
Sense/Stage — low cost, open source wireless sensor and data
sharing infrastructure for live performance and interactive

realtime environments

Marije A.J. BAALMAN
Harry C. SMOAK

Vincent DE BELLEVAL
Brett BERGMANN

Christopher L. SALTER
Design and Computation Arts

Concordia University
Montréal, Québec

Canada,
marije@nescivi.nl and sensestage@gmail.com

Joseph MALLOCH
Joseph THIBODEAU

Marcelo M. WANDERLEY
Input Devices and Music Interaction Lab

McGill University
Montréal, Québec

Canada,
joseph.malloch@gmail.com

Abstract

SenseStage is a research-creation project to develop
a wireless sensor network infrastructure for live per-
formance and interactive, real-time environments.
The project is motivated by the economic and tech-
nical constraints of live performance contexts and
the lack of existing tools for artistic work with wire-
less sensing platforms. The development is situated
within professional artistic contexts and tested in
real world scenarios.

In this paper we discuss our choice of wireless plat-
form, the design of the hardware and firmware for
the wireless nodes, and the software integration of
the wireless platform with popular media program-
ming environments by means of a data sharing net-
work, as well as evaluation and dissemination of the
technology through workshops. Finally, we elabo-
rate on the application of the hardware and soft-
ware infrastructure in professional artistic projects:
two dance performances, two media projects involv-
ing environmental data and an interactive, multi-
sensory installation.

Keywords

Wireless sensing, mesh networks, data sharing, real-
time performance, interactive environments.

1 Introduction

SenseStage is a research-creation project to de-
velop small, low cost and low power wireless sen-
sor hardware together with software infrastruc-
ture specifically for use in live theater, dance
and music performance as well as for the design
of interactive, real-time environments involving
distributed, heterogeneous sensing modalities.
The project consists of three components:

• a series of small, battery powered wireless
PCBs that can acquire and transmit input
from a range of analog and digital sensors,

• an open source software environment that
enables the real-time sharing of such sensor
data among designers and

• plug in modules that enable the analysis of
such sensor data streams in order to pro-
vide building blocks for the generation of
complex dynamics for output media.

The project emerged from a desire to address
a novel, emerging research field: distributed,
wireless sensing networks for real-time composi-
tion using many forms of output media includ-
ing sound, video, lighting, mechatronic and ac-
tuation devices and similar.

Three specific factors have motivated the
SenseStage project:

1) Economic and technical constraints of live
performance: There is an increasing interest
in the use of sensing technology in live per-
formance contexts. The economic and cultural
constraints of live performance, however, make
the integration and use of such technologies dif-
ficult. It is seldom possible to have long re-
hearsal periods with full access to a technical
setup that is equivalent to the eventual perfor-
mance space due to the industrial model of cul-
tural production — show in, show out – leav-
ing no room for exploration of new technological
possibilities and the artistic impact. By provid-
ing a solution for easy application of the tech-
nology, the short rehearsal periods and “tech-
weeks” can be spent more on the artistic ex-
ploration of the technology, rather than solving
technological problems.

2) Lack of tools for artistic use: There are
many groups currently researching the appli-
cations of wireless sensing networks, but their
design decisions are normally motivated by en-

gineering innovations, thus leading to efficient
yet, prohibitively expensive and complex sys-
tems. Also, despite the large number of research
projects in the field, there are few wireless sens-
ing platforms that are actually available for real
world use, or that are affordable for artists. In
addition these wireless sensing platforms rarely
integrate with the software tools that artists use
for making music, sound and media.

3) Real world testing scenarios: Much of the
research agenda for the project was driven by
many years of artistic work and technological
development of tools to facilitate the creation
of interactive performances and installations.
These events employed distributed sensing and
mapped such input data to complex parameter
spaces for the control of sound and other me-
dia in real-time (e.g. Schwelle [Baalman et al.,
2007] and TGarden[Ryan and Salter, 2003]). A
key design element of the SenseStage project
is thus to deploy SenseStage technologies into
real world, professionally driven testing envi-
ronments to see how such tools function “in the
wild” and outside of the standard lab, demo-
driven mode normally given to the presentation
of new technologies.

2 Hardware

For the hardware wireless sensing node for
Sense/Stage, our main requirements were cost
per unit — since low costs allow experimenta-
tion with large numbers of nodes — and im-
mediate availability. We investigated several
options for wireless nodes developed by other
groups, such as the µParts1 [Beigl et al., 2005],
the EcoMote2 [Park and Chou,], the Tyndall
Motes3 and the Intel Motes4[Nachman et al.,
2005], but none of these satisfied our needs, or
more importantly they were simply not avail-
able.

Our design goals were:

• Low cost
• Small form factor
• Flexible sensor configuration
• Usable for control of motors, LEDs, and

other actuators.
• Operable in large groups (10+ nodes)

1http://particle.teco.edu/upart/
2http://www.ecomote.net/
3http://www.tyndall.ie/mai/

WirelessSensorNetworksPrototypingPlatform_25mm.
htm

4http://techresearch.intel.com/articles/
Exploratory/1503.htm

• Long battery life
• Ease of use
• Programmable, so that the board can take

care of more logic and processing of data,
if desired by the user

We decided to use the XBee in combination
with the Arduino5 platform, as the XBee al-
ready provided us with the needed ad-hoc net-
work structure. Additionally, several other de-
velopers have documented their experience us-
ing XBees in conjunction with Arduinos6 allow-
ing us to skip some common development pit-
falls.

We based our board design on the Arduino
Mini Pro, being able to tap into many available
firmware libraries, as well as the development
and programming environment. Furthermore,
Arduino is widely used in open source, artistic,
physical computing contexts, so our board will
be easy to use for this community.

The main focus then was to design a PCB
that was small, and to develop standard
firmware that makes it easy to setup and use
the boards, as well as exploring the use of and
integration with the XBee wireless chips.

The PCB layout of the SenseStage MiniBee is
shown in figure 1. The first board revision came
to a unit cost price of about 32 CAD, exclud-
ing the XBee chip, for a manufacturing run of
100 boards (PCB creation, assembly and parts).
With a larger manufacturing run and allowing
for a longer assembly time, this per unit cost
will drop considerably.

2.1 Firmware
The firmware is a collection of functions to
handle wireless transmission and communica-
tion, sensor reading and basic read/write op-
eration on any available pin of the MiniBee.
The firmware is built using our own library
for the Arduino environment which allows users
to quickly build their own application for the
MiniBee.

Currently the following sensors/actuators are
supported by the firmware:

• Analog sensors (connected to the analog in-
put pins, e.g. resistive sensors, analog ac-
celerometers, infrared distance sensors)

5http://www.arduino.cc
6e.g. the ArduinoXbeeShieldhttp://www.arduino.

cc/en/Main/ArduinoXbeeShield, the Arduino Xbee
Interface Circuit (AXIC) http://132.208.118.245/

~vitamin/tof/AXIC/ and the Blushing Boy MicroBee
R3 http://blushingboy.org/content/microbee-r3

Figure 1: The SenseStage MiniBee PCB, rev.
A. The XBee is mounted on the other side of the
board. Changes in the second revision include
smaller board-size and the footprint for a coin-
cell.

• Digital sensors (on/off, e.g. buttons and
switches)

• LIS302DL accelerometer7, using I2C
• Relative humidity and temperature sensor8
• Ultrasound sensors9

• PWM output (e.g. dimmable LEDs, mo-
tors)

• Digital output (on/off)

The serial protocol is loosely based on the Se-
rial Line Internet Protocol (SLIP)10, and is set
up as simply as possible to ensure that data
packets are small. A regular package is built up
as follows:

• escape character, followed by message type
• message ID
• node ID
• data bytes
• delimiter character

A full reference of the different messages sup-
ported is given in table 1.

The firmware is configured through a host
computer which allows to quickly change its op-
eration without having to physically reprogram
the microcontroller. This approach is not un-
like Firmata [Steiner, 2009] with the difference
that our firmware stores its latest configuration

7There is a footprint on the board for this sensor.
8Sensirion SHT1x series
9The “Ultrasonic Ranger”, http://www.

robot-electronics.co.uk/htm/srf05tech.htm
10http://tools.ietf.org/html/rfc1055

in the EEPROM of the MiniBee.
Each time the MiniBee boots up, it reads the

serial number of the attached XBee11 and re-
lays this information to the coordinator node
connected to the host computer. The host
then assigns a unique node ID to the MiniBee
and optionally sends a new configuration to
the MiniBee. If no new configuration is re-
ceived, the MiniBee can access its configuration
through its EEPROM. The host computer soft-
ware remembers the known boards and XBee
serial numbers so node IDs and configurations
are maintained for a project.

Using an 8 MHz clock on the board, the max-
imum baud rate that can be achieved is 19200
baud. In a next revision we will include a faster
(up to 20MHz) crystal, which will allow the use
of higher baudrates.

Future work also includes writing a wireless
bootloader to fully reprogram the SenseStage
MiniBee without the need to manipulate the
boards (see for example LadyAda12). The extra
components needed to do this will be added in
the next revision of the board.

3 Software

In order to make the data from the wireless sen-
sor nodes available to several collaborators on a
project simultaneously, we developed the Sense-
World DataNetwork. It is intended to facilitate
the creation, rehearsal and performance of col-
laborative interactive media art works, by mak-
ing the sharing of data (from sensors or internal
processes) between collaborators easy, fast and
flexible. Our aim is to support multiple media
practices and allow different practitioners to use
the software to which they are accustomed. The
framework is intended to support coordinated
collaboration with real-time data and multiple
media types within a live interactive perfor-
mance context.

The framework is different from the Key-
Worx 13 framework [Doruff, 2005], which
emphasizes net-based art and collaborative
projects between different locations, and the
McGill Digital Orchestra Tools14 [Malloch et

11using the AT command mode. Other people
have made an Arduino library for communicating with
XBees in API mode. See http://code.google.com/p/
xbee-arduino/

12http://www.ladyada.net/make/xbee/arduino.
html

13http://www.keyworx.org
14There is a Max/MSP bridge between the SenseWorld

DataNetwork and the Digital Orchestra Tools so they

description type data sender
Announce ’A’ server
Quit ’Q’ server
Serial number ’s’ Serial High (SH) + Serial Low (SL) node
ID assignment ’I’ msg ID + SH + SL + node ID + (*config ID*) server
Configuration ’C’ configuration bytes server
PWM ’P’ node ID + msg ID + 6 values server
Digital out ’D’ node ID + msg ID + 11 values server
Data ’d’ node ID + msg ID + N values node

Table 1: Message protocol between host and MiniBee nodes. Type is preceded by the escape
character (92), and messages are delimited with the delimiter character (10). The escape character
is used to escape to the message type, and whenever the delimiter, the escape character, or the
carriage return character (13) occurs in any of the other bytes. General convention for the message
type: server message in upper case, node message lower case. (*...*) indicates an optional byte.

al., 2008], which primarily focus on the map-
ping and performance of monolithic digital mu-
sical instruments.

The final design criteria were to:
• Tight integration with the wireless sensing

platform
• Allow reception of data from any node by

any client (subscription)
• Allow transmission of data to any node by

any client15 (publication)
• Restore network and node configuration

quickly
• Be usable within heterogeneous media soft-

ware environments
• Enable collaboration between heteroge-

neous design practices
• Enable efficiency of collaboration within

the limited timeframe of rehearsals

3.1 The SenseWorld DataNetwork
framework

The framework’s core is implemented in Super-
Collider (SC), which is available as open source
software and runs on several platforms (Linux,
OSX, Windows and FreeBSD). Clients have
been implemented in SC, PureData, Max/MSP,
Processing, Java, and C++ so far. The OSC
namespace is well defined, so it should be trivial
to implement clients for other software environ-
ments.

What follows is a technical description of the
implementation of the framework. Users of the
framework need not be familiar with the inner
workings of the framework (or have experience

can be used together.
15only one client can set data to a specific node at a

time.

in programming SC), so long as their software
environment supports OSC and is able to com-
ply with the OSC namespace conventions in or-
der to communicate with the network. Thus,
the framework is designed to allow for ease of
use within a designer’s own creative practice.

A central host receives all data messages and
manages the client connections (see figure 2).
Each client can subscribe to one or more data
nodes in order to use that node’s data in its own
internal processes. Furthermore, each client can
publish data onto the network by creating a
node. A new client can query the network con-
cerning which nodes are present and is informed
when new nodes appear after the client has been
registered.

A data node can be understood as a collection
of data that belongs together, e.g., data coming
from the same sensor device or the output of
a particular device such as the DMX control
stream for theatrical light. Within each node
there are slots which represent single data val-
ues, for example, a data node representing a
3-axis accelerometer has three slots, with each
slot corresponding to one axis. If a client is only
interested in one slot of a node, he can subscribe
specifically to that slot.

3.2 Integration with MiniBee mesh
network

We have specifically integrated the connection
to the SenseStage MiniBee network, by provid-
ing options to configure, send and receive data
from the sensor network, through the host of
the DataNetwork.

The host communicates with the wireless net-
work through a serial protocol. It manages all

Figure 2: Diagram of the SenseWorld DataNet-
work structure.

the incoming and outgoing data from and to the
wireless nodes. The data from a MiniBee will
appear onto the network as a DataNode, while
each attached sensor is a data slot in this data
node. Clients can then subscribe to this node
to receive its data. Furthermore, a client can
send a message to map the data that is on a
data node the client has created to the digital
outputs or pulse width modulation outputs of a
MiniBee, in order to control, for example, lights
or motors.

3.3 OSC implementation
The network is accessed through an OSC in-
terface16, which allows a client to join the data
network, access its data and also create its own
data nodes on the network.

The general setup is as follows: a client first
sends a registration message to the data net-
work server. The client will immediately begin
receiving ping messages to which it must re-
ply with pong messages confirming the client’s
presence. Following the initial registration, the
client can submit a query message in order to re-
ceive a complete list of nodes and slots currently
available from the network. The client can then
subscribe to selected nodes and slots, and sub-
sequently will receive data from the nodes and
slots it is subscribed to via data messages cor-
responding to the subscribed data sources.

The client can supply a new node to the net-
work by using the /set/data message (which
is also used subsequently to set new data). A
client can also label the nodes and slots it has
created. Whenever a new node or slot is added
(by any client) or changed (e.g., when it gets
a label), the client will receive a new info mes-
sage automatically. All messages to the server

16assumed to be used via the UDP layer. The OSC
protocol in itself is not dependent on the underlying pro-
tocol, but is implemented on top of TCP and/or UDP
in most software systems

have a reply, which is either the requested info,
a confirmation message or a warning or error.

In comparison, the Digital Orchestra tools
provide a decentralized network using one gen-
eral multicast port on the network to settle the
ports and namespaces of clients. Since not all
interactive media software environments sup-
port listening to multicast channels, we elected
not to use this approach. Rather our assump-
tion is that each client will settle its listening
port itself within the operating system of the
computer on which it runs. The host can then
distinguish each client by its IP address (auto-
matically included in the OSC message) and a
port which is an argument of each OSC mes-
sage in the namespace. The latter is necessary
as several clients (Max/MSP among them) do
not send OSC messages from the same port as
they are listening to, or cannot configure the
port they are sending from.

3.4 Auto-recovery
Practical lessons derived from rehearsal and
performance experiences remind us that soft-
ware applications and processes can be unex-
pectedly and fatally interrupted (i.e., crash).
For this reason, a fast and automatic recov-
ery of all previously instantiated connections
is critical. The following methods are imple-
mented to enable fast and automated recov-
ery in such situations. Following (re)start of
the host server and (re)establishment with the
network, an announce message is broadcast on
several ports. In addition, the server updates
a publicly readable file with the current ac-
tive listening port. Moreover, the host can re-
store previously connected clients from informa-
tion stored in a server readable file. In turn,
the client has read access over the network to
the host configuration file and automatically
retrieves the port information to which it has
to register. Further, the client implements an
auto-configuration process triggered upon re-
ceipt of a host announce message and a response
from the host indicating the client has success-
fully registered.

3.5 SuperCollider implementation
The SuperCollider (host) implementation is
done via a set of custom written classes:
SWDataNetwork base class for the network.
SWDataNode base class for a data node.
SWDataSlot base class for a data slot.
SWDataNetworkSpec implements the la-

belling of the nodes and slots of the net-

work.
SWDataNetworkOSC implements the OSC

interface
SWDataNetworkOSCClient keeps track of

a connected client

Data nodes have both unique IDs (integer
numbers) and human readable labels (e.g., node
“3” has the label “accelerometer”). Data slots
are automatically numbered, according to the
order in which they appear, as they are set in
the network; they can also be given a label. The
labelling is not done automatically, so that the
naming becomes a conscious and integral part
of establishing shared nomenclatures for the col-
laboration. This encourages consideration by
the users of what the data represents and its po-
tential use. The label specification (the “spec”)
can be stored between sessions so it can be re-
called again upon startup.

Each data node and slot has methods to print
debugging messages, set an action to be per-
formed upon new incoming data, scale and/or
remap the data and create a control bus on the
audio server17 with the data. Each data node
also can specify an action to be taken in case
there has been no input to the node for a cer-
tain amount of time (e.g., trying to reconnect
to an external device).

If a client creates a node, that node is linked
to the client (the client becomes the “setter”
of the node), and no other client can set data
to that node. Client configuration can also be
stored to a file and be used for recovery on
startup.

All data from the network can be written to
a log-file in a text format containing lines for
each time step with tab-separated data values.
The log can be opened and played back with the
class SWDataNetworkLog.

Finally, a graphical user interface has been
implemented to monitor the status of the data
network and the state of each node (see figure
3 for the client’s version of this GUI).

3.5.1 The client
The class SWDataNetworkClient imple-
ments an OSC client to the SenseWorld
DataNetwork so that an external SC client can
also be part of the network. It implements the
client side of the OSC interface. It inherits
from the class SWDataNetwork to manage

17SC consists of two parts: sclang, which is the pro-
gramming language, and scsynth, which is a dedicated
audio server.

Figure 3: The DataNetwork SC Client interface.

the data it receives, and thus has the same inter-
face in its use within SC, with some additional
methods for interaction with the host.

In a setup with several collaborators using
SC, one of them will act as a host for the net-
work, while the other SC participants register
as clients to that host. Since the code interface
for both is almost the same, apart from the ini-
tialisation, it is very easy for SC participants to
prepare and test their own inputs and outputs
to the DataNetwork individually, and switch to
the shared network during collective rehearsals.
In figure 4 an example is given of the code in-
terface to both the host and the client.

3.5.2 Derived data
Deriving data from existing nodes can be done
for example by combining data from various
nodes, calculating statistical properties of data,
or smoothing data.

To facilitate this, we have developed methods
to do this either making use of the language
features of SC, or by making use of the server’s
unit generators to perform these calculations.

3.6 PureData and Max/MSP clients
Two abstractions provide access to the Sense-
World DataNetwork within a Pd or Max patch:
dn.node and dn.makenode. Both implemen-
tations require a private variable for the host
IP address and for the client name (shared be-
tween all instances on a client), but otherwise
take care of the details of talking to the network.

dn.node subscribes to an existing node, out-
putting the received data as a list. In Pure
Data each instance subscribes to a single node,
whereas in Max it is possible to receive data
from multiple nodes using a single dn.node ob-

Example of setting up the host in SuperCollider:

// create an instance of the DataNetwork

x = SWDataNetwork.new;

// adds the host OSC interface

x.addOSCInterface;

// create an instance of the class

// managing the MiniBees:

q = SWMiniHive.new(x);

// make GUIs for the DataNetwork and the hive:

x.makeGui;

q.makeGui;

An example of using the client in SuperCollider:

// create a DataNetwork client with the name ‘‘sc’’:

x = SWDataNetworkClient.new(‘‘192.168.0.104’’,‘‘sc’’);

// see what is in the network

x.queryAll;

// we know that node 2 has interesting data coming

// from a floor pressure sensor, so we subscribe:

x.subscribeNode(2);

// we want to create a node with a measure of the

// sample variance on node 102 and give a label

x.addExpected(102, \floorVar);

// node 2 has the label \floor to access it

// we create a bus for the data (s is default server):

x[\floor].createBus(s);

// we create the sample variance node:

~floorVar = StdDevNode.new(102, x, x[\floor].bus, s);

~floorVar.start;

// now we have raw data available on node 2, x[\floor]

// and sample variance data on node 102, x[\floorVar]

Figure 4: The DataNetwork SC code interface.

Figure 5: Screenshot of the PureData client.

ject (in which case each node’s data list is pre-
ceded by its node ID).

dn.makenode does the opposite, publishing
data to the network using a unique node ID. The
data must be formatted as a list with a number
of elements equal to the number of data slots
given as a creation argument to the instance.

import datanetwork.*;

DNConnection dn; // DNConnection instance

DNNode node; // DNNode instance

void setup() {

dn = new DNConnection(this, "192.168.0.104",

dn.getServerPort("192.168.0.104"),

6009, "p5Client");

node = new DNNode(2000, 5, 0, "p5Node");

}

void stop() {

dn.unsubscribeAll();

dn.removeAll();

dn.close();

}

void keyPressed() {

if(key == ’r’) dn.register();

else if(key == ’q’) dn.queryAll();

else if(key == ’f’) dn.subscribeNode(401);

else if(key == ’d’) dn.setData(node,

new float[] { 4.0, 2.0, 1.0, 2.3, 4.4 });

}

// receive and print data:

void dnEvent(String addr, float[] args) {

print("Float: " + addr);

for(int i = 0;i < args.length;i++)

print(" "+args[i]);

println();

}

Figure 6: An example of using the Processing
client.

3.7 Processing and Java
The Processing client is based on the JavaOSC
library18, and is based around two classes:
DNConnection, dealing with the communi-
cation to and from the host, and DNNode,
dealing with the properties of a DataNode. As
the implementation is basically a Java class, the
client can not only be used for Processing, but
also for any Java program.

An example of use of this library in a program
is shown in figure 6.

3.8 C++ library
The C++ library is based upon liblo19 for han-
dling OSC communication and consists of a set
of classes to deal with the various components
of the DataNetwork:
DataNetwork base class for the network.
DataNode base class for a data node.
DataSlot base class for a data slot.
DataNetworkOSC implements the OSC in-

terface.
OSCServer C++ class to implement an OSC

Server (taken from swonder20 and slightly
expanded)

18http://www.illposed.com/software/javaosc.
html

19http://liblo.sourceforge.net
20http://swonder.sourceforge.net

DataNode * node;

DataNetwork * dn;

// create a data network:

dn = new DataNetwork();

// create an osc client interface for it:

// arguments (host IP, client udp port, client name)

dn->createOSC(‘‘127.0.0.1’’, 7000, ‘‘libdn’’);

// register with the host:

dn->registerMe();

// query all there is to know about the network

dn->query();

// subscribe to a node:

dn->subscribeNode(5, true);

// create a node:

dn->createNode(4, "world", 5, 0, true);

// label one of its slots:

dn->labelSlot(4, 2, "hithere", true);

float dummydata[] = {0.1, 0.3, 0.4, 0.5, 0.6};

// get a reference to the node:

node = dn->getNode(4);

// set data to the node:

node->setData(5, dummydata);

// send the data to the network:

node->send(true);

Figure 7: An example of using the C++ library.

An example of use of this library in a program
is shown in figure 7.

4 SenseStage Workshop

The first SenseStage workshop21 was held in
May 2009 at Concordia University, as a test case
for using many sensor nodes in one space, as well
as having a number of artists, unfamiliar with
the specifics of the technology and coming from
diverse artistic and technical backgrounds, use
the DataNetwork simultaneously. Participants
were able to employ all available data in various
projects, which were developed over the course
of one week. While this workshop served as a
test case for evaluating the use of our hardware
and software, we were also interested in how
participants would make artistic use of the po-
tentials of the system.

The workshop resulted in five group projects,
with groups consisting of 3 to 5 collaborators,
using light, sound, animation and video as out-
put media. The groups were able to go very
quickly from concept to experimenting with var-
ious sensor modalities and using the data to
drive the output media. Encouragingly, the par-
ticipants seemed to be primarily concerned with
“what to do with the data” rather than “how
to get the data”. The results of this workshop
also highlighted the need for more sophisticated

21http://sensestage.hexagram.ca/workshop/

ways of dealing with sensor data, for combining,
conditioning, and processing of multiple data
streams.

Several more SenseStage workshops are
planned for 2010 and 2011 as a means to fa-
miliarize people with the SenseStage infrastruc-
ture, as well as further explore issues in mapping
and using large numbers of datastreams.

5 Usage cases

In this section, we will discuss several projects
in which the SenseStage technology has been
used. All of these projects have been, or are
being shown at international festivals and mul-
tiple venues, thus fullfilling the criterium that
the technology has to be useable in a real world,
professional artistic environment.

5.1 Dance: Schwelle and Chronotopia

The dance performance Schwelle [Baalman et
al., 2007] had been developed before the Sens-
eStage project began and has informed many
of the design decisions made during the Sens-
eStage project, so we are currently discussing
how the infrastructure can be adapted and im-
proved to use our new technology for future
performances. The performance involves 3 ac-
celerometers on the body (originally wireless
based upon a Create USB interface with Mi-
croChip RF chips), 1 accelerometer in an ob-
ject (originally a WiiMote), and 3 light sensing
boards (originally wired Create USB interfaces)
placed at various places in the room. Further-
more, there is activation of custom lights and
motors in one part of the stage. Using the Sens-
eStage MiniBees, we will be able to use now 3
separate sensing boards on the body, saving us
problems of wiring along the body; instead of
using the WiiMote for the accelerometer in the
object, we can now use a SenseStage MiniBee,
which we can wake up from a sleep mode, once
we need the sensing in the box; this will save
us various problems of having to make the Wi-
iMote set up a BlueTooth connection by push-
ing buttons, while it is packed inside a box. For
the sensing boards inside the room, we will also
be spared of the wiring. Where we were previ-
ously using a custom OSC-namespace for this
piece, we can now use the DataNetwork clients
instead, and gain much more robustness with re-
gard to reconnecting; also it will be much faster
to add new data to exchange between the in-
teractive light controls and the sound control,
should we feel the need to do so.

Figure 8: A still from the dance performance
Chronotopia with the Attakkalari Centre for
Movement.

In Chronotopia, a dance performance by the
Bangalore (India) based Attakkalari Centre for
Movement, and in collaboration with visual
artist Chris Ziegler, we used the wireless tech-
nology for controlling a matrix of 6 by 6 cold
cathode fluorescent lights (CCFL), and 3 hand-
held CCFL lights. Since the power required
for the light matrix is quite high, it cannot be
battery-powered, but the use of wireless tech-
nology freed us from running cable between the
light matrix and the computer controlling it.
Given the short setup time in theaters (usu-
ally just one day), and especially in technically
challenging environments as India, this was a
considerable advantage. For the 3 handheld ob-
jects, wireless control was critical, as the objects
are carried across the stage by the performers
during the show as part of the dramaturgy of
the piece. Within the light control setup itself,
the DataNetwork was used extensively to ex-
change data between different portions of the
setup, such as the motion tracking data (from
a camera looking down at the stage), and pitch
and beat tracking data extracted in real-time
from the soundtrack. We also exchanged data
between the light control and the interactive
video, both for synchronisation of cues with the
soundtrack (using frametime of the playback,
published as data on the network), and for con-
necting the intensity of the lights to the video
image (the light control was publishing the max-
imum output value of all the lights in the matrix
onto the network, which was used to control the
brightness of the video image).

5.2 Environmental: MARIN and
Arctic Perspective

In two artistic projects dealing with environ-
mental data,
MARIN22 and Arctic Perspective Initiative23,
the SenseStage MiniBees were used to gather
environmental data, such as temperature, hu-
midity, light and air quality, as well as 3-axis
acceleration. The DataNetwork was used to ac-
cess the data for real-time use, and to gather
and log all the data to file for artists to use at
a later time for visualisation and sonification.

From an expedition to Nunavut in North-
ern Canada in Summer 2009 as part of the
Arctic Perspective Initiative project we learned
that the range of the XBee and XBeePros is
very much dependent on the environmental con-
ditions. In the outside conditions there, the
achieved range of transmission was only a few
hundred meters, only about a fifth of the range
specified on the datasheet of the XBeePro. At
ranges larger than about 50 m. they are ex-
tremely affected by blockage, e.g. from the
body. In indoor situations, the radio waves will
be reflected by objects and walls and such block-
age may be mitigated.

Additionally, the batteries lost charge faster
in colder conditions (about 6◦C) resulting in
shorter battery life.

Another issue was that it was difficult to
power the host computer, receiving the data
from the MiniBees, using solar power, because
of foggy and cloudy days. For this reason a kind
of datalogger approach for the MiniBees, which
stores data locally and sends it to a host when
the host is online, could be useful for this kind
of application.

Other challenges include finding waterproof
housing to protect the electronics from ex-
tremely wet weather conditions on sea.

5.3 Installations: JND/Semblance

JND/Semblance is an interactive installation
that explores the phenomenon of cross modal

22“M.A.R.I.N. (Media Art Research Interdisciplenary
Network) is a networked residency and research initia-
tive, integrating artistic and scientific research on ecol-
ogy of the marine and cultural ecosystems.” (from
http://marin.cc/).

23“The Arctic Perspective Initiative (API) is a non-
profit, international group of individuals and organiza-
tions whose goal is to promote the creation of open au-
thoring, communications and dissemination infrastruc-
tures for the circumpolar region.” (from http://www.
arcticperspective.org).

perception — the ways in which one sense im-
pression affects our perception of another sense.
The installation comprises a modular, portable
environment, which is outfitted with devices
that produce subtle levels of tactile, auditory,
visual and olfactory feedback for the visitors,
including a floor of vibrotactile actuators that
participants lie on, peripheral levels of light,
scent and audio sources, which generate fre-
quencies on the thresholds of seeing, hearing
and smelling.

In JND/Semblance the SenseStage MiniBees
are used for gathering floor pressure sensing
data. The SenseWorld DataNetwork is used to
gather the raw sensor data, to extract features
from it, and to establish flexible mappings to
light, sound, and vibration on a platform on
which the visitor is lying down.

6 Conclusions

We have presented SenseStage, an integrated
hardware and software infrastructure for wire-
less mesh-networked sensing, actuating, data
sharing and composition within interactive me-
dia contexts. The infrastructure is unique as
it integrates hardware and software, and makes
sensor and other data easily available for all
collaborators in a heterogeneous media project,
within each collaborator’s preferred software en-
vironment.

We are currently revising the hardware and
firmware design, including options to configure
and program the boards wirelessly. We plan to
have the board available for sale in the second
half of 2010. Our future research will focus on
techniques for composing and creating with the
many streams of realtime data available from
such a dense network of sensors.

7 Acknowledgements

This work was supported by grants from the
Social Sciences and Humanities Research Coun-
cil of Canada and the Hexagram Institute for
Research/Creation in Media Arts and Sciences,
Montréal, QC, Canada.

Thanks to Matt Biedermann for his feedback
on the use of the SenseStage MiniBees in the
Arctic Perspective Initiative project.

Thanks to Elio Bidinost, as well as all the
SenseStage Workshops participants, for their in-
put and feedback.

7.1 Download
The SenseWorld DataNetwork is available from
http://sensestage.hexagram.ca. It is re-

leased as open source software under the
GNU/General Public License.

References

Marije A.J. Baalman, Daniel Moody-Grigsby,
and Christopher L. Salter. 2007. Schwelle:
Sensor augmented, adaptive sound design for
live theater performance. In Proceedings of
NIME 2007 New Interfaces for Musical Ex-
pression, New York, NY, USA.

M. Beigl, C. Decker, A. Krohn, T. Riedel, and
T. Zimmer. 2005. uParts: Low cost sensor
networks at scale. In Ubicomp 2005.

Sher Doruff. 2005. Collaborative praxis: The
making of the keyworx platform. In Joke
Brouwer, Arjen Mulder, and Anne Nigten,
editors, aRt&D: Research and Development
in the Arts. V2/NAI Publishers, Rotterdam.

Joseph Malloch, Stephen Sinclair, and
Marcelo M. Wanderley. 2008. A network-
based framework for collaborative develop-
ment and performance of digital musical in-
struments. In Richard Kronland-Martinet,
Solvi Ystad, and Kristoffer Jensen, editors,
Computer Music Modeling and Retrieval.
Sense of Sounds: 4th International Sympo-
sium, CMMR 2007, Copenhagen, Denmark,
August 2007, Revised Papers, number ISBN
978-3540850342 in Lecture Notes in Com-
puter Science. Springer.

L. Nachman, R. Kling, R. Adler, J. Huang,
and V. Hummel. 2005. The intel mote plat-
form: a bluetooth-based sensor network for
industrial monitoring. In Proceedings of the
4th International Symposium on Information
Processing in Sensor Networks (IPSN 2005)
(Los Angeles, CA, April 2005).

Chulsung Park and Pai H. Chou. Eco: Ultra-
wearable and expandable wireless sensor plat-
form. In Third International Workshop on
Body Sensor Networks (BSN 2006).

J. Ryan and Christopher L. Salter. 2003.
Tgarden: Wearable instruments and aug-
mented physicality. In Proceedings of the 2003
Conference on New Instruments for Musical
Expression (NIME-03), Montreal, CA.

Hans-Christoph Steiner. 2009. Firmata: To-
wards making microcontrollers act like ex-
tensions of the computer. In Proceedings of
NIME 2009 New Interfaces for Musical Ex-
pression, Pittsburgh, PA, USA.

