Term Rewriting Extension for the Faust Programming Language

Albert Graf
Dept. of Computer Music, Institute of Musicology
Johannes Gutenberg University
55099 Mainz, Germany
Dr.Graef@t-online.de

Abstract

This paper discusses a term rewriting extension for
the functional signal processing language Faust. The
extension equips Faust with a hygienic macro pro-
cessing facility. Faust macros can be used to de-
fine complicated, parameterized block diagrams, and
perform arbitrary symbolic manipulations of block
diagrams. Thus they make it easier to create elab-
orate signal processor specifications involving many
complicated components.

Keywords

Digital signal processing, Faust, functional program-
ming, macro processing, term rewriting.

1 Introduction

Faust is a functional signal processing language,
which is used to develop digital signal processors
handling synchronous streams of sample values.
It is mostly targeted at audio and music appli-
cations at this time. Faust has a formal se-
mantics (based on the lambda calculus and a
block diagram algebra) which means that it can
be used as a specification language for describ-
ing signal proccessors in an implementation-
independent way. These specifications are ex-
ecutable, however, and Faust provides sophisti-
cated optimizations and compilation to C++ to
turn the specifications into efficient code which
can compete with carefully hand-crafted rou-
tines. Faust works with an abundance of differ-
ent platforms and plugin environments such as
Jack, LADSPA, VST, Pd, Max and several pro-
gramming languages, just a recompile is enough
to create code for the various architectures. Last
but not least, the Faust compiler also provides
automatic documentation facilities which pro-
duce block diagrams in SVG format and IXTEX
documents.

Faust has been discussed at the Linux audio
conference and elsewhere on various occasions
[3; 1] and is quickly gaining traction in the sig-
nal processing community. A description of the
formal underpinnings can be found in [2]. Faust

is free software distributed under the GPL V2+,
see http://faust.grame.fr.

This paper reports on the Faust term rewrit-
ing extension which equips the language with
a kind of hygienic macro facility for specify-
ing complex block diagrams in a more conve-
nient fashion. Macros are defined by rewriting
rules and are expanded away at compile time
by rewriting terms in the Faust block diagram
algebra. The resulting Faust program is then
compiled as usual. This facility has been devel-
oped by the author in collaboration with Yann
Orlarey, the principal author of Faust. It has al-
ready been available in recent Faust versions for
quite some time but has never been documented
anywhere; this paper attempts to fill this gap.

2 Basic Faust Example

Faust works on sampled signals which are
thought of as functions mapping (discrete) time
to sample values. Signals can be constant or
time-varying, or they can be control signals em-
bodied by special elements which are typically
implemented as GUI, MIDI and/or OSC con-
trols, depending on the target architecture. The
following listing shows a simple Faust program
which implements a sine tone generator:

import("music.lib");

vol = nentry("vol", 0.3, 0, 10, 0.01);
pan = nentry("pan", 0.5, 0, 1, 0.01);
freq = nentry("pitch", 440, 20, 20000, 0.01);

process = osc(freq)*vol : panner(pan);

The example features three control elements
for specifying volume, panning and frequency.
The sine signal created by the osc function
gets multiplied by the volume and then passed
through a panner which turns it into a stereo
output signal. The process function is the
“main” function of a Faust program; it denotes
the signal processing function realized by the
program. In this case, the process function has

no arguments and thus the implemented signal
processor has no inputs. In general, any Faust
function (including process) can have an arbi-
trary number of input and output signals.

3 The Term Rewriting Extension

Faust signal processors are essentially terms in
the Faust block diagram algebra (BDA) which is
described elsewhere [2]. Briefly, the BDA con-
sists of algebraic operations (written as infix and
postfix operators) which specify various combi-
nations of signal processing functions, in partic-
ular:

e f’ and f@n delay f by one and a given num-
ber n of samples, respectively.

e f:g and f,g specify the serial and parallel
composition of two signal processing func-
tions.

e f<:g and f:>g split and merge (mix) the
outputs of f and route them to correspond-
ing inputs of g.

e f~g combines f and g to a loop with implicit
1-sample delay.

In addition, the usual arithmetic, logical and
comparison operators (+, *, etc.) as well as
mathematical functions (exp, sin, etc.) work on
signals in a pointwise fashion. Thus, e.g., f+g is
the signal obtained by adding each sample of the
signals f and g.

Term rewriting provides us with a means to
manipulate these BDA terms in an algebraic
fashion at compile time. For instance, the fol-
lowing two rewriting rules define a macro named
fact which implements the factorial:

fact(0) 1;
fact(n) nxfact(n-1);
process = fact(3);

The last line in this program gives the usual
process function of a Faust program. The re-
sulting signal processor outputs the constant
signal 3! = 6.

Note that Faust doesn’t have a special key-
word for denoting macro definitions, instead
these are flagged by employing patterns on the
left-hand side of such a rule, which can be con-
stants (such as the constant 0 in this example),
variables (such as n) and arbitrary expressions
formed with these and the BDA operations.
That is, a pattern is an arbitarily complex BDA
expression involving variables and constants. At

least one of the macro arguments must be a non-
trivial pattern (i.e., not simply a variable), oth-
erwise the definition will be taken to be an ordi-
nary function definition. Also note that macro
definitions may involve multiple rewriting rules,
as in the example above.

Just like Faust’s functions are nothing but
named lambdas, there are also anonymous
macros which take the form of a case expres-
sion listing all the argument patterns and the
corresponding substitutions. For instance, the
above definition of the factorial macro is actu-
ally equivalent to:

fact = case { (0) => 1; (n) => nxfact(n-1); };

4 Macro Evaluation by Rewriting

Rewriting rules are applied by matching them to
BDA terms on the right-hand side of function
definitions. To these ends, the rules are con-
sidered in the order in which they are written in
the Faust program, binding variables in the left-
hand side of rules to the corresponding values.
Evaluation proceeds from left to right, inner-
most expressions first. Thus, in the above ex-
ample the term fact(3) in the definition of the
process function will be rewritten to the con-
stant 6, using the following reduction sequence:

fact(3) — 3xfact(3-1) — 3xfact(2)
— 3x(2xfact(2-1)) — 3x(2xfact(1l))
— 3% (2x1xfact(1l-1))) — 3*x(2x(1xfact(0)))
— 3% (2%(1x1))) — 6

Note that in this process the Faust compiler
also evaluates constant signal expressions such
as 3-1 — 2 and 3%(2*(1x1))) — 6.

Another example, which employs pattern
matching on BDA operations, is the following
little macro serial which turns parallel compo-
sitions into serial ones:
serial((x,y)) serial(x)
serial(x) = X;
process serial((sin,cos,tan));

: serial(y);

The result is the same as if you had written
the serial composition sin:cos:tan, cf. Fig. 1.

As the above examples show, macro defini-
tions can also be recursive, making it possible to
analyze and build arbitrarily complicated BDA
terms. Here is another example, which employs
a variation of the fold operation (customary in
functional programming libraries) to accumu-
late values. In this case the values are actu-
ally signals, produced by a function (or macro)
x which maps a running index to a signal. This

rprocess
|

i process

Figure 1: Parallel-serial conversion macro.

allows us to emulate Faust’s sum function which
adds up an arbitrary collection of signals:
fold(1l,f,x) = x(0);

fold(n,f,x) = f(fold(n-1,f,x),x(n-1));
fsum(n) fold(n,+);

f0 = 440; a(0) = 1; a(l) = 0.5; a(2) = 0.3;
h(i) a(i)*xosc((i+1)x*f0);

Y, hslider("vol", 0.3, 0, 1, 0.01);
process = vxfsum(3,h);

The resulting signal processor (a simple addi-
tive synthesizer which adds up three harmonics),
is shown in Fig. 2. Note that the three oscilla-
tors and their amplitudes are also defined using
rewriting rules in this example.

FPrOCESS ————— - - - - - - - - - |

hslider(vol, 0.3, 0,1, 0.01)

Figure 2: Sum macro example.

5 A Note on Macro Hygiene

It is worth noting the differences between
Faust’s rewriting-based macros and the textual
macros in languages such as C. In the latter case,
macros are just textual substitutions which is
very flexible but also has various shortcomings,
most notably name capture. For instance, take
the following C macro definition:

#define F(x) { int y = x+1; return x+y; }

Given this definition, F(y) expands to
{ int y = y+1; return y+y; } which is usu-
ally not what you want.

Faust macros do not have any such pitfalls
since they work on the internal representation
of BDA terms rather than the program text.
This means that variables on the left-hand side
of a macro rule are always bound lexically, i.e.,
according to the block scoping rules defined by
the Faust language. Thus a Faust macro like
F = case {(x) => x+y with { y = x+1; };}
(which is roughly equivalent to the C macro
above, minus the name capture) will work
correctly no matter what gets passed for the
macro parameter x (even if it is a signal named
y). Macros with this desirable property are
also called hygienic macros in the programming
language literature.

6 Example: A Systolic Array

The following program illustrates how to use
macros in order to abbreviate complicated, pa-
rameterized block diagrams. The example we
consider is a kind of “systolic array”, a grid of
binary operations organized in a mesh (Fig. 3).

X

bovoy
R Fiaring
R Bienicvin

oY

Figure 3: Systolic array.

The Faust program used to produce this lay-
out is given below.

g(1,f) = f;

g(m,f) = (f, r(m-1)) : (-, g(m-1,f));
h(1,m,f) = g(m,f);

h(n,m,f) = (r(n+m) <: (!,r(n-1),s(m),

(=,s(n-1),r(m)
(h(n'llmlf)l —);

1 g(m,)))) :

r(l) = _; r(n) = _,r(n-1); // route through
s(1) = !; s(n) = !',s(n-1); // skip
f=+<:_,_; // sample cell function

process = h(2,3,f);

Note that the macro g constructs a single row
of the mesh for the given number m of grid cells
and the given function f which takes two input
signals and produces two output signals. The
macro h applies g repeatedly in order to build an
n X m mesh from its rows. Two helper macros r
and s perform the necessary routing between the
components. These employ two basic elements
of the BDA, ‘_’ which simply routes through a
single input to a single output (i.e., _(x) = x),
and ‘!” which denotes a “sink” for a single input
(1(x) = ()). (A more detailed explanation of
the construction is given below.)

The given process function illustrates the use
of the h macro to construct a 2 x 3 “accumulator”
mesh from the cell function f = + <: _,_ which
just adds its two inputs and sends the computed
sum to its two outputs. A Pd patch showing this
signal processor in action is shown in Fig. 4.

AN

sanple
T e T
sanple
sarnple sarnple sarnple

Figure 4: Systolic array example in a Pd patch.

To see how the recursive construction works,
note that there are two equations for the h
macro. The first equation deals with the case
of one row. This is handled by just invoking
the macro g which in turn applies the function
f once (digesting the single row input y; and the
first column input x;) and invokes itself recur-
sively on the first output of f and the remain-
ing inputs xg, . .., Z;, (which are routed through
with the r macro). The base case m = 1 is
treated in the first equation for g which just
yields f itself.

The interesting case is the second equation
for h in which we deal with more than one
row, cf. Fig. 5. Here the input signal, consist-
ing of n row inputs y1,...,yn, and m column
inputs x1,..., %y, gets split up in two parts.
The expression !,r(n-1),s(m) gives y2,...,¥Yn
which is simply routed through. The expression
_,s(n-1),r(m) yields wyi,x1,...,2Z,; which is
piped into g, producing a single row of the mesh.

The signals yo, . . ., y, are then recombined with
the first m outputs «, ..., 2], of g, and the re-
sult is passed to h to recursively construct the
remaining mesh of n — 1 rows, yielding the out-
put signals «f,.... 27yl ... y5. Tacking on
the remaining output signal y] of the call to g
gives us the final result «f,... 20yl ... v}

N XX

m

'

Vi

Figure 5: Recursive construction in the systolic
array macro.

There are still some ways in which the h
macro can be improved. For programming
convenience and simplicity, h takes its inputs
as Yly-- s Yn;Tly--.,Tm, with the row inputs
coming first, and produces the row outputs
Y-, y) in reverse order. In fact, this layout
of arguments and results is quite convenient in
the Pd patch. However, as a programmer using
this macro in your Faust programs you’d prob-
ably prefer a macro which maps an m +n tuple
of input signals z,y to a corresponding tuple
x’, 1y’ of output signals in the “right” order. For-
tunately, adding this functionality as separate
pre- and postprocessing stages by making good
use of the r and s macros is fairly easy. We leave
this as an exercise to the interested reader.

7 Conclusion

The term rewriting extension sketched out in
this paper equips Faust with a simple macro pro-
cessing facility which is useful to define abbrevi-
ations for complicated, parameterized block di-
agrams, and to perform arbitrary symbolic ma-

nipulations on block diagrams in the prepro-
cessing stage of the Faust compiler. To these
ends, terms in the Faust block diagram alge-
bra (BDA) are rewritten using term rewriting
rules. Evaluating macro invocations using the
provided rules is performed by Faust at com-
pilation time. Faust’s term rewriting macros
are structured (they operate on term structures
rather than program text) and hygienic, i.e., all
bindings of macro variables are performed lex-
ically, and thus Faust macros are not suscepti-
ble to “name capture” which make less sophis-
ticated macro facilities in languages such as C
bug-ridden and hard to use.

There are still some shortcomings in Faust’s
macro system which will hopefully be addressed
in the future:

e Faust does its own normalizations of BDA
terms “under the hood” and thus it can be
hard to figure out exactly which patterns
are needed to rewrite certain constructs of
the Faust language.

e Only plain term rewriting rules are sup-
ported at this time. Adding conditional
(i.e., guarded) rules would make the system
more versatile.

e It would be useful to provide an interface
to Faust’s block diagram optimization pass
so that custom optimization rules could be
implemented using macros.

References

[1] A. Gréf. Interfacing Pure Data with Faust.
In 5th International Linux Audio Confer-
ence, pages 24-31, Berlin, 2007. TU Berlin.

[2] Y. Orlarey, D. Fober, and S. Letz. Syntac-
tical and semantical aspects of Faust. Soft
Computing, 8(9):623-632, 2004.

[3] Y. Orlarey, A. Gréf, and S. Kersten. DSP
programming with Faust, Q and SuperCol-
lider. In 4th International Linuz Audio Con-
ference, pages 39-47, Karlsruhe, 2006. ZKM.

