
  

The synpad – a position sensing 
midi drum interface

I will be talking today 
about my attempts to 
build a cheap, playable, 
midi drum interface with 
position sensing 
capability.



  

Overview

● Motivations – why build this?
● Research – previous designs.
● Physical design.
● Electronics.
● Driver software – firmware and position mapper.
● Synth software – using supercollider.
● Results.
● Similar work.
● Future directions.
● Conclusion.



  

Motivations

Why build something like this?

● I find drum machines limiting and awkward.
● I wanted something more immediate and 

responsive.
● Drum triggers are good but you can't change 

the tone.
● Wanted something more like a real drum.



  

Research

● Tried a couple of other designs.
● Voltage gradients in a conductive rubber sheet.
● Time of flight of pressure waves.
● Just sensing transferred pressure worked ok.



  

Physical design
● Playing surface is an 

aluminium sheet.
● The sheet moves freely 

in a wooden frame.
● Piezo sensors under 

each corner detect 
differences in transferred 
strike pressure.

● The signals are brought 
out to an arduino board.



  

Electronics

● Quite simple electronics.
● Provides a false ground level.
● Prevents voltage drift on the piezos.



  

Circuit diagram



  

Driver software - firmware

● Firmware turns analogue signals into 4 
velocities.

● ADC sample rate: 76 kHz across 4 lines. 
● Trigger level for detection.
● Absolute values summed for 16 samples = 0.84 

ms
● Summed values are written to USB at 230400 

baud (0.34 ms)
● 1300 sample / 68ms release period.



  

Position mapping software

● Python program maps 
sensor readings into x, y 
and velocity coordinates.

● Pad calibrated by striking 
at known positions.

● Least squares curve fit 
for position and velocity.

● X,Y and V are converted 
to midi note and 
controller values.

The position mapping equation.

# s[n] = reading for sensor n

# x = x or y return value.

# k[n] | f[n] = adjustable coefficients.

f1=s1 

f2=s2*k2

f3=s3*k3

f4=s4*k4

x=(l1*f1+l2*f2+l3*f3+l4*f4)/

(f1+f2+f3+f4)

return x 



  

Synth software

● The pad is just an interface.
● Existing synths not suitable.
● I wrote my own in SuperCollider.
● Could have used CSound or PureData.
● Could also use a graphical modular synth like 

Ingen.
● Learning to write synthdefs.
● 'Synth Secrets' series from 'Sound on sound'.



  

SynthDef.new("MidiDrum", { |vel=100, x=64, y=64,out=0|
// resonant snare sound
var sndbuf= Buffer.readChannel(s, 

"/home/andy/Desktop/music/supercollider/samples/84001__s
andyrb__KBSD_C42_VELOCITY9.wav", channels:0);
        var rq=10**((16-y) / 41);

var env,amp;
var noteMin=30;//54;
var noteMax=128;//66;
var note=(x*(noteMax-noteMin)/127)+noteMin;

   //note=(note/12).floor*12;
vel=vel+((127-note)/40)+((127-y)/50);

        amp=((vel-96)/3).dbamp;
env=EnvGen.kr(Env.triangle(1,4),1,doneAction:2);

Out.ar(out,amp*env*Pan2.ar(RLPF.ar(PlayBuf.ar(1,sndbuf), 
note.floor.midicps, rq  ), 0) );

} ).store;



  

SynthDef.new("MidiDrum", { |vel=100, x=64, y=64,out=0|
// synth drum with pink noise, comb delay line and low 

pass filter.
   var rq=10**((y-40) / 41);

var env,amp;
var noteMin=55; // 200Hz
var noteMax=128;//66;
var note=(x*(noteMax-noteMin)/127)+noteMin;

   var baseFreq=100;
   amp=16*((vel-96)/3).dbamp;

env=EnvGen.kr(Env.perc(0.01,0.5,1),1,doneAction:2);

Out.ar(out,amp*env*Pan2.ar(LPF.ar(CombC.ar(PinkNoise.ar(
0.1),1,1/baseFreq,rq),note.midicps), 0) );

} ).store;



  

SynthDef.new("MidiDrum", { |vel=100, x=64, y=64, out=0|
   // bass drum patch with variable square wave / saw wave ratio.
   var baseFreq=50, baseDelayMin=0.1, baseDelayMax=3, baseAmp=1, 
attack=0.01;
   var baseFreqMod=1, harmLPFreqMin=baseFreq, 
harmLPFreqMax=baseFreq*10;
   var fmBaseFreq=500, fmModSig=250, fmAmp=0.5, fmDelay;
   var amp,ampEnv, baseFreqEnv, harmSig, harmLPFreq, baseDelay, sawRatio, 
oscSig;
   baseDelay=0.5; //((y/128)*(baseDelayMax-baseDelayMin))+baseDelayMin;
   fmDelay=baseDelay/5;
   amp=((vel-32)/3).dbamp;
   harmLPFreq=((x/128)*(harmLPFreqMax-harmLPFreqMin))+harmLPFreqMin;
   
ampEnv=amp*EnvGen.kr(Env.perc(attack,baseDelay,baseAmp),1,doneAction:2)
;
   baseFreqEnv=EnvGen.kr(Env.perc(attack,baseDelay,baseFreqMod,'sine'));
   sawRatio=(y/128);
   oscSig=sawRatio*LFTri.ar(baseFreq+baseFreqEnv)+(1-
sawRatio)*Saw.ar(baseFreq+baseFreqEnv);
   harmSig=LPF.ar(oscSig,harmLPFreq);
   Out.ar(out,Pan2.ar(ampEnv*harmSig,0));
   } ).store;



  

SynthDef.new("MidiDrum", { |vel=100, x=64, y=64, out=0|
   // snare drum from synth secrets (based on roland 909).
   // different version with fixed noise delay and low pass filter.
   var part1Freq=180, part1Amp=0.1, part2Freq=330, part2Amp=0.05, 
minDistortPow=0, maxDistortPow=3, partDelay=0.7;
   var attack=0.01, noiseLPFreq=10000, noiseHPFreq=2000, noiseAmp1=0.005, 
noiseAmp2Ratio=2;
   var noiseDelay=0.4;
   var partSig, partEnv, amp, noiseEnv, noiseSig1, noiseSig2, noiseSig, 
outSig,lpFreq;
   var distort;
   distort=10**(((x/128)*(maxDistortPow-minDistortPow))+minDistortPow);
   amp=((vel/4)-28).dbamp;   
   partEnv=amp*EnvGen.kr(Env.perc(attack,partDelay,1),1,doneAction:2);
   partSig=part1Amp*atan(SinOsc.ar(part1Freq, 0, distort))
+part2Amp*atan(SinOsc.ar(part2Freq,0,distort));
   noiseSig1=noiseAmp1*LPF.ar(WhiteNoise.ar(1),noiseLPFreq);
   noiseSig2=(amp**0)*HPF.ar(noiseSig1*noiseAmp2Ratio,noiseHPFreq);
   noiseSig=(noiseSig1+noiseSig2);
   noiseEnv=amp*EnvGen.kr(Env.perc(attack,noiseDelay,1),1,doneAction:0);
   lpFreq=((y*3/5)+51).midicps;
   outSig=RLPF.ar(partSig*partEnv+noiseSig*noiseEnv,lpFreq,0.5);
   Out.ar(out,Pan2.ar(outSig,0));
   } ).store;



  

SynthDef.new("MidiDrum", { |vel=100, x=64, y=64,out=0|
// interfering oscillators.
var env,amp;
var noteMin=54;
var noteMax=66;
var note=(x*(noteMax-noteMin)/128)+noteMin;
var noteMiny=66;
var noteMaxy=78;
var notey=(y*(noteMaxy-noteMiny)/128)+noteMiny;

     amp=((vel-96)/3).dbamp;
env=EnvGen.kr(Env.perc(0.1,0.5,1),1,doneAction:2);

Out.ar(out,amp*env*Pan2.ar(SinOsc.ar(note.midicps)*SinOsc
.ar(notey.midicps), 0) );

} ).store;



  

Results

● Physically easy to construct.
● Low cost (approx 50-60 pounds)
● Playability is not bad.
● The accuracy of position mapping is about 15-

20%.
● Velocity mapping is ok in practice. Lower cutoff.
● Latency of the firmware is about 1.1ms.
● Have written some playable synths.



  

Similar Work

● Various people have produced similar 
instruments.

● Korg Kaoss pad and Kaoscillator. 
● Mandala drum from Synaesthesia Corp.
● Randall Jones's MSc thesis.



  

Future Directions

● Physical design could be improved.
● Might try a different design.
● A graphical interface would be good.
● Morphing presets.
● Synth design.



  

Conclusions

● The basic concept is sound.
● However this particular design has some 

weaknesses.
● Not much interest from people building their 

own.
● I enjoyed making it.
● I intend to develop the idea further.
● Learning to play it.
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For more information and updates see:

http://highfellow.org/synpad
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