LuaAV: Extensibility and Heterogeneity for Audiovisual
Computing

Graham WAKEFIELD and Wesley SMITH and Charles ROBERTS
Media Arts and Technology, University of California Santa Barbara
Santa Barbara, CA 93110,

USA,

{wakefield, whsmith, c.roberts}@mat.ucsb.edu

Abstract

We describe LuaAV, a runtime library and applica-
tion which extends the Lua programming language
to support computational composition of temporal,
sound, visual, spatial and other elements. In this
paper we document how we have attempted to
maintain several core principles of Lua itself -
extensibility, meta-mechanisms, efficiency, portabil-
ity - while providing the flexibility and temporal
accuracy demanded by interactive audio-visual
media. Code generation is noted as a recurrent
strategy for increasingly dynamic and extensible
environments.

Keywords

Audio-visual, composition, Lua, scripting language

1 LuaAV

LuaAV is an integrated programming envi-
ronment based upon extensions to the Lua
programming language enabling the tight
real-time integration of computation, time,
sound and space.

LuaAV has grown from the needs of stu-
dents and researchers in the Media Arts &
Technology program at the University of
California Santa Barbara; its origins lie in
earlier Lua-based audio and visual tools [20]
[15] [22]. More recently it has formed a central
component of media software infrastructure for
the AlloSphere [1] research space (a 3-storey
immersive spherical cave-like environment with
stereographic projection and spatial audio).

Various projects built using LuaAV have
been performed, exhibited or installed inter-
nationally, for scientific visualization [1], data
visualization [13]|, immersive generative art
[21], game development!, live-coding (Figure 1)
and audiovisual performance?.

LuaAV is available under a UC Regents li-

cense similar in nature to the BSD license?.

"http:/ /www.charlie-roberts.com /projects/circles/
*http://www.mat.ucsb.edu/ whsmith/Synecdoche/
3http://lua-av.mat.ucsb.edu/

Figure 1: LuaAV in a live-coding performance
(Asterisk: performed by A McLeran and G
Wakefield, 2009).

2 LuaAV philosophy

The broad attitude taken in the development
of LuaAV draws inspiration from the Lua pro-
gramming language itself: extensibility, meta-
mechanisms, efficiency, and portability?.

2.1 Extensibility

Lua is described as an ‘extensible extension lan-
guage’ [8]: a configuration language to embed
within and extend the control of kernel appli-
cation or library code (which is typically writ-
ten in a statically compiled language such as
C). LuaAV follows this methodology directly:
the core engine of LuaAV is a library of code
(libluaav) intended to be embeddable within ap-
plications and application plugins, embedding
code to manage instances of Lua interpreters,
schedulers, an audio driver, and basic commu-
nication protocols (MIDI and OSC). Most as-
pects of the core library have both C and Lua
programming interfaces.

“The reasoning behind the choice of Lua has been
documented in prior publications, particularly [17].

The LuaAV application embeds libluaav and
adds to it a GUI for managing active script
states, a CodePad for adding code to script
states at run-time, and a Windowing/Menu
system. Most of these components are also
scriptable; indeed much of the application logic
of LuaAV itself is written using embedded
scripts.

2.2 Meta-mechanisms

A fundamental Lua concept is the provision of
low-level meta-mechanisms for implementing
features, rather than a built-in fixed set. Lua’s
meta-mechanisms bring an economy of concepts
while allowing the semantics to be extended in
unconventional ways. We find this open-ended
philosophy appropriate to our research domain
of computational composition.

We attempt re-use the mechanisms provided
by Lua itself in a consistent and predictable
manner. As examples: the addition of temporal
scheduling in LuaAV is implemented as an
extension of the existing coroutine construct in
Lua; new functionality is added to the runtime
environment using the existing Lua module
system; and many of these capabilities are
specified using the existing data description
and metamethod features of Lua.

2.3 Efficiency

Lua is widely acknowledged as amongst the
most efficient of interpreted or scripting lan-
guages, however there is still an order of
magnitude of performance cost relative to
statically compiled code: the price paid for
dynamic flexibility that interpreters offer. For
this reason, the core scheduler, drivers and
other elements of the libluaav runtime library
are coded in C/C++. Nevertheless, in order to
overcome the usual trade-off between flexibility
and efficiency, we have begun to leverage of
run-time compilation to machine code within
LuaAV.

On 1386 platforms, the Lua core of libluaav is
replaced with the LuaJIT [11] interpreter and
trace compiler, allowing performance approxi-
mating C for certain algorithms, and significant
performance boost over regular Lua even in in-
terpreted mode.

LuaJIT grants efficiency for pure Lua source
code, however it cannot optimize over the
C/Lua boundary. For those aspects of an
application that talk to existing C code,
we have been investigating the potential of
LLVM/Clang [9]. We have developed a binding

to a large proportion of the LLVM/Clang API
from within Lua®, such that abstract syntax
trees as Lua data-structures, or pure C code
strings, can be JIT-compiled and linked back
into the application as it proceeds, under the
direction of an executing Lua script.

2.4 Portability

It is near impossible to portably support the
complex demands of multimedia applications
because of the diversity of platforms and their
dependencies. LuaAV currently targets recent
Linux and OSX platforms, however we strive to
use established, stable cross-platform libraries
where possible (such as PortAudio/JACK,
the Apache Portable Runtime, etc), or else
provide abstraction layers for platform-specific
code as appropriate (for example, the LuaAV
application Windowing and GUI is written
using a common abstraction layer over Qt for
Linux and Cocoa for OSX).

3 Related work

LuaAV is one of a family of audio/visual
applications in which the primary interface is
an embedded programming language, including
SuperCollider [10], Impromptu [2], Fluxus [7],
ChucK [23], and many more. All of these ap-
plications can all be used within a performative
context, such as live-coding [3].

Impromptu, based on the Scheme program-
ming language, is an OS X only environment
that was originally created for audio manipula-
tion; it has been extended to also include visual
programming. One element of Impromptu that
is of particular interest is its multi-user runtime;
a single networked Impromptu environment can
be accessed and manipulated by multiple users
concurrently. We are actively developing a sim-
ilar capability in LuaAV to satisfy multi-user
demands in the AlloSphere.

Fluxus is another Scheme based platform,
however it is primarily geared towards visual
composition and is cross-platform. The Fluxa
add-on module adds basic audio synthesis and
playback capabilities to the Fluxus environ-
ment; however it is limited in terms of the
number and breadth of unit generators that it
provides.

Shttp://code.google.com /p/luaclang

SNevertheless, the broad scope of the LuaAV appli-
cation implies many non-trivial dependencies. We cur-
rently include a Lua-based build tool and command-line
scripts to try to make installation on Linux more fluid.

ChucK is a live coding language geared to-
wards audio with fine scheduling between syn-
thesis and control (’strongly timed’). LuaAV’s
scheduling system offers similar control, which
will be described in detail below. ChucK’s vi-
sual capabilities only extend to one of its devel-
opment environments, the Audicle, and primar-
ily revolve around visualizing currently running
audio processes.

SuperCollider is also predominantly a sys-
tem for audio synthesis and scheduling. Its
language is strongly inspired by Smalltalk,
whose dynamism provides many possibilities
for modifying running programs in real time.
SuperCollider can be extended with down-
loadable modules ('quarks’), some including
graphical capabilities”.

4 LuaAV Implementation

4.1 Script states

Opening a script in the LuaAV application
creates a luaav_state object, a libluaav wrapper
around a Lua interpreter state with additional
components:

e a logical clock

a scheduler queue with pending events and
coroutines

a graph of audio processes (Synths)

a bidirectional message queue (for commu-
nication with the audio graph)

e a memory pool for C-allocated objects as-
sociated with the lifetime of the luaav_state

An opened script can be closed or reloaded
from within the LuaAV application, and its
source can be viewed by opening the default
external editor. The file modification date
of the script file is monitored by LuaAV and
the script automatically reloaded if changed;
thus users can edit scripts in their preferred
editor and see the results updated in LuaAV
immediately.

Scripts can also be edited via the integrated
CodePad (Figure 2) which was added to
incorporate support for live coding practices
into LuaAV. Code entered into the CodePad
does not reload the script; rather it is injected
into the luaav_state without interruption.
Important features of the CodePad include:

e syntax highlighting via the Leg® parsing ex-

"e.g. http://sourceforge.net/projects/scgraph/
8http://leg.luaforge.net/

LuaAV

}
wait(0.1)
nd

19 end)

printChello world)

Figure 2: The LuaAV application running on
Ubuntu 9.10, with the CodePad view open.

pression grammar

e the ability to edit multiple scripts concur-
rently in tabs or multiple windows

e the ability to execute a selected portion of
a script

e basic visual error reporting

4.2 Scripting in real-time

A central problem of interactive computing ap-
plications is the translation from the abstract
temporality of programming to the concrete and
often unpredictable behavior of real-time behav-
ior and interaction. The articulation of struc-
ture goes beyond matters of efficiency to de-
mand:

e capacity to maintain required state until
the appropriate moment (dynamic memory
management)

o flexibility to re-activate maintained state at
unpredictable moments (re-entrancy)

e ability to delay activity until a chosen or
appropriate time (event ordering, schedul-

ing)
e ability to specify events in measures of real-

time (clocks, event spacing) as well as log-
ical/causal relations (event handling)

Lua already offers excellent re-entrancy and
dynamic memory management: user-driven
calls and library callbacks can be made into an
interpreter instance after a script has executed,
and variables will remain alive so long as they
are accessible. This re-entrancy extends to the

implementation of coroutines? in Lua in which
lexically scoped local variables will remain
‘alive’ for as long as the coroutine block runs
or awaits to be resumed.

4.2.1 Metrics, scheduling and
concurrency

While Lua ensures deterministic sequencing
of instructions, it lacks is a sense of temporal
metric. Adding this metric is one of the roles
of libluaav. Within a script in LuaAV, we
can ask for the current time using the now()
function. The time returned is logical time for
the luaav_state scheduler, which is anchored
in real-time by reference to the audio sample
counter.

To grant explicit scriptable control over the
scheduling capabilities of a luaav_state, we have
extended the coroutine mechanism to allow
yielding control to the scheduler by means of
a wait() function. The arguments to wait can
be a duration (after which the coroutine will
resume)lo or an arbitrary string (the name
of an event trigger to wait for). A scheduled
coroutine can be directly created using the
go function, whose arguments can specify a
duration or event to wait for before starting
the coroutine, and a function and arguments
to form the body of the coroutine. Of course,
any valid Lua code can be placed within a
coroutine; in fact the entire script itself is also
a coroutine and can wait() and check now() as
needed.

A code example may speak a thousand words:

-- define a function to print a message
-- repeatedly, every 1 second
function printer(message)
while true do
print (message)
wait(1) -- wait 1 second
end
end
-- start ticking:
go(printer, "tick")

9Coroutines are subroutines that act as master pro-
grams (Conway, 1963). A coroutine in Lua is a concur-
rent asynchronous state with its own instruction pointer,
stack and local variables, but with access to shared glob-
als. A coroutine is constructed from a Lua function,
which can explicitly yield execution and be resumed
later.

YDurations are measured in seconds by default, how-
ever LuaAV supports the creation of arbitrary user clocks
and schedulers, with which concepts of tempo and beats
can be easily constructed.

-- start tocking after 0.5 seconds
go(0.5, printer, "tock")

This relatively simple interface is a low-level
meta-mechanism from which more complex
temporal patterns and semantics can be con-
structed. For example, a coroutine which
returns a function will continue execution in
that function’s body (as a tail call in Lua),
and a coroutine which returns a call to its own
function will implement temporal recursion
[19].

Furthermore, it is possible to create new
schedulers whose metrics are driven by events
within the script itself; this can be used to
create a tempo clock for example.

4.3 Multi-threading and audio

Given the power of coroutines to deterministi-
cally model concurrent activities the decision by
the Lua authors to shun multi-threading is eas-
ier to understand!!. Our own approach is to
maintain this single-threaded nature for the Lua
interpreter instances: it is consistent with the
recommended manner to interact with OpenGL
contexts and GPU resources, and its determin-
istic assurances greatly simplify the code within
libluaav.

Unfortunately however, audio processing is
better placed in a dedicated independent high-
priority thread, in which unbounded calls (such
as memory allocations, garbage collections and
so on) are avoided [4]. The natural result is two
threads: one for the interpreter and graphics,
one for the audio processing, and the problem
of synchronization between them.

Our solution is to mirror state between
the interpreter thread and the audio thread
by means of time-stamped synchronization
messages along a pair of single-reader/single-
writer FIFO (first-in, first-out) message queues
(built upon the JACK ringbuffer[12]). Memory
allocation/disposal and initialization of audio
objects occurs in the main thread, but subse-
quent state changes triggered from Lua code
are serialized and dispatched to audio thread
via the message queue. The audio thread
can then retrieve these messages (up to the
appropriate timestamp) and apply the state
changes in the context of signal processing
directly.

Hntroducing threading into standard Lua can be
done, however the granularity is so high as to make this
feature nearly useless and execution effectively single-
threaded anyway.

There is necessarily a latency between the
Lua thread time and the audio thread time,
which is bounded by the update period and
jitter of both. So long as actual latency
remains below a (user-specifiable) ideal limit,
fully sample-accurate temporal determinism
can be achieved!'?. If ideal latency cannot be
kept, events will fire late, but the order of
events remains determinate.

The main drawback of this approach is that
audio state cannot be immediately retrieved in
the Lua script: method calls on audio objects
are asynchronous and cannot return concrete
values. Similarly any messages sent from the
audio thread to the main thread are also latent,
preventing temporally accurate triggering of
Lua code in response to audio analysis for
example.

4.4 Audio engine

The audio engine within LuaAV acts upon
time-stamped messages received on the message
queue from the Lua thread, and triggers any
process calls in active audio objects (from here
on denoted Synths'?). Synths have notions of
signal input and output ports of various kinds
which can be connected to each other'4. The
connections and disconnections of ports are
specified by messages from the main thread.

4.4.1 Dynamic graphs with sample
accuracy

For efficiency (and to achieve real-time guaran-
tees) signal processing graph nodes are typically
computed over blocks of N sample frames with
buffered input and output signal streams.
The audio engine has the responsibility to
ensure that buffers of data for a Synth’s input
ports are properly filled and the output ports
properly prepared before the Synth’s signal
processing function is executed.

Since the block-rate is purely an imple-
mentation detail and carries no musical or
aesthetic significance, we aim to hide it com-
pletely from the Lua interface; users should
be able to code with state changes at any

12Clock drift is not an issue per se, since we derive our
source of real time from the audio sample clock itself.

13The term ’synth’ is used rather than 'unit generator’
to indicate a coarser granularity in the graph. Finer
granularities are better handled by JIT compilation of
synths from sub-components which better deserve to be
named unit generators.

lPeedback between Synths necessarily incurs a block
of delay. Feedback within synth implementations incurs
a single-sample delay.

arbitrary time (’strongly timed’). In order to
achieve sample-accuracy in graph dynamics
while maintaining determinism in the signals,
LuaAV traverses sub-sections of the graph
for sample-accurate state changes. For CPU
efficiency, only the upstream dependencies of
the changing node(s) must be computed, and
only up to the sub-block timestamp of the
scheduled change.

For memory efficiency, it is better to minimize
the number of buffers allocated, and re-use ex-
isting memory when it can be safely done. A
good strategy would maintain a memory pool
of re-usable buffers with a lazy allocation, eager
recycling policy, under the control of a coloring
algorithm akin to register allocation. However
this strategy becomes quite complex with the
combination of multiple references (buffers with
multiple readers and/or multiple writers), feed-
back connections and sub-block size traversals.
We currently only optimize for single-use non-
feedback connections and defer recycling until
the end of the block, but are researching more
optimal algorithms.

4.5 Signal Processing

Toward efficiency and extensibility, LuaAV’s
Synths are built according to a low-level C
API. The API provides as much functionality
as possible (such as automatic bindings to Lua)
without compromising flexibility. Synth code
can be written in C or C++, does not need
to inherit or compose any pre-existing objects,
nor conform to a particular data layout.

4.5.1

For the purposes of rapid testing and minimal
dependency, a concise set of standard Synths
are provided within the libluaav library. These
units wrap low-level synthesis routines (using
code from the Gamma [14] library) within ab-
stract definitions of ports, methods and process
routines. Static code-generation in the libluaav
build process uses these definitions to automat-
ically create bindings to the LuaAV audio API,
Lua bindings, and documentation.

The following example code plays a series of
sine bleeps of random frequency, whose dura-
tions progressively shorten from 1 second to 1
millisecond:

Standard signal processing units

local outs = Outs() -- stereo output bus
for i = 1, 1000 do

local dur = 1/i

local f = 100 * math.random(10)

local synth = Sine{ freq = f }
outs:play(synth, dur)
end

4.5.2 Embedding CSound

Audio synthesis specification is a complex
domain with a long history. We considered
it practical to re-use existing interfaces and
frameworks if possible. CSound in particular
has a long heritage and a huge collection of
signal processing primitives ("opcodes’).

Embedding CSound within LuaAV was a
remarkably straightforward process, thanks to
the design of the CSound API [5]. CSound in-
stances can be created in a Lua script as LuaAV
synth objects using CSound’s host-implemented
audio option bound to the libluaav audio APIL.
CSound synths can thus be connected with
other LuaAV synths. Typically CSound in-
stances in LuaAV have only minimal score
specification, turning over the responsibility of
the generation of score events to the Lua script.
For example, the following code snippet plays
an ascending harmonic scale on instrument 1
from the orchestra defined in ”demo.csd”:

require "csound"
local cs = csound.create("demo.csd")
play(outs, cs, 4)
for h = 1, 16 do
cs:scoreevent (

’i’, -- event type
1, -- pl (instrument)
now(), -- p2 (start)
1, -- p3 (duration)
1.0, -- p4 (amplitude)
100xh -- p5 (frequency)

)

wait(0.25)

end

CSound instances can also be created from
strings of valid CSound code, opening up inter-
esting possibilities of code-generating CSound
orchestras and scores at run-time.

4.5.3 Run-time generation of signal
processing code
Our primary focus for audio synthesis in LuaAV
however is the generation and compilation of
synthesis code from definitions specified at
run-time, leveraging the the JIT capabilities
of LLVM via luaclang. It is our view that
runtime code-generation best serves the goals
of extensibility and efficiency (and to a certain
degree also portability [6]).

al @ 4 3 -14°C Sun Apr 4, 209U graham

136 ins
—
2

Figure 3: An audio-visual interactive can-
vas (mouse-paths converted to hyperbolic lines,
rendered with OpenGL and sonified as grain
chirps). The script itself is being edited in
Gedit.

A more detailed description of our investiga-
tions can be found in [18]; here we will pro-
vide a summary for the reader’s convenience.
Initial experiments constructing abstract syn-
tax trees (ASTs) of complex expressions from
elementary nodes were very promising: expres-
sion trees have a natural corollary to data-flow
networks typical in signal processing, and also
to the static single-assignment (SSA) form of
LLVM’s intermediate representation (IR).

Expression graphs however are limited be-
cause they have no internal state. Extending
our model to support stateful objects such
as filters and variable oscillators called for
the run-time generation of data-structures
to maintain state across function calls, and
associated routines to allocate and free memory
and connect to the LuaAV audio system ap-
propriately. We have successfully implemented
such a model, and are continuing to pursue
this line of development and hope that a user
programming interface will stabilize soon.

The performance of the JIT compiled code is
close to that of a native static compiler (GCC).
The time to JIT a simple Synth can fit within
the acceptable latency window between the Lua
thread and the audio thread.

4.6 Beyond Audio

We have concentrated on audio in this paper,
but it is important to note that LuaAV has very
strong capabilities in the visual (2D and 3D) do-
main (see Figure 3). A near-complete binding
of the OpenGL standard is included as a dy-

namically loadable Lua module, along with the
Muro module which uses a generic Matrix data
format to connect image, video files/cameras,
GPU textures, shaders and slabs, matrix data
processing and analysis, 3D mesh drawing, and
supporting utilities for vectors, quaternions and
other common 3D tasks.

LuaAV has MIDI and OSC built-in, and
extension libraries for numerous devices and
systems. And of course, anything that can
be loaded in standard Lua can also be used
in LuaAV, such as existing SQL database
bindings, networking code, Cairo 2D drawing,
PEG text parsing, and so on.

5 Future directions

It is notable that code generation appears in
all three strategies to embed signal processing
within LuaAV: static generation of synthesis
units within the library, the potential to gen-
erate CSound orchestras programmatically at
runtime, and to code-generate entire synthesis
routines to machine code using LLVM/Clang.
We believe it is a natural consequence of
increasingly dynamic and extensible program-
ming interfaces and environments, and which
will continue to grow.

Embedded scripting language bindings to
efficient library code still carry a divide between
static and dynamic code which remains im-
mutable during runtime. The incorporation of
runtime JIT compilation (such as LLVM /Clang
in LuaAV) adds the capacity to dynamically
generate new bindings into the environment
and the augmentation of existing bindings and
binaries on the fly.

For example, computer vision video filters in
LuaAV are code generated by bringing together
functionality from OpenCV and the Muro Ma-
trix specification to generate a new video filter
with full Lua bindings which is properly adap-
tive to the heterogeneous nature of computer vi-
sion data. By compiling these filters at runtime,
it’s possible to dynamically alter how filters mix
and combine with further processing elements in
ways that would otherwise be preconceived and
fixed.

As we have explored this area of software
design, it has become apparent that the trend is
toward heterogeneous computational environ-
ments that freely mix paradigms be they typed
versus untyped, dynamically compiled versus
statically compiled, and so on. What we are
working to achieve is a continuum of paradigms

as opposed to simply concatenating them
together. Currently in LuaAV it is possible to
mix Lua code and C code. As we develop the
system further and add intermediate languages
to generate new code between the paradigms,
the boundary will only become more blurred.

6 Acknowledgements

With thanks for the support of the AlloSphere
Research Group, University of California Santa
Barbara.

References
[1] X. Amatriain, J. Kuchera-Morin,
T. Hollerer, and S. T. Pope, “The

allosphere: Immersive multimedia for sci-
entific discovery and artistic exploration,”
IEEE MultiMedia, vol. 16, pp. 64—75, 2009.

[2] A. Brown and A. Sorensen, “Dynamic me-
dia arts programming in impromptu,” Pro-
ceedings of the 6th ACM SIGCHI confer-
ence on Creativity € ..., Jan 2007.

[3] N. Collins, A. Mclean, J. Rohrhuber, and
A. Ward, “Live coding in laptop perfor-
mance,” Organized Sound, vol. 8, no. 03,

pp. 321-330, 2003.

[4] R. B. Dannenberg and R. Bencina, “De-
sign patterns for real-time computer music
systems,” ICMC 2005 Workshop on Real
Time Systems Concepts for Computer Mu-
sic, 2005.

[5] J. Ffitch, “On the design of csound5,” in
Proceedings of the 3rd Linux Audio Devel-
opers Conference, ZKM, Karlsruhe, Ger-
many, 2004.

[6] M. S. O. Franz, “Code—generation on—the—
fly: A key to portable software,” 1994.

[7] D. Griffiths, “Fluxus,”
http://www.pawfal.org/Software/fluxus/,
2007.

[8] R. Ierusalimschy, L. H. de Figueiredo, and
W. C. Filho, “Lua — an extensible exten-
sion language,” Software Practice and Ez-
perience, vol. 26, no. 6, pp. 635-652, 1996.

[9] C. Lattner and V. Adve, “The LLVM Com-
piler Framework and Infrastructure Tu-
torial,” in LCPC’04 Mini Workshop on
Compiler Research Infrastructures, West
Lafayette, Indiana, 2004.

[10]

[20]

[21]

22]

J. McCartney, “Rethinking the computer
music language: Supercollider,” Computer
Music Journal, vol. 26, no. 4, pp. 61-68,
2002.

M. Pall,
2007.

“LuaJIT,” http://luajit.org/,

Paul Davis, “Jack — connecting a world of
audio,” http://www.jackaudio.org/, 2010.

M. Peljhan, “Common data processing
and display unit-tokyo system proto-
type,” http://www.ntticc.or.jp/ Exhibi-
tion/2009/Openspace2009/Works/ com-
mondataprocessinganddisplayunit.html,
20009.

L. Putnam, “Gamma -
generic synthesis c++ library,”
http://mat.ucsb.edu/gamma/, 2009.

W. Smith, “Abelian: A visual and spa-
tial platform for computational audiovisual
performance,” Master’s thesis, University
of California Santa Barbara, 2007.

W. Smith and G. Wakefield, “Synec-
doche,” http://www.mat.ucsb.edu/ wh-
smith/Synecdoche/, 2007.

——, “Computational audiovisual compo-
sition using lua,” Communications in Com-
puter and Information Science, vol. 7, pp.
213-228, 2008.

——, “Augmenting computer music with
just-in-time compilation,” Proceedings of
the International Computer Music Confer-
ence, 2009.

A. Sorensen and A. Brown, “Aa-cell in
practice: an approach to musical live cod-
ing,” in Proceedings of the 2007 Interna-
tional Computer Music Conference, 2007.

G. Wakefield, “Vessel: A platform for
computer music composition, interleaving
sample-accurate synthesis and control,”
Master’s thesis, University of California
Santa Barbara, 2007.

G. Wakefield and H. Ji, “Artificial nature:
Immersive world making,” in FEvoWork-
shops, 2009, pp. 597-602.

G. Wakefield and W. Smith, “Using lua
for audiovisual composition,” in Proceed-
ings of the 2007 International Computer
Music Conference. International Com-
puter Music Association, 2007.

[23] G. Wang and P. Cook, “Chuck: A pro-

gramming language for on-the-fy, real-time
audio synthesis and multimedia,” in MUL-
TIMEDIA °04: Proceedings of the 12th
annual ACM international conference on
Multimedia. New York, NY, USA: ACM,
2004, pp. 812-815.

