYPE DETERMINISM

• The result type of an expression can only depend on
argument type

• Complete dataflow analysis of the entire program
• Result type can’t depend on data!
• No dynamic containers!
• Minimal branching!

• No good for writing a word processor
• Designed for DSP inner loops



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

TYPE DETERMINISM
...OR THE CATCH

• ...too good to be true?
• To achieve performance, a rigorous constraint;

• TYPE DETERMINISM
• The result type of an expression can only depend on

argument type
• Complete dataflow analysis of the entire program
• Result type can’t depend on data!
• No dynamic containers!
• Minimal branching!

• No good for writing a word processor
• Designed for DSP inner loops



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

TYPE DETERMINISM
...OR THE CATCH

• ...too good to be true?
• To achieve performance, a rigorous constraint;
• TYPE DETERMINISM

• The result type of an expression can only depend on
argument type

• Complete dataflow analysis of the entire program
• Result type can’t depend on data!
• No dynamic containers!
• Minimal branching!

• No good for writing a word processor
• Designed for DSP inner loops



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

TYPE DETERMINISM
...OR THE CATCH

• ...too good to be true?
• To achieve performance, a rigorous constraint;
• TYPE DETERMINISM

• The result type of an expression can only depend on
argument type

• Complete dataflow analysis of the entire program
• Result type can’t depend on data!
• No dynamic containers!
• Minimal branching!

• No good for writing a word processor
• Designed for DSP inner loops



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

TYPE DETERMINISM
...OR THE CATCH

• ...too good to be true?
• To achieve performance, a rigorous constraint;
• TYPE DETERMINISM

• The result type of an expression can only depend on
argument type

• Complete dataflow analysis of the entire program

• Result type can’t depend on data!
• No dynamic containers!
• Minimal branching!

• No good for writing a word processor
• Designed for DSP inner loops



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

TYPE DETERMINISM
...OR THE CATCH

• ...too good to be true?
• To achieve performance, a rigorous constraint;
• TYPE DETERMINISM

• The result type of an expression can only depend on
argument type

• Complete dataflow analysis of the entire program
• Result type can’t depend on data!

• No dynamic containers!
• Minimal branching!

• No good for writing a word processor
• Designed for DSP inner loops



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

TYPE DETERMINISM
...OR THE CATCH

• ...too good to be true?
• To achieve performance, a rigorous constraint;
• TYPE DETERMINISM

• The result type of an expression can only depend on
argument type

• Complete dataflow analysis of the entire program
• Result type can’t depend on data!
• No dynamic containers!

• Minimal branching!

• No good for writing a word processor
• Designed for DSP inner loops



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

TYPE DETERMINISM
...OR THE CATCH

• ...too good to be true?
• To achieve performance, a rigorous constraint;
• TYPE DETERMINISM

• The result type of an expression can only depend on
argument type

• Complete dataflow analysis of the entire program
• Result type can’t depend on data!
• No dynamic containers!
• Minimal branching!

• No good for writing a word processor
• Designed for DSP inner loops



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

TYPE DETERMINISM
...OR THE CATCH

• ...too good to be true?
• To achieve performance, a rigorous constraint;
• TYPE DETERMINISM

• The result type of an expression can only depend on
argument type

• Complete dataflow analysis of the entire program
• Result type can’t depend on data!
• No dynamic containers!
• Minimal branching!

• No good for writing a word processor

• Designed for DSP inner loops



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

TYPE DETERMINISM
...OR THE CATCH

• ...too good to be true?
• To achieve performance, a rigorous constraint;
• TYPE DETERMINISM

• The result type of an expression can only depend on
argument type

• Complete dataflow analysis of the entire program
• Result type can’t depend on data!
• No dynamic containers!
• Minimal branching!

• No good for writing a word processor
• Designed for DSP inner loops



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

CASE STUDIES



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

SIGNAL GENERATION

• Delay is a first-class unary operator
• Recursion permitted via delays
• Recursion can be turned into an osc by clocking a section

of the loop
• IO:Audio-Gen(sig) provides signal updates at the audio rate

Listing 2: A Simple Phasor Oscillator
Phasor(freq)
{

next-phase = IO:Audio-Gen(z-1(’0 phase + freq))
phase = next-phase - Truncate(next-phase)
Phasor = phase + phase - 1

}



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

FAST −cos(πx) FOR x ∈ [−1,1]

• Source is the math definition of series approximation!

Listing 3: Taylor-series Cosine

Sine-Coef(n)
{

Sine-Coef = Crt:pow(Pi n * #2 - #1) * Crt:pow(#-1 n + #1) / Factorial(n * #2 - #1)
}

Fast-Cos(x order)
{

Use Algorithm
xm = Abs(x)
xp = xm - 0.5
coefs = Map(Sine-Coef Count-To(order))
Fast-Cos = xp * Horner-Polynomial(xp * xp Reverse(coefs))

}



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

SINUSOID OSCILLATOR

• Combining the −cos(πx) mapper and the phasor, a sine
oscillator is created

• With higher order functions, oscillator banks can be
constructed from a list of frequencies!

Listing 4: Sinusoid oscillation by mapping the phasor
FSin(freq)
{

FSin = Fast-Cos(Phasor(freq) #8)
}

/* Example of using higher order functions */
Osc-Bank = Reduce(Add Map(FSin freq1 freq2 freq3 freq4))



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

SIN-OSC APPLICATIONS

• Additive and FM Synthesis are easily constructed

Listing 5: Sinusoid Synthesis
Suppress-Alias(f0 amp) {Suppress-Alias = (f0 < 0.4) & amp}

Additive(f0 num-harmonics harmonic-coef harmonic-spread)
{

Use Algorithm
freqs = Map(Curry(Mul f0) Expand(num-harmonics Curry(Add harmonic-spread) 1))
amps = Expand(num-harmonics Curry(Mul harmonic-coef) 1)
oscs = Zip-With(Mul(Map(FSin freqs) Zip-With(Suppress-Alias freqs amps)))
Additive = Reduce(Add oscs)

}

FM(f0 ratio mod feedback)
{

modulator = FSin(f0 * ratio) * mod
carrier = FSin((1 + modulator + feedback * z-1(’0 carrier)) * f0)
FM = carrier

}



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

INTERFACING WITH CONTROL

• Other clocks besides audio generators can be used
• Resonator coefficient computations are clocked from OSC

• Only recomputes coefs when OSC signal arrives!

Listing 6: OSC-controlled Resonator Bank
Reson(x0 freq reson)
{

x1 = z-1(’0 x0) x2 = z-1(’0 x1) y1 = z-1(’0 y0) y2 = z-1(’0 y1)
r = Crt:pow(reson 0.125)
y0 = x0 - x2 + y1 * 2 * r * Crt:cos(freq) - y2 * r * r
Reson = y0 * 0.5 * (1 - r * r)

}

Reson-Bank()
{

Use Algorithm
params = ((IO:OSC-Input("cutoff1" Float) IO:OSC-Input("reson1" Float))

(IO:OSC-Input("cutoff2" Float) IO:OSC-Input("reson2" Float))
(IO:OSC-Input("cutoff3" Float) IO:OSC-Input("reson3" Float)))

Reson-Bank = Reduce(Add Map(Curry(Reson Noise()) params))
}



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

SCHROEDER REVERBERATION

• Classic Schroeder reverberation can be concisely
expressed

Listing 7: Classical Schroeder Reverb
Feedback-for-RT60(rt60 delay)
{

Feedback-for-RT60 = Crt:pow(#0.001 delay / rt60)
}

Basic(sig rt60)
{

Use Algorithm
allpass-params = ((0.7 #221) (0.7 #75))
delay-times = (#1310 #1636 #1813 #1927)
feedbacks = Map(Curry(Feedback-for-RT60 rt60) delay-times)

comb-section = Reduce(Add Zip-With(Curry(Delay sig) feedbacks delay-times))
Basic = Cascade(Allpass-Comb comb-section allpass-params)

}



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

FDN REVERBERATION

• Some highlights from a FDN reverberator

Listing 8: Snippets of a 16th order FDN reverberator
/* Orthogonal matrix multiply - Householder Algorithm */
Feedback-Mtx(input)
{

Use Algorithm
Feedback-Mtx = input
(even odd) = Split(input)
even-mtx = Recur(even) odd-mtx = Recur(odd)
Feedback-Mtx = Append(Zip-With(Add even-mtx odd-mtx) Zip-With(Sub even-mtx

odd-mtx))
}
/* 16-channel feedback signal recursively passed through a unit delay operator */
feedback-vector = z-1(’(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

Zip-With(Mul loss-coefs Zip-With(Filter:OnePole
Feedback-Mtx(delay-vector) filter-coefs)))



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

SUMMARY

• Kronos combines high level audio programs with high
performance – for both beginners and professionals

• The tradeoff of Type Determinism enables this unusual
combination

• Kronos will be released as a C-callable library. Licensing
options including dual-licensing with GPL are being
investigated.

• Outlook
• Development is in early stages. Debugging the compiler

and designing the run time libraries are ongoing
• A graphical user interface to the language should be

created
• The signal rate optimization should be further improved



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

SUMMARY

• Kronos combines high level audio programs with high
performance – for both beginners and professionals

• The tradeoff of Type Determinism enables this unusual
combination

• Kronos will be released as a C-callable library. Licensing
options including dual-licensing with GPL are being
investigated.

• Outlook
• Development is in early stages. Debugging the compiler

and designing the run time libraries are ongoing
• A graphical user interface to the language should be

created
• The signal rate optimization should be further improved



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

SUMMARY

• Kronos combines high level audio programs with high
performance – for both beginners and professionals

• The tradeoff of Type Determinism enables this unusual
combination

• Kronos will be released as a C-callable library. Licensing
options including dual-licensing with GPL are being
investigated.

• Outlook
• Development is in early stages. Debugging the compiler

and designing the run time libraries are ongoing
• A graphical user interface to the language should be

created
• The signal rate optimization should be further improved



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

SUMMARY

• Kronos combines high level audio programs with high
performance – for both beginners and professionals

• The tradeoff of Type Determinism enables this unusual
combination

• Kronos will be released as a C-callable library. Licensing
options including dual-licensing with GPL are being
investigated.

• Outlook
• Development is in early stages. Debugging the compiler

and designing the run time libraries are ongoing
• A graphical user interface to the language should be

created
• The signal rate optimization should be further improved



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

SUMMARY

• Kronos combines high level audio programs with high
performance – for both beginners and professionals

• The tradeoff of Type Determinism enables this unusual
combination

• Kronos will be released as a C-callable library. Licensing
options including dual-licensing with GPL are being
investigated.

• Outlook

• Development is in early stages. Debugging the compiler
and designing the run time libraries are ongoing

• A graphical user interface to the language should be
created

• The signal rate optimization should be further improved



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

SUMMARY

• Kronos combines high level audio programs with high
performance – for both beginners and professionals

• The tradeoff of Type Determinism enables this unusual
combination

• Kronos will be released as a C-callable library. Licensing
options including dual-licensing with GPL are being
investigated.

• Outlook
• Development is in early stages. Debugging the compiler

and designing the run time libraries are ongoing

• A graphical user interface to the language should be
created

• The signal rate optimization should be further improved



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

SUMMARY

• Kronos combines high level audio programs with high
performance – for both beginners and professionals

• The tradeoff of Type Determinism enables this unusual
combination

• Kronos will be released as a C-callable library. Licensing
options including dual-licensing with GPL are being
investigated.

• Outlook
• Development is in early stages. Debugging the compiler

and designing the run time libraries are ongoing
• A graphical user interface to the language should be

created

• The signal rate optimization should be further improved



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

SUMMARY

• Kronos combines high level audio programs with high
performance – for both beginners and professionals

• The tradeoff of Type Determinism enables this unusual
combination

• Kronos will be released as a C-callable library. Licensing
options including dual-licensing with GPL are being
investigated.

• Outlook
• Development is in early stages. Debugging the compiler

and designing the run time libraries are ongoing
• A graphical user interface to the language should be

created
• The signal rate optimization should be further improved



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

SUMMARY

• Kronos combines high level audio programs with high
performance – for both beginners and professionals

• The tradeoff of Type Determinism enables this unusual
combination

• Kronos will be released as a C-callable library. Licensing
options including dual-licensing with GPL are being
investigated.

• Outlook
• Development is in early stages. Debugging the compiler

and designing the run time libraries are ongoing
• A graphical user interface to the language should be

created
• The signal rate optimization should be further improved



INTRODUCTION MOTIVATION KRONOS – AN OVERVIEW CASE STUDIES SUMMARY ENDING

THANK YOU!

...questions?


	Introduction
	Motivation
	Kronos – an Overview
	Case Studies

