5 years of using SuperCollider in real-time interactive
performances and installations - retrospective analysis of
Schwelle, Chronotopia and Semblance.

Marije A.J. BAALMAN
Design and Computation Arts
Concordia University
Montréal, Québec
Canada,
marije@nescivi.nl

Abstract

Collaborative, interactive performances and instal-
lations are a challenging coding environment. Su-
perCollider is an especially flexible audio program-
ming language suitable to use in this context; and in
this paper I will reflect on 5 years of working with
this language in three professional projects, involv-
ing dance and interactive environments. I will dis-
cuss the needs and context of each project, common
problems encountered and the solutions as I have
implemented them for each project, as well as the
resulting tools that have been published online.

Keywords

SuperCollider, interactive performance, sensing,
composition systems, live coding, tool/code devel-
opment

1 Introduction

Between 2005 and 2010 I have been involved
in three real-time interactive projects, in which
SuperCollider (SC3) was the central core to deal
with realtime sensor data, audio analysis, inter-
action with other programs for data exchange
and show control, and sound, vibration and
light output. This paper gives an overview of
the techniques used within SC3 and provides
a critical analysis of the problems encountered
along the way and solutions provided. The work
on these three projects has resulted in a num-
ber of tools that have been made available to
the general public as open source software, and
that aid other artists in the realisation of their
projects.

The three projects are all collaborations with
artist /researcher Christopher Salter! and vari-
ous other artists. Two of the projects are dance
performances, one of them is a one-person ex-
periential installation. Furthermore all three
projects have an interactive or responsive com-
ponent based on sensor inputs and dynamic
mapping of these inputs to output media. They

"http://www.chrissalter.com

are also all situated in a collaborative context,
where there are several artists collaborating us-
ing different output media, as well as different
programming environments with which data is
to be exchanged. As the development of these
three projects has been sequential and taking
place over the course of 5 years, certain ap-
proaches and methods using SC3 have emerged,
as well as a re-evaluation of methods used in
earlier projects. In all of these projects, I have
encountered similar problems, however, as my
proficiency at SC8 developed, 1 have discov-
ered different solutions. In some cases because
I found that the new project asked for a dif-
ferent approach, based on the specifics of the
problems, or because I wasn’t content with the
solution used previously.

While working on artistic projects there is al-
ways a trade-off between developing “general-
purpose” tools that are robust and flexible in
use, and quickly putting something together,
that is usable and reliable for the project at
hand, but may not translate well to other
projects. This paper reviews the methods I
have used over the years, and identifies the com-
ponents that could be, or have been, adapted
to more general purpose tools for use in future
projects.

For those readers unfamiliar with SuperCol-
lider, I have added a section detailing some gen-
eral information regarding SC3 at the end of
this paper. Class names within SC8 will be put
in bold in the following text.

2 Coding in the context of
interactive performance

Coding in a professional performance context
has different demands than product oriented
coding, in the sense that while writing the code,
the purpose of the code and its needed function-
ality is not yet known, but will emerge during
the artistic process of discussions, experimen-
tation and rehearsals. This is especially true,

when the artistic project involves real-time sens-
ing, where it is not known beforehand what the
input data will be, and how it will influence the
output media, which are also being shaped in
the process of creation.

Within the rehearsal process for all of these
projects it is important to have a flexible sys-
tem which allows for on-the-fly manipulation of
audio synthesis processes as well as sensor data
mappings. Part of the preparation for the re-
hearsal process is to create systems that allow
for such flexibility, so that many different kinds
of interactions can be explored. This is only
possible if it is clear in advance what kind of
possibilities there are, i.e. what kind of data
is to be expected from the sensors, the type of
audio processes that will be used (its composi-
tional structure, as well as its sonic quality), and
what kind of interactions the collaborators in
the project are interested in. Extensive discus-
sions about this with the other collaborators, as
well as short exploratory sessions with the per-
formers, and a basic understanding of some of
the movement material of the dancers (so that
you can e.g. wear an accelerometer and pro-
duce some data yourself while writing and test-
ing code) are essential components in this pro-
cess. Having some skill at livecoding to quickly
develop new interactive processes is also vital
for a succesfull rehearsal process.

For the eventual showtime in the theater or at
an exhibition, it is important to have a robust
“show control” system? from which the show
can be run, while at the same time being flexi-
ble to adapt to differences in setup (e.g. audio
balance/mix), based on the venue in which the
performance takes place. Ideally, you should be
able to adapt “cues” during the show, should
there be the need. Backup solutions, in case
sensing infrastructure breaks down, can also be
useful (even just as a reassurance).

In the case of installations, the code (and the
machine it runs on) may need to be prepared
to be started and stopped by gallery personnel
who have no knowledge at all about coding, and
in some cases even of computer environments.
In the ideal case the machine running the code
can boot up and start the code automatically,
so the computer only needs to be turned on.

?In theater/performance the collective control for all
events supporting the performer’s action on stage (i.e.
sonic, light, mechatronics, video) happening on stage is
usually referred to as “show control”.

3 The artistic projects
3.1 Schwelle

Schwelle is a theatrical performance that takes
place between a solo dancer/actor (Michael
Schumacher) and a “sensate room”. The ex-
erted force of the performer’s movement and
changing ambient data such as light and sound
are captured by wireless sensors located on both
the body of a performer as well as within the
theater space. The continuously generated data
from both the performer and environment is
then used to influence an adaptive audio scenog-
raphy, a dynamically evolving sound design that
creates the dramatic impression of a living,
breathing room for a spectator. We aimed at
creating an auditory environment whose sonic
behaviour is determined continuously over dif-
ferent time scales, depending on the current in-
put, past input and the internal state of the sys-
tem generated by performer and environment in
partnership with one another.

The data from the sensors is statistically an-
alyzed so the system reacts to changes in the
environment, rather than absolute values. The
statistical data is then scaled dynamically, be-
fore being fed into a dynamical system inspired
from J.F. Herbart’s theory on the strength of
ideas [Herbart, 1969]. The dynamic scaling en-
sures that when there is little change in the sen-
sor data, the system is more sensitive to it. The
output of the Herbart systems is mapped to the
density, as well as to the amplitude of various
sounds that comprise a “room” compositional
structure of more than 16 different layers. An
overview of the data flow is given in figure 1.

The mapping, which is indicated between the
dynamic scaling and the Herbart Groups, is a
matrix which determines the degree to which
each sensor influences which sound [Baalman et
al., 2007]. Additionally, there is a “state” sys-
tem, defining different parameter spaces within
which the soundscape can move. The system
moves between these states, depending on long
term development of the input data. The the-
atrical light also has distinct behaviours based
on the state of the room. The information
about the current state is transferred to the
computer controlling the lights via OpenSound-
Control (OSC)? [Wright et al., 2003].

The diagram also shows that there is a sec-
ond data flow path, which constitutes a more
classical, instrumental approach of using the

3http://www.opensoundcontrol.org

fm————- Sensors ————~— \
I Acceleration
\

|dynamic scaling|

|
Sound Dioht
pp g Instruments &

Herbart Herbart

Group Group |-+ n- PR :
Fmp====== pe=y | State system |
I Density Amplitude4-
N———— Sound - ——--"

Figure 1: Data flow diagram

sensor data. The mapping between a move-
ment created within the room by the performer
or objects in the room and a resulting light-
ing or sonic event is direct, and recognizable as
an action-reaction interaction. This interaction
has been carefully tuned to certain dramatic se-
quences within the piece, and is easily switched
on and off, depending on which scene is taking
place. In some scenes I change the strength of
the interaction at suitable points in the dance,
thus creating a duet with the dancer.

Apart from the system mentioned above,
there was also a backup system in case the wire-
less transmission of data from the dancer would
break down, so in case of need I could mimic the
data using the joysticks of a gamepad device.

The sound was spatialised across the perfor-
mance space using several methods of amplitude
panning between speakers. Additionally, there
was an elaborate system for submixing the dif-
ferent audio layers, before sending them to the
outputs. In this submix system there were con-
trols, both for direct setting of volumes, and for
dynamic volume control mapped to the dynam-
ical system output data.

3.2 Chronotopia

Chronotopia is a dance performance by the
Bangalore (India) based Attakkalari Centre for
Movement, in collaboration with visual artist
Chris Ziegler; the music score is composed and
performed by Matthias Duplessy. For this per-
formance we created a responsive light installa-
tion: a 6 by 6 matrix of cold cathode fluores-
cent lights (CCFL), and 3 handheld lights. We
controlled these lights with wireless technology,
using a combination of an Arduino board and

Figure 2: A snapshot of the view on both the
stage and my computer screen visualising the
light matrix.

an XBee wireless chip.

For the control of the lights, I used Synths on
the server sending their output to control rate
busses, which I then polled at a regular interval
in order to send it over a serial protocol to the
XBee network from within the langauge. This
approach allowed me to make use of the various
envelope curves that are available within Syn-
thDefs, and use the extensive Pattern library
for sequencing of these Synths. In the proto-
typing phase for this project, I extensively used
scgraph®, which allowed me to model the light
matrix and see its behaviour on screen. Dur-
ing the setup and performances in the theater,
it allowed me to monitor the behaviours of the
system and compare it to the actual output on
the stage (see figure 2).

Additionally, T used camera based motion
tracking data (from a camera looking down at
the stage), to map to the light matrix, as well as
beat and pitch tracking data extracted in real-
time from the soundtrack. We also exchanged
data between the light control and the inter-
active video, both for synchronisation of cues
with the soundtrack (using frametime of the
playback), and for connecting the intensity of
the lights to the video image (maximum output
value of all the lights was used to control the
brightness of the video image in specific scenes).

3.3 Semblance

JND/Semblance is an interactive installation
that explores the phenomenon of cross modal
perception — the ways in which one sense im-
pression affects our perception of another sense.
The installation comprises a modular, portable
environment, which is outfitted with devices

‘http://scgraph.sourceforge.net

that produce subtle levels of tactile, auditory
and visual feedback for the visitors, including
a floor of vibrotactile actuators that partici-
pants lie on, peripheral levels of light and au-
dio sources, which generate frequencies on the
thresholds of seeing, hearing and (tactile) feel-
ing.

In this installation we use wireless sensing
devices to gather data from floor pressure sen-
sors. The loudspeaker setup consists of 12 spe-
cial speakers designed to enhance home the-
ater sound setups with tactile vibrations. These
speakers are laid out in a grid of 2 by 6 under-
neath a platform, or bed, on which the visitor
lies down. With the pressure sensors we can de-
tect micro-movements of the body. The light
appearing above the visitor is controlled with
DMX (see §5.5) from Max/MSP. OSC commu-
nication is used to send the desired cues to
Max/MSP.

The synthesis of vibrational output was a dif-
ficult process. While sound synthesis methods
can be used, it is quite different to find vibra-
tions that work — artistically — on a tactile
level. While with sound you can sit behind
the computer, and code synthesis processes and
tweak them while listening to them, to lie down
on a vibrational floor and code at the same time
is unpractical. Furthermore, it is a medium
with which neither of us had any previous expe-
rience to draw upon. It was also hard to create
vibrations without an acoustical counterpart so
that we had to find vibrations that were also
sonically interesting.

The sensor data was analysed statistically in
realtime so that changes in pressure, rather than
the absolute pressure, was used to map to the
synthesis processes. Since there were 24 areas
of sensing, in a 6 by 4 grid, and 12 speaker out-
puts, some combining of sensor data was done
to map local movements of the body to local
vibrations. In certain parts, we used a sum of
all the changes in pressure to map to an over-
all amplitude of the vibration. Furthermore, in
one part we did amplitude tracking on the vi-
bration output, and used that to determine the
maximum level of brightness of the light.

For spatialisation we employed various meth-
ods of panning (in one or more directions), or
outputting to one or more speakers at the same
time, with either the signals in phase to all
speakers, or with a randomized phase.

The composition is made up of three move-
ments and lasts about 13 minutes. Within each

movements there are a couple of different parts,
with varying output combinations, and various
mappings to the sensor data.

4 Common techniques
4.1 Collecting sensor data

The collection and processing of sensor data is
an essential part of working on interactive per-
formances. The first step is interfacing with
the hardware that actually does the collection
of data. In Schwelle we used Create USB in-
terfaces®, which show up as HID devices to
the operating systems. In Chronotopia mo-
tion tracking data is used, which is received
from another program (see §5.4) through OSC.
In JND/Semblance we use wireless XBee based
sensors and the data communication takes place
over a serial port®.

For Schwelle I made an abstraction between a
class named SchwelleSensor and a class inter-
facing with the actual HID device (two classes,
one for Linux, one for OSX). I then had al-
ternate versions of the SchwelleSensor class
which were using backends like the WiiMote
and a “mix” of several other sensors. In later
projects this abstraction was generalized, in-
stead using a general purpose data framework
(the SenseWorld DataNetwork) into which any
kind of device can input data and further use of
the data is agnostic of the way in which the data
was initially gathered [Baalman et al., 2009].

4.2 Processing sensor data

In the class SchwelleSensor, I also stored data
calculated from statistics of the data, which was
performed in the class SensorData. These cal-
culations all took place in sclang. In the later
projects I moved the statistical processing to
scsynth, taking advantage of the efficiency of
the DSP algorithms implemented in the UGens.
The resulting, “derived” or “cooked” data was
made available on the DataNetwork — a cen-
tral hub for all the control data. This approach
makes it flexible to switch between using the di-
rect data and a derived version by simply chang-
ing the data source.

4.3 Mapping sensor data

Mapping of the sensor data involves not only
remapping the value ranges between the input
data and output parameters, but also the merg-
ing of data streams, extracting features from

Shttp://www.create.ucsb.edu/~dano/CUI/ and
http://overtone-labs.com
See http://sensestage.hexagram.ca

data streams, and creating dynamical processes
which develop compelling behaviours based on
realtime sensor inputs.

Schwelle was by far the most complex system
of interaction as described above and shown in
figure 1. The interactions between the different
stages in the dataflow path is organised with the
class SchwelleSensorSystem, which reads the
input data, calculates the dynamical scaling (in
DynamicScaleSystem) and maps it to input
data for the dynamical system, implemented in
the class SchwelleHerbart. All the processing
of the data is taking place inside sclang, and
in custom classes with a lot of interconnection
between these classes.

In Chronotopia and JND/Semblance the data
processing is centered around data process-
ing units that are integrated with the Sense-
World DataNetwork framework. This approach
makes the creation and alteration of dataflows
much more flexible than the approach taken in
Schwelle. However, some of the data process-
ing algorithms used in Schwelle still have to be
ported as units to the general framework.

For JND/Semblance, 1 started developing a
framework for creating presets, combining set
parameters for use with specific Synths as
well as mapping of parameters to specific data
streams taken from the DataNetwork. These
presets can then be stored to disk and recalled
in future sessions, and instantiated and tweaked
in realtime, both through a graphical interface
and through code.

4.4 Data exchange with other programs

In each of the three projects, one of the col-
laborators was using the software Max/MSP to
control theatrical lighting. In order to exchange
data we had to set up OSC-communication pro-
tocols to exchange data. While in Schwelle this
was done on an ad-hoc basis, defining a OSC
address pattern each time we needed to ex-
change some data, for the later projects we de-
veloped a general purpose framework, namely
an OSC-interface to the previously mentioned
SenseWorld DataNetwork. The framework pro-
vides for robust methods to allow for quick re-
connection upon restarting the code or patch.
The DataNetwork provides a very quick way of
sharing any data that may be needed by more
than one collaborator, and it is used for shar-
ing show control data (timing, cues), as well as
sensor data and output data.

4.5 Managing synthesis processes

SC3 has two distinct methods for working with
Synths. One is instantiating a Synth directly
on the server and then changing parameters
of a synth either manually or automated in a
task or routine. The other method is using the
Pattern infrastructure, which provides many
higher-level mechanisms for creating sequences
in time.

In Chronotopia 1 mostly employed the Pat-
tern infrastructure, to create spatial sequences
across the light matrix. Only in a few in-
stances I found it more convenient to instantiate
Synths, which would then be mapped to con-
trol busses with data from the motion tracking.

For Schwelle 1 built up an infrastructure to
deal with common methods to handle Synths
and their parameters. The class Schwelleln-
strument handles common methods for start-
ing and stopping Synths, including fading in
and out, and providing a submix for the given
instrument for individual volume control; var-
ious subclasses then implement different vari-
ants of instruments, depending on the use of
samples (Buffers), audio input from a micro-
phone, mapping of controls to sensor data, as
well “clouds” of Synths dependent on input
data. Each instrument has a default GUI to see
and manipulate the status of the instrument.

For JND/Semblance 1 developed the preset
system mentioned above. In addition to this
preset system, I developed a central engine, the
JNDEngine which manages all JNDSynths
and their connections to the DataNetwork.
JNDSynth provides control over settings and
mapping of the synthesis processes to data from
the DataNetwork. JNDEngine also has a
graphical interface, with volume controls for all
running synths, and buttons to open GUIs for
editing individual JNDSynths.

The approach in JNDSynth is more gen-
eral in the sense that it doesn’t require many
subclasses for special cases of synths, but the
submixing approach of SchwelleInstrument
is absent and it would not yet be able to handle
the clouds used in Schwelle.

In future work, I anticipate merging the two
approaches into a common class.

4.6 Spatialisation methods

All of the works involved spatialisation of some
kind. In Schwelle there was a setup with
two “rings” of speakers, four speakers around
the performance area, and then four (or more)

speakers around the audience. Additionally,
there were two speakers mounted at the ceil-
ing, one pointed downwards, and one towards
the ceiling, so that the audience would only
get reflected sound from that speaker. Sounds
were then either routed to specific speakers, or
panned dynamically between the two rings of
speakers. In the class SchwelleSurround I
created various standard methods for the sound
spatialisation, which could then be applied to
parts of the soundscape at specific moments
during the performance. Thus I was routing
the output from one or more Synths through
another Synth, which did the spatialisation.

In Chronotopia 1 was working with a matrix
of outputs, so I needed to pan between these
outputs, without wrapping around to the other
side. As SC8 at the time of creation of Chrono-
topia only had a panner that wraps around
(PanAz), I doubled the amount of output chan-
nels used within the panner, and then only sent
the channels I actually needed to the output
of the Synth. But, I also suggested to the
SC8-community that there should be another
panner UGen which can pan between multiple
channels, but not wrap around. This led to the
development of the UGen PanX. In order to
direct the signals to the right outputs, I either
made synths outputting to a specific channel in
the matrix (using a LightGrid class to select
the channel numbers from the one-dimensional
array), or I used SynthDefs which embedded
the PanX UGen.

In JND/Semblance I was working again with
a matrix of outputs, so PanX was used ex-
tensively. Rather than routing Synth out-
puts to various spatialisation Synths, I devel-
oped a system for dynamic creation of Syn-
thDefs, where you can define a signal function,
which is stored in a library (JNDSignalLib),
and then create a JNDSynthDef with specific
types of spatialised outputs. Furthermore all
the JNDSynthDefs are stored in a separate
SynthDescLib, which can be browsed with a
graphical interface to test each SynthDef.

4.7 Show control

In all projects some kind of show control was
needed. All works have distinct scenes or move-
ments in which certain things need to happen
at certain times (usually referred to as cues in
live theater lingua franca).

In Schwelle the cues were quite closely tied
to the performer’s movements on stage, and in

certain cases they would prompt the performer.
Since there is a fair amount of improvisation in
the piece, there was no absolute time at which
these cues needed to be executed, although we
had defined relative times between events in cer-
tain occasions (for the latter, I created a sim-
ple ShowTimer which showed me a window
of how much time had elapsed since a certain
moment). In addition, some cues needed spe-
cific code to be executed shortly beforehand to
prepare processes (allocation of resources), and
some others needed code to clean up afterwards
(freeing resources). While I started writing a
general purpose class for this, I did not end up
using this, being unsure about its robustness in
showtime (not having tested it extensively dur-
ing rehearsals). Rather I ended up with a file
with code snippets organised according to the
timeline of the show, with numerous comments
as to when to execute which code. This also
allowed me to make quick changes “on the fly”
during the performance.

On the other hand in Chronotopia, the timing
of the piece is strictly tied to the music score
and there is no improvisational aspect in the
piece. Here, I ended up creating a CueList
class, which executes functions at specific given
frametimes. The cue list is stored in a code file,
where functions can be changed, or alternatively
you can use the class instance methods to add
functions at specific times. The current time
was then updated according to the playback of
the sound file with the music score.

For JND/Semblance, 1 used three tasks
(Tdefs) for the three movements of the piece
and used a master task, starting these three
tasks at the right time. While this allowed us to
try out each movement separately, while prepar-
ing the piece, this approach was not yet com-
pletely satisfactory in its use, mainly because 1
had to recalculate the total durations of each
movement (for proper execution of the master
task) everytime we changed the timing of the
piece during the preparations.

During rehearsals of the two theatrical pieces
that we often had to go back and forth between
specific scenes; this is actually the main chal-
lenge for coming up with a general purpose cue
system, since skipping back and forth means
taking care of the proper allocation and freeing
of resources, depending on where we are in the
show. Also certain cues may have set events in
motion, which run during a number of scenes, so
there has to be a check which events should be

turned on at a specific time. Finally, of course,
during rehearsals the shape of the piece may
change, so a quick editing of cues should be pos-
sible too.

4.8 Summary

From the above we can see that the different
projects have led to the exploration of multiple
ways of working on similar problems. The expe-
riences made with capturing, manipulating and
sharing sensor data has resulted in a consolida-
tion into the SenseWorld DataNetwork.

The work done in JND/Semblance is mov-
ing towards a complete composition system that
makes it easy to create signals with different
spatialised outputs, and creating presets for dif-
ferent instruments and playing and managing
the running synths. This system integrates with
the DataNetwork. Omn the other hand there
are still some approaches deployed in Schwelle,
which would be useful to integrate with the JND
system to create a complete system.

And finally, the different approaches for show
control could still be consolidated into a gener-
alised system that integrates with the composi-
tion system and the DataNetwork.

5 Software tools made public

My artistic work has resulted in several exten-
sions to SuperCollider (available as “Quarks”7),
additions to the standard capabilities of SC3, as
well as standalone programs (supplied with SC3
classes to interact with them). In this section
I will briefly discuss the various tools that have
been released and are publicly available.

5.1 SenseWorld and SenseWorld
DataNetwork

The SenseWorld Quark is a collection of classes
used for dealing with sensor data at a higher
level, and some convenience methods. It con-
tains some language side methods to calculate
statistics of incoming data streams, as well as a
number of PseudoUGens® to do the same.

The SenseWorld DataNetwork is a set of
classes dealing with sharing data between col-
laborators using various programming environ-
ments. This framework is discussed at length in
[Baalman et al., 2009).

"http://quarks.sourceforge.net

8PseudoUGens are implemented as small code blocks
in sclang consisting of other UGens, which can be used
just like any other UGens in a SynthDef.

5.2 GeneralHID

Moving back and forth between running code
on Linux and OSX developed the need for a
general approach for interfacing with HID de-
vices. Working from various parallel, platform
specific implementations used in Schwelle, and
also some previous projects, I developed the ab-
straction GeneralHID, which provides a com-
mon interface to both HIDDeviceService (the
OSX HID implementation in SC3), and LID
(Linux input device). The GeneralHID ab-
straction is part of the standard distribution of
SC8 since May 2007.

5.3 WiiOSC and SC3 WII

implementation

The use of the WiiMote in Schwelle has resulted
in the publicly availabe Linux based program
witosc®, which captures the data from a Wi-
iMote and sends it to a desired client using the
OSC-protocol using liblo'°. It has also resulted
in a native implementation in the SC3 language
for direct access to the WiiMote, which has been
part of the distribution since June 2007.

5.4 MotionTrackOSC

To use videotracking natively on Linux, I cre-
ated MotionTrackOSC!!, based on the OpenCV
library'? and liblo, a simple adaptation of the
motion tracking example of the OpenCV li-
brary, expanded with OSC control of parame-
ters, and sending the data to a specific client.
Furthermore, this program is integrated with
SC8, through some classes implementing the
OSC-communication. As the output of Motion-
TrackOSC is “raw”, namely there is no consis-
tent numbering of the motion tracking points, I
implemented an algorithm to keep track of the
positions of previously detected moving points
and matching these to the new ones, so that
the identifiers are consistent. Additionally, I im-
plemented some algorithms to filter out “short-
lived” tracking points, which can occur when
the light conditions of the tracked area change
— this typically happens a lot in a theatrical
context.

Yavailable at http://www.nescivi.nl since August
2007.
Ohttp://1iblo.sourceforge.net
Havailable at http://www.nescivi.nl since January
2009.
2http://opencv.willowgarage.com/

5.5 DMX

DMX is “the MIDI of theater lighting control”,
a serial protocol consisting of 8bit control val-
ues for up to 512 light channels within one
DMX “universe”. Most common theater light
devices can be controlled via DMX, such as dim-
mer packs, stroboscopes and motorized lights
with many individual control channels. Al-
though there exists a dma4linuz-project!?, that
project has a very lowlevel approach and there
are hardly any programs that integrate with in-
teractive software. As a result of the projects
discussed in this paper, a DMX extension has
been made for SC8, which can currently com-
municate with the EntTec DMX USB Pro'4.
This extension will eliminate the dependency on
Max/MSP for DMX control and simplify some
of the setups in the future.

5.6 PanX

The need to spatialise sound on a grid of out-
puts (speakers) rather than a circle led to the
development of the PanX UGen, which allows
for panning similar to the PanAz UGen, but
does not wrap around. This UGen was imple-
mented by Josh Parmenter and is available from
the sc3-plugins project!s.

6 Conclusions

Interactive live performance is a challenging and
exciting context for coding, and SuperCollider
is certainly a suitable choice of language for this
purpose. Creating tools for solving problems as
they are encountered (or invented) may lead to
ad-hoc solutions for one performance, but result
in more solid tools in subsequent works as prob-
lems reoccur. While most tools were written
based on an immediate need, the publication of
these tools has helped and hopefully will help
many other artists working in similar areas.

This retrospective analysis of my coding
strategies in these three projects will hopefully
give other artists and researchers some insight
in the creative process of working with code in
artistic projects, and the specific challenges in
this context.

7 Acknowledgements

Thanks to Chris Salter and Harry Smoak for the
many years of collaboration; also to Alberto de
Campo for a number of pleasant and insightful

Bhttp://11g. cubic.org/dmx4linux/
“http://www. enttec. com/
Yhttp://sc3-plugins.sourceforge.net

coding sessions. Thanks to Josh Parmenter for
implementing the PanX UGen.

SuperCollider in brief

SuperCollider consists of two components: an
audio programming language, called sclang, and
a audio synthesis engine, called scsynth; these
two components communicate with each other
via a set of OSC messages. sclang is an object
oriented audio programming language with dy-
namic type casting and garbage collection. As
a reference for some SC8 nomenclature I have
been using throughout this paper:

UGen unit generator, or its representation in
sclang.

SynthDef “blueprint” for a Synth, like an “in-
strument”, consisting of a set of intercon-
nected UGens.

Synth a running synthesis node on scsynth,
created from a SynthDef; like a “voice”.

Quark “packaged” set of sclang classes to ex-
tend the default class library of SCS3.

SuperCollider can be found at http://
supercollider.sourceforge.net.

References

Marije A.J. Baalman, Daniel Moody-Grigsby,
and Christopher L. Salter. 2007. Schwelle:
Sensor augmented, adaptive sound design for
live theater performance. In Proceedings of
NIME 2007 New Interfaces for Musical Ezx-
pression, New York, NY, USA.

Marije A.J. Baalman, Harry C. Smoak,
Christopher L. Salter, Joseph Malloch, and
Marcelo Wanderley. 2009. Sharing data in
collaborative, interactive performances: the
SenseWorld DataNetwork. In Proceedings of
NIME 2009 New Interfaces for Musical Fx-
pression, Pittsburgh, PA, USA.

Johann Friedrich Herbart, 1969. Kleinere Ab-
handlungen, chapter “De Attentionis Men-
sura causisque primariis” (orig. published
1822). E.J. Bonset, Amsterdam.

M. Wright, A. Freed, and A. Momeni. 2003.
OpenSoundControl: State of the art 2003. In
2003 International Conference on New Inter-
faces for Musical Expression, McGill Univer-
sity, Montreal, Canada 22-24 May 2003, Pro-
ceedings, pages 153-160.

