
Poing Impératif: Compiling Imperative and Object
Oriented Code to Faust

Kjetil Matheussen

Norwegian Center for Technology in Music and the Arts (NOTAM)

May 6, 2011

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 1 / 19



Outline

1 About Faust (background info)

2 Description of the problem

3 Solution to the problem

4 Examples

5 Benchmarks

6 Limitations in Poing Impératif

7 Future work

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 2 / 19



About Faust (background info)

About Faust (background info)

◮ Faust is a programming language
◮ ...for making programs which process audio signals.

◮ High level language.
◮ Code is more compact and cleaner than C or C++.
◮ Less fiddling with details. (less bugs and easier to read)

◮ Faust generates very efficient code.
◮ Often competes with handwritten C++ code.
◮ Faust can optimize code in ways which (i) are much hassle to do

manually, (ii) are hard to think of, or (iii) may have been overlooked in
the C or C++ version.

◮ Automatically generates various formats such as LADSPA, VST, Q,
SuperCollider, CSound, PD, Java, Flash, LLVM, OpenCL, etc.

◮ Write once, run everywhere. (even on your gfx board!)
◮ Options for generating parallel code. (automatically)
◮ Option for generating code which are more easily vectorized.

(I.e. to generate SIMD assembler instructions.)

◮ Conclusion: Many advantages of using Faust instead of C or C++.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 3 / 19



About Faust (background info)

About Faust (background info)

◮ Faust is a programming language
◮ ...for making programs which process audio signals.

◮ High level language.
◮ Code is more compact and cleaner than C or C++.
◮ Less fiddling with details. (less bugs and easier to read)

◮ Faust generates very efficient code.
◮ Often competes with handwritten C++ code.
◮ Faust can optimize code in ways which (i) are much hassle to do

manually, (ii) are hard to think of, or (iii) may have been overlooked in
the C or C++ version.

◮ Automatically generates various formats such as LADSPA, VST, Q,
SuperCollider, CSound, PD, Java, Flash, LLVM, OpenCL, etc.

◮ Write once, run everywhere. (even on your gfx board!)
◮ Options for generating parallel code. (automatically)
◮ Option for generating code which are more easily vectorized.

(I.e. to generate SIMD assembler instructions.)

◮ Conclusion: Many advantages of using Faust instead of C or C++.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 3 / 19



About Faust (background info)

About Faust (background info)

◮ Faust is a programming language
◮ ...for making programs which process audio signals.

◮ High level language.
◮ Code is more compact and cleaner than C or C++.
◮ Less fiddling with details. (less bugs and easier to read)

◮ Faust generates very efficient code.
◮ Often competes with handwritten C++ code.
◮ Faust can optimize code in ways which (i) are much hassle to do

manually, (ii) are hard to think of, or (iii) may have been overlooked in
the C or C++ version.

◮ Automatically generates various formats such as LADSPA, VST, Q,
SuperCollider, CSound, PD, Java, Flash, LLVM, OpenCL, etc.

◮ Write once, run everywhere. (even on your gfx board!)
◮ Options for generating parallel code. (automatically)
◮ Option for generating code which are more easily vectorized.

(I.e. to generate SIMD assembler instructions.)

◮ Conclusion: Many advantages of using Faust instead of C or C++.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 3 / 19



About Faust (background info)

About Faust (background info)

◮ Faust is a programming language
◮ ...for making programs which process audio signals.

◮ High level language.
◮ Code is more compact and cleaner than C or C++.
◮ Less fiddling with details. (less bugs and easier to read)

◮ Faust generates very efficient code.
◮ Often competes with handwritten C++ code.
◮ Faust can optimize code in ways which (i) are much hassle to do

manually, (ii) are hard to think of, or (iii) may have been overlooked in
the C or C++ version.

◮ Automatically generates various formats such as LADSPA, VST, Q,
SuperCollider, CSound, PD, Java, Flash, LLVM, OpenCL, etc.

◮ Write once, run everywhere. (even on your gfx board!)
◮ Options for generating parallel code. (automatically)
◮ Option for generating code which are more easily vectorized.

(I.e. to generate SIMD assembler instructions.)

◮ Conclusion: Many advantages of using Faust instead of C or C++.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 3 / 19



About Faust (background info)

About Faust (background info)

◮ Faust is a programming language
◮ ...for making programs which process audio signals.

◮ High level language.
◮ Code is more compact and cleaner than C or C++.
◮ Less fiddling with details. (less bugs and easier to read)

◮ Faust generates very efficient code.
◮ Often competes with handwritten C++ code.
◮ Faust can optimize code in ways which (i) are much hassle to do

manually, (ii) are hard to think of, or (iii) may have been overlooked in
the C or C++ version.

◮ Automatically generates various formats such as LADSPA, VST, Q,
SuperCollider, CSound, PD, Java, Flash, LLVM, OpenCL, etc.

◮ Write once, run everywhere. (even on your gfx board!)
◮ Options for generating parallel code. (automatically)
◮ Option for generating code which are more easily vectorized.

(I.e. to generate SIMD assembler instructions.)

◮ Conclusion: Many advantages of using Faust instead of C or C++.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 3 / 19



About Faust (background info)

About Faust (background info)

◮ Faust is a programming language
◮ ...for making programs which process audio signals.

◮ High level language.
◮ Code is more compact and cleaner than C or C++.
◮ Less fiddling with details. (less bugs and easier to read)

◮ Faust generates very efficient code.
◮ Often competes with handwritten C++ code.
◮ Faust can optimize code in ways which (i) are much hassle to do

manually, (ii) are hard to think of, or (iii) may have been overlooked in
the C or C++ version.

◮ Automatically generates various formats such as LADSPA, VST, Q,
SuperCollider, CSound, PD, Java, Flash, LLVM, OpenCL, etc.

◮ Write once, run everywhere. (even on your gfx board!)
◮ Options for generating parallel code. (automatically)
◮ Option for generating code which are more easily vectorized.

(I.e. to generate SIMD assembler instructions.)

◮ Conclusion: Many advantages of using Faust instead of C or C++.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 3 / 19



About Faust (background info)

About Faust (background info)

◮ Faust is a programming language
◮ ...for making programs which process audio signals.

◮ High level language.
◮ Code is more compact and cleaner than C or C++.
◮ Less fiddling with details. (less bugs and easier to read)

◮ Faust generates very efficient code.
◮ Often competes with handwritten C++ code.
◮ Faust can optimize code in ways which (i) are much hassle to do

manually, (ii) are hard to think of, or (iii) may have been overlooked in
the C or C++ version.

◮ Automatically generates various formats such as LADSPA, VST, Q,
SuperCollider, CSound, PD, Java, Flash, LLVM, OpenCL, etc.

◮ Write once, run everywhere. (even on your gfx board!)
◮ Options for generating parallel code. (automatically)
◮ Option for generating code which are more easily vectorized.

(I.e. to generate SIMD assembler instructions.)

◮ Conclusion: Many advantages of using Faust instead of C or C++.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 3 / 19



About Faust (background info)

About Faust (background info)

◮ Faust is a programming language
◮ ...for making programs which process audio signals.

◮ High level language.
◮ Code is more compact and cleaner than C or C++.
◮ Less fiddling with details. (less bugs and easier to read)

◮ Faust generates very efficient code.
◮ Often competes with handwritten C++ code.
◮ Faust can optimize code in ways which (i) are much hassle to do

manually, (ii) are hard to think of, or (iii) may have been overlooked in
the C or C++ version.

◮ Automatically generates various formats such as LADSPA, VST, Q,
SuperCollider, CSound, PD, Java, Flash, LLVM, OpenCL, etc.

◮ Write once, run everywhere. (even on your gfx board!)
◮ Options for generating parallel code. (automatically)
◮ Option for generating code which are more easily vectorized.

(I.e. to generate SIMD assembler instructions.)

◮ Conclusion: Many advantages of using Faust instead of C or C++.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 3 / 19



About Faust (background info)

About Faust (background info)

◮ Faust is a programming language
◮ ...for making programs which process audio signals.

◮ High level language.
◮ Code is more compact and cleaner than C or C++.
◮ Less fiddling with details. (less bugs and easier to read)

◮ Faust generates very efficient code.
◮ Often competes with handwritten C++ code.
◮ Faust can optimize code in ways which (i) are much hassle to do

manually, (ii) are hard to think of, or (iii) may have been overlooked in
the C or C++ version.

◮ Automatically generates various formats such as LADSPA, VST, Q,
SuperCollider, CSound, PD, Java, Flash, LLVM, OpenCL, etc.

◮ Write once, run everywhere. (even on your gfx board!)
◮ Options for generating parallel code. (automatically)
◮ Option for generating code which are more easily vectorized.

(I.e. to generate SIMD assembler instructions.)

◮ Conclusion: Many advantages of using Faust instead of C or C++.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 3 / 19



About Faust (background info)

About Faust (background info)

◮ Faust is a programming language
◮ ...for making programs which process audio signals.

◮ High level language.
◮ Code is more compact and cleaner than C or C++.
◮ Less fiddling with details. (less bugs and easier to read)

◮ Faust generates very efficient code.
◮ Often competes with handwritten C++ code.
◮ Faust can optimize code in ways which (i) are much hassle to do

manually, (ii) are hard to think of, or (iii) may have been overlooked in
the C or C++ version.

◮ Automatically generates various formats such as LADSPA, VST, Q,
SuperCollider, CSound, PD, Java, Flash, LLVM, OpenCL, etc.

◮ Write once, run everywhere. (even on your gfx board!)
◮ Options for generating parallel code. (automatically)
◮ Option for generating code which are more easily vectorized.

(I.e. to generate SIMD assembler instructions.)

◮ Conclusion: Many advantages of using Faust instead of C or C++.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 3 / 19



About Faust (background info)

About Faust (background info)

◮ Faust is a programming language
◮ ...for making programs which process audio signals.

◮ High level language.
◮ Code is more compact and cleaner than C or C++.
◮ Less fiddling with details. (less bugs and easier to read)

◮ Faust generates very efficient code.
◮ Often competes with handwritten C++ code.
◮ Faust can optimize code in ways which (i) are much hassle to do

manually, (ii) are hard to think of, or (iii) may have been overlooked in
the C or C++ version.

◮ Automatically generates various formats such as LADSPA, VST, Q,
SuperCollider, CSound, PD, Java, Flash, LLVM, OpenCL, etc.

◮ Write once, run everywhere. (even on your gfx board!)
◮ Options for generating parallel code. (automatically)
◮ Option for generating code which are more easily vectorized.

(I.e. to generate SIMD assembler instructions.)

◮ Conclusion: Many advantages of using Faust instead of C or C++.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 3 / 19



About Faust (background info)

About Faust (background info)

◮ Faust is a programming language
◮ ...for making programs which process audio signals.

◮ High level language.
◮ Code is more compact and cleaner than C or C++.
◮ Less fiddling with details. (less bugs and easier to read)

◮ Faust generates very efficient code.
◮ Often competes with handwritten C++ code.
◮ Faust can optimize code in ways which (i) are much hassle to do

manually, (ii) are hard to think of, or (iii) may have been overlooked in
the C or C++ version.

◮ Automatically generates various formats such as LADSPA, VST, Q,
SuperCollider, CSound, PD, Java, Flash, LLVM, OpenCL, etc.

◮ Write once, run everywhere. (even on your gfx board!)
◮ Options for generating parallel code. (automatically)
◮ Option for generating code which are more easily vectorized.

(I.e. to generate SIMD assembler instructions.)

◮ Conclusion: Many advantages of using Faust instead of C or C++.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 3 / 19



Description of the problem

Description of the problem

1. Faust requires the programmer to immediately start thinking in fully
functional terms.

◮ A 400Hz sine oscillator can not be made like this in faust:

phase = 0.0;

process(){

phase = phase + 400*(pi*2/samplerate);

return sin(phase);

}

◮ A special recursive operator (tilde) must be used instead:

process = _ ~ +(400*(pi*2/samplerate)) : sin;

2. Not straight forward to translate DSP code written in C or C++ to
Faust. (because of fundamentally different programming paradigms)

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 4 / 19



Description of the problem

Description of the problem

1. Faust requires the programmer to immediately start thinking in fully
functional terms.

◮ A 400Hz sine oscillator can not be made like this in faust:

phase = 0.0;

process(){

phase = phase + 400*(pi*2/samplerate);

return sin(phase);

}

◮ A special recursive operator (tilde) must be used instead:

process = _ ~ +(400*(pi*2/samplerate)) : sin;

2. Not straight forward to translate DSP code written in C or C++ to
Faust. (because of fundamentally different programming paradigms)

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 4 / 19



Description of the problem

Description of the problem

1. Faust requires the programmer to immediately start thinking in fully
functional terms.

◮ A 400Hz sine oscillator can not be made like this in faust:

phase = 0.0;

process(){

phase = phase + 400*(pi*2/samplerate);

return sin(phase);

}

◮ A special recursive operator (tilde) must be used instead:

process = _ ~ +(400*(pi*2/samplerate)) : sin;

2. Not straight forward to translate DSP code written in C or C++ to
Faust. (because of fundamentally different programming paradigms)

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 4 / 19



Description of the problem

Description of the problem

1. Faust requires the programmer to immediately start thinking in fully
functional terms.

◮ A 400Hz sine oscillator can not be made like this in faust:

phase = 0.0;

process(){

phase = phase + 400*(pi*2/samplerate);

return sin(phase);

}

◮ A special recursive operator (tilde) must be used instead:

process = _ ~ +(400*(pi*2/samplerate)) : sin;

2. Not straight forward to translate DSP code written in C or C++ to
Faust. (because of fundamentally different programming paradigms)

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 4 / 19



Description of the problem

Description of the problem

1. Faust requires the programmer to immediately start thinking in fully
functional terms.

◮ A 400Hz sine oscillator can not be made like this in faust:

phase = 0.0;

process(){

phase = phase + 400*(pi*2/samplerate);

return sin(phase);

}

◮ A special recursive operator (tilde) must be used instead:

process = _ ~ +(400*(pi*2/samplerate)) : sin;

2. Not straight forward to translate DSP code written in C or C++ to
Faust. (because of fundamentally different programming paradigms)

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 4 / 19



Solution to the problem

Solution to the problem

◮ A new compiler called Poing Impératif. This compiler
◮ Extends Faust with imperative and object oriented features.
◮ Outputs pure Faust code.

◮ Now, a 400Hz sine oscillator can be implemented like this:

phase = 0.0;

process(){

phase = phase + 400*(pi*2/samplerate);

return sin(phase);

}

◮ Poing Impératif makes it easier to:

1. Start using Faust without having to immediately start thinking in fully
functional terms.

2. Translate imperative and object oriented code to Faust.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 5 / 19



Solution to the problem

Solution to the problem

◮ A new compiler called Poing Impératif. This compiler
◮ Extends Faust with imperative and object oriented features.
◮ Outputs pure Faust code.

◮ Now, a 400Hz sine oscillator can be implemented like this:

phase = 0.0;

process(){

phase = phase + 400*(pi*2/samplerate);

return sin(phase);

}

◮ Poing Impératif makes it easier to:

1. Start using Faust without having to immediately start thinking in fully
functional terms.

2. Translate imperative and object oriented code to Faust.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 5 / 19



Solution to the problem

Solution to the problem

◮ A new compiler called Poing Impératif. This compiler
◮ Extends Faust with imperative and object oriented features.
◮ Outputs pure Faust code.

◮ Now, a 400Hz sine oscillator can be implemented like this:

phase = 0.0;

process(){

phase = phase + 400*(pi*2/samplerate);

return sin(phase);

}

◮ Poing Impératif makes it easier to:

1. Start using Faust without having to immediately start thinking in fully
functional terms.

2. Translate imperative and object oriented code to Faust.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 5 / 19



Solution to the problem

Solution to the problem

◮ A new compiler called Poing Impératif. This compiler
◮ Extends Faust with imperative and object oriented features.
◮ Outputs pure Faust code.

◮ Now, a 400Hz sine oscillator can be implemented like this:

phase = 0.0;

process(){

phase = phase + 400*(pi*2/samplerate);

return sin(phase);

}

◮ Poing Impératif makes it easier to:

1. Start using Faust without having to immediately start thinking in fully
functional terms.

2. Translate imperative and object oriented code to Faust.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 5 / 19



Solution to the problem

Solution to the problem

◮ A new compiler called Poing Impératif. This compiler
◮ Extends Faust with imperative and object oriented features.
◮ Outputs pure Faust code.

◮ Now, a 400Hz sine oscillator can be implemented like this:

phase = 0.0;

process(){

phase = phase + 400*(pi*2/samplerate);

return sin(phase);

}

◮ Poing Impératif makes it easier to:

1. Start using Faust without having to immediately start thinking in fully
functional terms.

2. Translate imperative and object oriented code to Faust.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 5 / 19



Solution to the problem

Solution to the problem

◮ A new compiler called Poing Impératif. This compiler
◮ Extends Faust with imperative and object oriented features.
◮ Outputs pure Faust code.

◮ Now, a 400Hz sine oscillator can be implemented like this:

phase = 0.0;

process(){

phase = phase + 400*(pi*2/samplerate);

return sin(phase);

}

◮ Poing Impératif makes it easier to:

1. Start using Faust without having to immediately start thinking in fully
functional terms.

2. Translate imperative and object oriented code to Faust.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 5 / 19



Solution to the problem

Solution to the problem

◮ A new compiler called Poing Impératif. This compiler
◮ Extends Faust with imperative and object oriented features.
◮ Outputs pure Faust code.

◮ Now, a 400Hz sine oscillator can be implemented like this:

phase = 0.0;

process(){

phase = phase + 400*(pi*2/samplerate);

return sin(phase);

}

◮ Poing Impératif makes it easier to:

1. Start using Faust without having to immediately start thinking in fully
functional terms.

2. Translate imperative and object oriented code to Faust.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 5 / 19



Solution to the problem

Solution to the problem

◮ A new compiler called Poing Impératif. This compiler
◮ Extends Faust with imperative and object oriented features.
◮ Outputs pure Faust code.

◮ Now, a 400Hz sine oscillator can be implemented like this:

phase = 0.0;

process(){

phase = phase + 400*(pi*2/samplerate);

return sin(phase);

}

◮ Poing Impératif makes it easier to:

1. Start using Faust without having to immediately start thinking in fully
functional terms.

2. Translate imperative and object oriented code to Faust.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 5 / 19



Examples

Example 1. Oscillator

class Oscillator(float frequency){

float phase;

float process(){

phase += frequency*3.14*2/44100;

return sin(phase);

}

}

freq = hslider("freq",400.0,10,3000,1);

process = Oscillator(freq);

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 6 / 19



Examples

Example 2. Oscillator with local method

class Oscillator(float frequency){
float phase;

increase_phase(float how_much){
phase += how_much;

}

float process(){
this.increase_phase(frequency*3.14*2/44100);
return sin(phase);

}
}

freq = hslider("freq",400.0,10,3000,1);
process = Oscillator(freq);

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 7 / 19



Examples

Example 3. Oscillator using a separate Phase class

class Phase{
float phase;

increase_phase(float how_much){
phase += how_much;

}
}

class Oscillator(float frequency){
Phase phase;

float process(){
phase.increase_phase(frequency*3.14*2/44100);
return sin(phase.phase);

}
}

freq = hslider("freq",400.0,10,3000,1);
process = Oscillator(freq);

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 8 / 19



Benchmarks

Example 4. Freeverb

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 9 / 19



Benchmarks

Benchmark 1: Freeverb

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 10 / 19



Benchmarks

Example 5. LADSPA am pitchshift

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 11 / 19



Benchmarks

Benchmark 2: LADSPA am pitchshift

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 12 / 19



Limitations in Poing Impératif

Limitations in Poing Impératif

1. Limited Array functionality

2. Missing for loop functionality

3. Inefficient branching

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 13 / 19



Limitations in Poing Impératif

Limitations in Poing Impératif

1. Limited Array functionality

2. Missing for loop functionality

3. Inefficient branching

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 13 / 19



Limitations in Poing Impératif

Limitations in Poing Impératif

1. Limited Array functionality

2. Missing for loop functionality

3. Inefficient branching

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 13 / 19



Limitations in Poing Impératif

Limitations in Poing Impératif

1. Limited Array functionality

2. Missing for loop functionality

3. Inefficient branching

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 13 / 19



Limitations in Poing Impératif

1. Limited Array functionality

◮ In C or C++ you can do this:

process(a,b){
a[i] += a; // Statement 1
a[i+1] += b; // Statement 2
return [i+2];

}

◮ But in Poing Impératif you can only do this:

process(a,b){
a[i] += a; // Statement 1
return [i+2];

}

◮ or this:

process(a,b){
a[i+2] += b; // Statement 2
return [i+2];

}

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 14 / 19



Limitations in Poing Impératif

1. Limited Array functionality

◮ In C or C++ you can do this:

process(a,b){
a[i] += a; // Statement 1
a[i+1] += b; // Statement 2
return [i+2];

}

◮ But in Poing Impératif you can only do this:

process(a,b){
a[i] += a; // Statement 1
return [i+2];

}

◮ or this:

process(a,b){
a[i+2] += b; // Statement 2
return [i+2];

}

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 14 / 19



Limitations in Poing Impératif

1. Limited Array functionality

◮ In C or C++ you can do this:

process(a,b){
a[i] += a; // Statement 1
a[i+1] += b; // Statement 2
return [i+2];

}

◮ But in Poing Impératif you can only do this:

process(a,b){
a[i] += a; // Statement 1
return [i+2];

}

◮ or this:

process(a,b){
a[i+2] += b; // Statement 2
return [i+2];

}

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 14 / 19



Limitations in Poing Impératif

1. Limited Array functionality

◮ In C or C++ you can do this:

process(a,b){
a[i] += a; // Statement 1
a[i+1] += b; // Statement 2
return [i+2];

}

◮ But in Poing Impératif you can only do this:

process(a,b){
a[i] += a; // Statement 1
return [i+2];

}

◮ or this:

process(a,b){
a[i+2] += b; // Statement 2
return [i+2];

}

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 14 / 19



Limitations in Poing Impératif

2. Missing for loop functionality

1. In C or C++ you can do this:

int get_faculty(int len){
int faculty = 1;
for(int i=2; i<len; i++){

faculty *= i;
}
return faculty;

}

This is not supported in Poing Impératif. (and is quite unlikely to be in the future.)

2. In C++ you can do this:

#define LEN 50

int get_faculty(){
int faculty = 1;
for(int i=2 ;i<LEN ;i++){

faculty *= i;
}
return faculty;

}

This is not supported in Poing Impératif either. (but might be supported in the future.)

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 15 / 19



Limitations in Poing Impératif

2. Missing for loop functionality

1. In C or C++ you can do this:

int get_faculty(int len){
int faculty = 1;
for(int i=2; i<len; i++){

faculty *= i;
}
return faculty;

}

This is not supported in Poing Impératif. (and is quite unlikely to be in the future.)

2. In C++ you can do this:

#define LEN 50

int get_faculty(){
int faculty = 1;
for(int i=2 ;i<LEN ;i++){

faculty *= i;
}
return faculty;

}

This is not supported in Poing Impératif either. (but might be supported in the future.)

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 15 / 19



Limitations in Poing Impératif

2. Missing for loop functionality

1. In C or C++ you can do this:

int get_faculty(int len){
int faculty = 1;
for(int i=2; i<len; i++){

faculty *= i;
}
return faculty;

}

This is not supported in Poing Impératif. (and is quite unlikely to be in the future.)

2. In C++ you can do this:

#define LEN 50

int get_faculty(){
int faculty = 1;
for(int i=2 ;i<LEN ;i++){

faculty *= i;
}
return faculty;

}

This is not supported in Poing Impératif either. (but might be supported in the future.)

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 15 / 19



Limitations in Poing Impératif

3. Inefficient branching

1. Faust generate no jumps.
Faust uses ?: as value selectors.
(For instance a = b ? 3 : 4;)

2. Example:

if(a==1){

lots of things 1.

}else{

lots of things 2.

}

3. However, a very intelligent C compiler could create jumps out of ?:
selectors.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 16 / 19



Limitations in Poing Impératif

3. Inefficient branching

1. Faust generate no jumps.
Faust uses ?: as value selectors.
(For instance a = b ? 3 : 4;)

2. Example:

if(a==1){

lots of things 1.

}else{

lots of things 2.

}

3. However, a very intelligent C compiler could create jumps out of ?:
selectors.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 16 / 19



Limitations in Poing Impératif

3. Inefficient branching

1. Faust generate no jumps.
Faust uses ?: as value selectors.
(For instance a = b ? 3 : 4;)

2. Example:

if(a==1){

lots of things 1.

}else{

lots of things 2.

}

3. However, a very intelligent C compiler could create jumps out of ?:
selectors.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 16 / 19



Limitations in Poing Impératif

3. Inefficient branching

1. Faust generate no jumps.
Faust uses ?: as value selectors.
(For instance a = b ? 3 : 4;)

2. Example:

if(a==1){

lots of things 1.

}else{

lots of things 2.

}

3. However, a very intelligent C compiler could create jumps out of ?:
selectors.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 16 / 19



Future work

Future work

◮ Implement for loops.
◮ Reduce compilation time.

◮ Freeverb takes 20-40 seconds to compile.
◮ Worse: small changes in the freeverb code causes Faust never to finish.

(apparently)

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 17 / 19



Future work

Future work

◮ Implement for loops.
◮ Reduce compilation time.

◮ Freeverb takes 20-40 seconds to compile.
◮ Worse: small changes in the freeverb code causes Faust never to finish.

(apparently)

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 17 / 19



Future work

Future work

◮ Implement for loops.
◮ Reduce compilation time.

◮ Freeverb takes 20-40 seconds to compile.
◮ Worse: small changes in the freeverb code causes Faust never to finish.

(apparently)

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 17 / 19



Future work

Future work

◮ Implement for loops.
◮ Reduce compilation time.

◮ Freeverb takes 20-40 seconds to compile.
◮ Worse: small changes in the freeverb code causes Faust never to finish.

(apparently)

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 17 / 19



Future work

Future work

◮ Implement for loops.
◮ Reduce compilation time.

◮ Freeverb takes 20-40 seconds to compile.
◮ Worse: small changes in the freeverb code causes Faust never to finish.

(apparently)

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 17 / 19



Future work

Q/A

Any questions?

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 18 / 19



Future work

Bakgrunn og problem

Utgangspunkt: Ønsket å bruke Stalin Scheme eller Bigloo Scheme for å
programmere lyd i sanntid.

◮ Stalin Scheme og Bigloo Scheme bruker Hans Boehm’s
konservative søppeltømmer for C og C++ (BDW-GC).

Problem 1: BDW-GC virker d̊arlig i sanntid.
◮ Programmene må vente til “mark”er ferdig å kjøre.

◮ Uberegnelig pausetid.

Problem 2: BDW-GC krever ikke read barrier eller write barrier.

◮ Alle kjente sanntids-søppeltømmere krever read barrier
eller write barrier.

◮ Stalin Scheme / Bigloo Scheme må i tilfelle modifiseres.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 19 / 19



Future work

Bakgrunn og problem

Utgangspunkt: Ønsket å bruke Stalin Scheme eller Bigloo Scheme for å
programmere lyd i sanntid.

◮ Stalin Scheme og Bigloo Scheme bruker Hans Boehm’s
konservative søppeltømmer for C og C++ (BDW-GC).

Problem 1: BDW-GC virker d̊arlig i sanntid.
◮ Programmene må vente til “mark”er ferdig å kjøre.

◮ Uberegnelig pausetid.

Problem 2: BDW-GC krever ikke read barrier eller write barrier.

◮ Alle kjente sanntids-søppeltømmere krever read barrier
eller write barrier.

◮ Stalin Scheme / Bigloo Scheme må i tilfelle modifiseres.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 19 / 19



Future work

Bakgrunn og problem

Utgangspunkt: Ønsket å bruke Stalin Scheme eller Bigloo Scheme for å
programmere lyd i sanntid.

◮ Stalin Scheme og Bigloo Scheme bruker Hans Boehm’s
konservative søppeltømmer for C og C++ (BDW-GC).

Problem 1: BDW-GC virker d̊arlig i sanntid.
◮ Programmene må vente til “mark”er ferdig å kjøre.

◮ Uberegnelig pausetid.

Problem 2: BDW-GC krever ikke read barrier eller write barrier.

◮ Alle kjente sanntids-søppeltømmere krever read barrier
eller write barrier.

◮ Stalin Scheme / Bigloo Scheme må i tilfelle modifiseres.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 19 / 19



Future work

Bakgrunn og problem

Utgangspunkt: Ønsket å bruke Stalin Scheme eller Bigloo Scheme for å
programmere lyd i sanntid.

◮ Stalin Scheme og Bigloo Scheme bruker Hans Boehm’s
konservative søppeltømmer for C og C++ (BDW-GC).

Problem 1: BDW-GC virker d̊arlig i sanntid.
◮ Programmene må vente til “mark”er ferdig å kjøre.

◮ Uberegnelig pausetid.

Problem 2: BDW-GC krever ikke read barrier eller write barrier.

◮ Alle kjente sanntids-søppeltømmere krever read barrier
eller write barrier.

◮ Stalin Scheme / Bigloo Scheme må i tilfelle modifiseres.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 19 / 19



Future work

Bakgrunn og problem

Utgangspunkt: Ønsket å bruke Stalin Scheme eller Bigloo Scheme for å
programmere lyd i sanntid.

◮ Stalin Scheme og Bigloo Scheme bruker Hans Boehm’s
konservative søppeltømmer for C og C++ (BDW-GC).

Problem 1: BDW-GC virker d̊arlig i sanntid.
◮ Programmene må vente til “mark”er ferdig å kjøre.

◮ Uberegnelig pausetid.

Problem 2: BDW-GC krever ikke read barrier eller write barrier.

◮ Alle kjente sanntids-søppeltømmere krever read barrier
eller write barrier.

◮ Stalin Scheme / Bigloo Scheme må i tilfelle modifiseres.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 19 / 19



Future work

Bakgrunn og problem

Utgangspunkt: Ønsket å bruke Stalin Scheme eller Bigloo Scheme for å
programmere lyd i sanntid.

◮ Stalin Scheme og Bigloo Scheme bruker Hans Boehm’s
konservative søppeltømmer for C og C++ (BDW-GC).

Problem 1: BDW-GC virker d̊arlig i sanntid.
◮ Programmene må vente til “mark”er ferdig å kjøre.

◮ Uberegnelig pausetid.

Problem 2: BDW-GC krever ikke read barrier eller write barrier.

◮ Alle kjente sanntids-søppeltømmere krever read barrier
eller write barrier.

◮ Stalin Scheme / Bigloo Scheme må i tilfelle modifiseres.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 19 / 19



Future work

Bakgrunn og problem

Utgangspunkt: Ønsket å bruke Stalin Scheme eller Bigloo Scheme for å
programmere lyd i sanntid.

◮ Stalin Scheme og Bigloo Scheme bruker Hans Boehm’s
konservative søppeltømmer for C og C++ (BDW-GC).

Problem 1: BDW-GC virker d̊arlig i sanntid.
◮ Programmene må vente til “mark”er ferdig å kjøre.

◮ Uberegnelig pausetid.

Problem 2: BDW-GC krever ikke read barrier eller write barrier.

◮ Alle kjente sanntids-søppeltømmere krever read barrier
eller write barrier.

◮ Stalin Scheme / Bigloo Scheme må i tilfelle modifiseres.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 19 / 19



Future work

Bakgrunn og problem

Utgangspunkt: Ønsket å bruke Stalin Scheme eller Bigloo Scheme for å
programmere lyd i sanntid.

◮ Stalin Scheme og Bigloo Scheme bruker Hans Boehm’s
konservative søppeltømmer for C og C++ (BDW-GC).

Problem 1: BDW-GC virker d̊arlig i sanntid.
◮ Programmene må vente til “mark”er ferdig å kjøre.

◮ Uberegnelig pausetid.

Problem 2: BDW-GC krever ikke read barrier eller write barrier.

◮ Alle kjente sanntids-søppeltømmere krever read barrier
eller write barrier.

◮ Stalin Scheme / Bigloo Scheme må i tilfelle modifiseres.

Kjetil Matheussen (NOTAM) Poing Impératif: Compiling Imperative and Object Oriented Code to FaustMay 6, 2011 19 / 19


	Outline
	About Faust (background info)
	Description of the problem
	Solution to the problem
	Examples
	Benchmarks
	Limitations in Poing Impératif
	Future work

