Emulating a Combo Organ Using Faust

Sampo SAVOLAINEN
Foo-plugins
http://foo-plugins.googlecode.com/
sampo.savolainen@gmail.com

Abstract

This paper describes the working principles of a 40
year old transistor organ and how it is emulated with
software. The emulation presented in this paper is
open source and written in a functional language
called Faust. The architecture of the organ proved
to be challenging for Faust. The process of writing
this emulation highlighted some of Faust’s strengths
and helped identify ways to improve the language.

Keywords

Faust, synthesis, emulation

1 Introduction

Faust[Yann Orlarey, 2009b] stands for Func-
tional AUdio STream and as the name implies
it is a functional language designed for audio
processing. The Faust compiler is an intermedi-
ary compiler, which produces source code for a
C++ signal processor class which is integrated
into a chosen C++4 architecture. This archi-
tecture file provides a run-time environment, or
wrapper, for the processor. This wrapper can
be for example a stand-alone Linux Jack appli-
cation or an audio processing plug-in.

This paper describes how an emulation of a
1970’s combo-organ was written in Faust. The
Yamaha YC-20 is a fairly typical organ of its
time, a transistor based relatively light instru-
ment meant for musicians on the road. The
organ is a divide-down design and its working
principles are discussed in detail in section 2.
The emulation is released as open source under
the GNU General Public License (v3). In the
spirit of open source, the working principles and
decisions taken during writing the emulation are
described in this paper for all to read.

The YC-20 was chosen to be emulated as its
architecture is very different from typical soft-
ware and virtual analog synthesizers. Instead
of the complex controllability and routability of
typical synthesizers, this organ requires a large
number of fixed parallel processes and compo-

nents. This makes for a good test of Faust’s per-
formance and parallelization capabilities. Ac-
cess to an operational organ was also a factor in
the choice, as it makes it possible to match the
emulation quality against the original.

The contents of this paper is organized into
four sections. The first section covers how the
real organ operates. This is followed by a de-
scription of how the organ is emulated. The
third section covers the performance aspects of
the emulation. The last section offers analysis
of Faust’s strengths and gives proposals on how
to improve the language.

2 YC-20

This section covers the operations of the or-
gan in detail[Yamaha, 1969]. The informa-
tion in this is section is later referred to and
detailed further when discussing the emulated
parts. Figure 1 shows a block diagram of the
device.

2.1 Features

The organ has one physical manual with 61 keys
with a switchable 17 key bass manual and two
voice sections. Instead of drawbars like Ham-
mond organs, the voices are controlled by a lever
system used in Yamaha organs of the time. As
the word drawbar is commonplace when dis-
cussing organ voicing, the word is used in place
of lever for the voice controls. While the con-
trols are potentiometers, they have notches to
help the user achieve repeatable settings. Each
drawbar lever in the organ has four positions
(end stops and two notches) from off to full vol-
ume.

Section I has drawbars 167, 8, 4’, 2-2/3’, 27,
1-3/5" and 1’ and section II has drawbars 167,
8, 4’, 2’ and a continuous brightness lever. The
sections can be selected or mixed together using
a continuous balance lever. Enabling the bass
manual switches the lowest 17 keys (white on
black) to bass section sounds with drawbars 16’

Oscillators Vibrato
v A
Dividers
Wave E Touch vibrato
transformer
Keyboard |---------:
Bus bars
v Y 17 ¥
Manual | Manual Il Bass Percussion
manual
L/WW\J Brightness
ﬁ/\/\/\/\/;T —
I t
Balance Pre-amp
Volume
pedal —e Output

Figure 1: Block diagram of the YC-20

and 8. There are controls for pitch, overall vol-
ume, bass volume, vibrato depth, vibrato speed
and an obscure ”touch vibrato” feature. The
organ also has a single percussion drawbar and
an integrated volume pedal. Like the drawbars,
all vibrato controls have four notches.

2.2 'Tone generation

The synthesizer architecture comprises of 12 os-
cillators, one per each note in a twelve-tone
equal temperament (12-TET) scale. Each os-
cillator produces a sawtooth wave. For each
oscillator, there are 7 frequency divider stages
so each oscillator produces 8 voices totalling 96
voices. The dividers produce square waves.

These voices are next fed through a passive
filter bank. The divided voices have both a
high pass and low pass filters while the oscilla-
tor voices are only high pass filtered to remove
bias. This totals 180 resistor-capacitor (RC)
filter networks. Filtered voices are connected
to switches on the actual keys of the keyboard.
The keyboard is thus in fact a matrix mixer
connecting the voices to bus bars. A key feeds
each bus bar with the appropriate voice match-
ing that key and octave, or the matching har-
monic voice in case of the 2-2/3” and 1-3/5’ bus
bars.

2.3 Sections

The drawbar controls are potentiometers which
control how much of each bus bar is mixed to
each section of the organ. While in section I,
drawbars are simply mixed together using resis-
tors, Section II drawbars have more complex fil-
tering. Each section II drawbar is divided into
two streams, each filtered separately with RC
networks. One stream is low pass filtered while
the other is high pass filtered. The low passed
and high passed signals are mixed through re-
sistors to combine into bright and dull signals
which are then buffered. The brightness poten-
tiometer controls a mix of the two which, after
further buffering, is the output of section II.

The key switches on the lowest 17 keys feed
separate bass bus bars. The bass manual switch
controls whether these bus bars are kept sepa-
rate or mixed with the main bus bars. Thus,
with the bass feature disabled, the bass keys
work exactly as the rest of the manual. With
the switch enabled, the bass bus bars are sepa-
rate and only feed the bass section. It is worth
noting that when enabled the bass section effec-
tively discards the signal of bass bus bars 2-2/3’,
2, 1-3/5" and 1°.

Bass section differs from the two main sec-
tions in that both bass manual drawbars (16’
and 8’) use a mix of multiple bass bus bars.
The 16’ drawbar is a mix of bass bus bars 16’, 8’
and 4’. The bus bars are mixed through differ-
ent value resistors. 16’ has the least resistance
and 4’ the highest resistance. The 8 drawbar
is a mix of the 8 bass bus bar with lower re-
sistance and 4’ bass bus bar with higher resis-
tance. While section I and section II drawbar
control potentiometers are wired in a standard
volume configuration, the bass manual drawbar
controls are wired center-tap to source with the
other tip grounded and the other tip as the out-
put. This configuration makes the drawbar con-
trol not only affect how much of the drawbar is
mixed in, but it also varies the impedance of
the signal source. The different mixing resistors
and the varying impedance of the drawbar con-
trols, combined with a fixed capacitor to ground
(after summing the drawbar signals) makes the
network act as a fairly complex RC filter. This
filter has a varying cutoff point and mix amount
per bass bus bar.

2.4 Percussion

Percussion manual sounds are created by mix-
ing together bus bars 1’, 2-2/3” and 16’ via resis-

tors. There is a substantially larger resistance
on the 1’ bus bar leading to less 1’ voices in
the percussion section. The volume of this sig-
nal is controlled by a simple envelope generator.
This envelope generator is triggered by activity
on the 1’ bus bar. The envelope attack is in-
stantaneous and the release time is fast while
the sustain level is zero. This causes a fast at-
tack sound, but the effect only works when no
keys are pressed down before. In other words,
the percussion effect is not heard, for example,
when playing legato. However there is a sub-
stantial amount of bleed from the percussion
section which is audible when all other draw-
bars are off.

If the bass manual is enabled, it disengages
the bass bus bars from the main bus bars. Thus
the bass keys will not mix sounds onto the 1’
bus bar. Therefore playing the bass manual
will not trigger the percussion and percussion
sounds will trigger even when bass keys are held
down.

2.5 Main output

The main output of the device is a mix of sec-
tions I and II, the percussion part and the bass
manual. The mix between sections I and II is
controlled by the balance lever (a potentiome-
ter). The amount of percussion mixed in is con-
trolled by the percussion drawbar. Bass manual
is summed into the main output via a poten-
tiometer controlling the bass volume. This com-
bined signal is then preamplified. The preampli-
fied output can then be attenuated by the main
volume potentiometer of the device and the vol-
ume pedal. The volume pedal action controls a
mechanical shutter between a small light bulb
and a light dependent resistor.

3 The emulation

The emphasis was on creating a playable instru-
ment which sounds like the original organ. A
playable emulation needs to be able to work at
low latencies and it needs to be efficient enough
to be ran on commodity hardware. The emula-
tion tries not only to emulate the ideal circuit
but also some of the inaccuracies in the real in-
strument.

3.1 Why Faust?

Instead of taking an approach where sounds are
synthesized only when needed, this emulation
keeps all oscillators, dividers and filters running
all the time — just like the real organ. Faust was
chosen as the programming language to emulate

the organ with, as Faust’s functional semantics
fit well with having all processing running at all
times. Faust also makes it trivial to have a large
amount of streams flowing from one circuit to
another. This emulation was also intended as a
test of Faust in a real world use.

3.2 Tone generation

The 12 main oscillators produce sawtooth
waves. They share a common, varying bias volt-
age (see section 3.3) which affects the oscillator
frequencies. The main oscillator voices are di-
vided by an array of flip flop circuits each di-
viding the frequency in half and the next one
dividing the previously divided voice. The flip
flops produce square wave signals. This means
each oscillator produces a total of 8 phase-
synchronized voices, each one an octave down
from the previous voice.

As the main oscillator frequencies are high
(4-8kHz), a naive oscillator implementation
would suffer massively from aliasing when us-
ing typical sampling rates (44.1-96kHz). Nat-
urally, also the dividers would suffer from
aliasing as well. After evaluating differ-
ent methods to band-limit the signals, the
PolyBLEP![Vilimiiki and Huovilainen, 2007]
method was chosen. ~ While BLEP|[Brandt,
2001] would produce less aliasing components,
it is computationally more expensive. More
importantly, the BLEP step function is cur-
rently impossible to calculate in Faust as it re-
quires using Fourier and inverse Fourier transfer
functions. The quality of BLIT-SWS?[Stilson,
1996] is good at high frequencies, but it pro-
duces aliasing components below the funda-
mental frequency[Valiméki and Huovilainen,
2007]. Also, BLIT-SWS is problematic when
it comes to band-limiting hard synchronized os-
cillators[Brandt, 2001] which is one strategy to
emulate the divider circuits.

Second, third, and fourth order polynomial
residual functions were evaluated for the Poly-
BLEP. The higher order residual functions re-
duced high frequency aliasing only slightly more
compared to the second order function. Fur-
thermore a band-limited signal using the sec-
ond order function has considerably less aliasing
components below the fundamental frequency
when compared to the third and fourth or-

!BLEP = band-limited step function. PolyBLEP
uses a step function derived from a simple polynomial

2BLIT = band-limited impulse train, SWS refers to
the use of windowed sinc functions

der functions. This confirmed previous find-
ings[Pekonen, 2007]. The chosen second order
polynomial residual function r(%) is shown as
equation 1.

"t) = {t2/2+t+1/2, if —1<t<0)

—t2/2+t—-1/2, if0<t<1

The divider circuits are emulated as slaved os-
cillators. The main oscillator function outputs
both the signal and phase information. One di-
visor function divides the phase and feeds this
to a slave oscillator. The slave again produces
both a signal and phase information. The com-
plete divider circuit for one oscillator is seven
such divisor functions piggybacked.

PolyBLEP works by adding the polynomial
band-limited step function to two samples: the
sample before and after a discontinuity in the
signal. To achieve this, the implementation de-
lays its output by one sample. At each frame,
the phase is inspected. If the phase passed a dis-
continuity in the waveform, the PolyBLEP func-
tion is evaluated for and added (rising wave) or
subtracted (falling wave) for the previous sam-
ple and the current sample. As Faust lacks
true branches, all possible branches of condi-
tional statements are always calculated. Table
1 shows the amount of residual function evalu-
ations required under different conditions. The
table shows that branching would be far supe-
rior to any non-branching solution. This is be-
cause without branching the amount of Poly-
BLEP evaluations done is purely a function of
the sampling rate while the amount of required
evaluations is a function of the signal frequency.

To be able to run the emulation in real time,
a truly branching solution had to be developed
as an external C++ function. This was however
easy to integrate with the Faust processing as
the ffunction operator lets one use externals just
as native functions.

The filter bank contains tailored filtering for
each of the 96 voices produced by the oscillators
and dividers. The main oscillators only have a
single capacitor in series. This is emulated as
a high-pass RC filter using an approximation
of the next stage impedance as the load resis-
tor value. The first four divided signals have a
trivial RC low-pass filter before a single capac-
itor in series similar to the the main oscillator
filter. The lowest three voices are filtered like
the previous four, except that there is a resistor

| Frequency | (A) |B) [(©) |

okHz 352 800 | 44 100 | 10 000
1kHz 352 800 | 44 100 | 2 000
500Hz 352 800 | 44 100 | 1 000

Table 1: Amount of PolyBLEP calculations per
second for a square wave at Fs = 44.1kHz.
(A) an implementation where per each frame
the PolyBLEP is evaluated for both the pre-
vious and current sample for both discontinu-
ities. The branched nature of the residual func-
tion multiplies this number further by a factor
of two. (B) an ideal implementation without
branching where only one PolyBLEP is evalu-
ated per frame. (C) is the number of required
PolyBLEP calculations.

to ground after the series capacitor. This al-
ters the next stage impedance compared to the
other filters.

Filtering is very complex to emulate exactly
right, as one voice might be connected to mul-
tiple bus bars. This varies the high-pass filter
load resistance and therefore affects the filter
cutoff frequency depending on what keys are
depressed. This is not emulated. Instead, the
high-pass filter load is estimated based on the
expectation that there is only one connection to
a bus bar.

3.3 Oscillator bias

Each oscillator produces a saw wave at a differ-
ent frequency. The frequencies are chosen from
a 12-TET scale. However all oscillators share
a single bias voltage affecting their frequency.
This bias voltage is controlled by the vibrato
circuit, touch vibrato and the master pitch po-
tentiometer. The master pitch potentiometer is
emulated by a simple slider widget with a DC
output. Touch vibrato would be controlled by
horizontal movement of the keys. As such MIDI
keyboards are extremely rare? this feature was
left out of the emulation.

Vibrato control voltage is created by a simple
sine wave oscillator. The vibrato speed controls
the speed of this oscillator. The vibrato speed
range (5-8Hz) was measured from the real de-
vice. The vibrato depth is simply an attenu-
ation control for the vibrato oscillator output.
Vibrato depth range was empirically selected.
The depth control deliberately never goes to

30nly one keyboard was found claiming such capa-
bility: the Yamaha STAGEA ELS-01C.

zero, thus the vibrato has a miniscule effect on
the bias voltage even when turned down.

3.4 Keyboard matrix mixer

The keyboard matrix mixing, while a relatively
simple part, contains many separate operations.
Each key is a Faust button* connecting multi-
ple voices to different bus bars. This means each
key button is used as a multiplier for 7 differ-
ent voices (one per bus bar). So the signals
on the emulated bus bars are the outcome of
617 = 427 discrete multiplications summed to
appropriate busses. There is also added logic
for the bass manual where the resulting down-
mixes from the 17 bottom keys are fed to either
the main bus bars or the bass bus bars.

The matrix mixer could be written as sets
of floating point tables multiplied together. In
Faust however, there are no such array opera-
tors. This results in a number of separate mul-
tiplications and sums which are difficult for the
Faust compiler to optimize, as vector operations
are unusable if the data is not in ordered arrays.

The key action is not band-limited. The key
switches on the real organ are simple switches
connecting voices to bus bars. This operation
causes clicks in the real organ as switches open
and close. The naive non-band-limited key ac-
tion of the emulation matches the sound of the
real organ surprisingly well. However, this is
something that could be improved at a later
stage.

Writing the keyboard matrix mixer also re-
vealed an issue with the service manual. The
service manual indicates wrongly which voices
are connected to the harmonic bus bars (2-2/3’
and 1-3/5%). The manual states that 2-2/3’ is
connected to a voice five semitones higher than
the voice connected to 4’ and 1-3/5’ with a voice
eight semitones higher than 2’. The real organ
connects voices seven and three semitones above
respectively. The emulation follows the real or-
gan instead of the service manual.

3.5 Section I

Section I is a mix of the main bus bars mixed to-
gether through the drawbar potentiometers and
additional resistors. There is no extra filtering
applied to the signal. Thus the only part left
to emulate for section I sounds is the drawbar
controls.

The drawbar potentiometers do not follow the
typical linear or logarithmic tapers. The real

4Button output signal is 1 when it is being pressed
down and otherwise 0.

10- —40

-10- =20

20— =10

30~ | -0

40— —10

50— —-20

60— —-30

'751\\\||||||\\\\|||| T T B B B e
20 40 B0 160 315 630 1k25 2k5 S5k 10k 20k

Figure 2: Comparison between emulated and
real manual I drawbar 8 sounds.

organ was measured while playing a stable note
with all drawbars off except one drawbar which
was tested in all three on positions. The off
position is expected to be -inf. Compared to full
volume, the two middle positions were measured
at -12dB and -18dB.

This can be translated into a continuous
transfer function (see equation 2). p is the posi-
tion of the lever from 0 (off) to 1 (full volume).
The function returns a gain coefficient usable in
the emulation. The function emulates the taper
and can be used with slider controls provided
by the Faust architecture. Further work on a
graphical user interface should provide four po-
sition levers.

coeff(p) = 2.81p> — 2.81p* + p
coeff(0) = —inf dB
coeff(1/3) ~ —18.05 dB (2)
coeff(2/3) ~ —12.03 dB
coeff(1) = +0.00 dB

Figure 2 shows C2 played on section I with
only the 8 drawbar engaged. The line depicts
the frequency spectrum of the emulation out-
put. The crosses show peaks measured from a
YC-20 organ using the same settings.

3.6 Section II

As described earlier in section 2.3, Section II
has a controllable brightness feature. The vari-
able brightness is done by dividing each bus bar
into two streams, one of which is high-passed
and the other low-passed. The streams derived

from different bus bars are then mixed together
into bright and dull streams. The brightness
control is a simple balance control between the
two streams.

The high-pass filtering is done by a two stage
RC filter with a resistor in parallel with the ca-
pacitor of the first filter. Thus the filter is ef-
fectively a shelving high pass filter. The shelf
is emulated by calculating a voltage divider be-
tween the parallel resistor and the resistor in the
RC high pass filter. The voltage divider gives a
gain coeflicient C' which is used to mix together
the high-passed and unfiltered signals. Unfil-
tered signal is multiplied by C while the filtered
is multiplied by 1-C' and the results are added
together. This keeps gain at high frequencies at
0dB as with the original passive filter. The two
passive filters also affect each other and could
not be emulated by simply chaining two digital
filters. The load applied by two filter stages is
emulated by dividing the resistance of the sec-
ond filter by two. This doubles the cutoff fre-
quency of the filter. This method was found by
trial and error. Figure 4 shows the block dia-
gram of the complete filter.

The low-pass stage is much more straightfor-
ward. Filtering consists of two chained RC low-
pass filters. However, the best match with the
original organ was achieved by not compensat-
ing for load posed by the chained filters. This
filter stage is emulated by two digital RC low
pass filters in series.

Figure 3 shows C2 played on a fully bright
section II with only the 8 drawbar engaged.
This measurement was done at the same overall
level as measurements in figure 2. The measure-
ment shows a slight overall volume difference
and that the section II high-pass filters are not
perfect. However, while harmonics for this par-
ticular sound do not line up exactly, the balance
between harmonics is good enough. The har-
monics of many other notes (for example C3)
line up perfectly.

3.7 Percussion

The percussion uses the signal on the 1’ bus
bar to trigger an envelope generator. There
is a root-mean-square envelope follower on the
1’ bus bar and the envelope is triggered when
the follower exceeds a set threshold. The enve-
lope generator starts off with a signal where a
one frame unit impulse is created at the trigger
point. This impulse signal is low-pass filtered to
match the measured percussion envelope. This

10- —40

-10- -20

-20- -10

40 —10

-50 —-20

60— —-20

I

B T o B B S B B By B | i R A B B B
20 10 80 160 31s 630 125 2k5 Sk 10k 20k

Figure 3: Comparison between emulated and
real bright section II drawbar 8’ sounds.

envelope is then used to control the volume of
a mix of the 1°, 2-2/3" and 16’ bus bars. Some
bleed is added to the envelope generator out-
put to emulate the bleed exhibited by the real
organ.

3.8 Bass manual

Emulating the bass section perfectly is a com-
plex task due to how mixing resistors and the
variable impedances of the potentiometers af-
fect the RC filter. Measurements from the real
organ however suggest that the low frequency
fundamentals dominate the signal and an ac-
ceptable emulation is achieved by carefully con-
trolling the mix of the bass bus bars and by
using a single fixed RC low-pass filter. This one
filter is applied to a mix of both bass drawbars.

4 Performance

Running this emulation requires a substantial
amount of processing power. There are 96 os-
cillators working all of the time and there are
hundreds of filters being applied at many stages
of the design. Faust is designed to easily har-
ness multiple processing units in parallel. The
design of the emulation has a lot of potential for
parallelization and as such, it should work as a
good real world test for Faust’s SMP features.
The performance numbers shown here are
measured using a modified version of the Faust
benchmarking suite. These numbers are es-
timates of achieved memory bandwidth in
megabytes of audio data generated per second.
The Faust benchmark uses this measurement,
as memory bandwidth on SMP systems is a pre-

cious commodity. In the case of the YC-20, the
processing creates much more data than what
comes out of its single mono output. Thus these
figures can only be compared to each other.

Tests were done on a Dell D820 laptop with
a Core 2 Duo T7400 (2.16GHz) processor using
the internal sound interface. The operating sys-
tem was 32 bit Ubuntu 9.10. The processor fre-
quency governor was switched to performance
on both cores before running the tests. The
kernel was a standard Ubuntu package, 2.6.31-
19-generic and the used gcc version was 4.4.1-
4ubuntu9. Benchmarks were done on YC-20
code revision 227°. Figures in column C are
from a slightly modified version of the YC-20
code and it shows the performance impact of
non-branching PolyBLEP calculations. The re-
sults in MB/s are shown in table 2.

A [B) [(©)]

Faust benchmark

scalar (galsascal) 0.40 | 0.43 | 0.28
vectorized (galsavec) 0.58 | 0.59 | 0.35
vectorized 2 (galsavec2) | 0.62 | 0.62 | 0.34
OpenMP (galsomp2) 0.51 | 0.55 | 0.29
scheduler (galsasch) 0.90 | 0.88 | N/A
scheduler 2 (galsasch2) | 0.93 | 0.89 | N/A

Table 2: The tests were ran with different sets
of gcec parameters:

(A) Branching C++ PolyBLEP evaluations.
gee -O3 -march=native -mfpmath=sse -msse
-msse2 -msse3 -ffast-math -ftree-vectorize

(B) Branching C++ PolyBLEP evaluations.
gce -0O3 -march=native -mfpmath=sse -msse
-msse2 -msse3 -ffast-math -ftree-vectorize
-fgese-sm -funsafe-math-optimizations

(C) Divider slave oscillators use non-branched
PolyBLEP operations. gcc -O3 -march=native
-mfpmath=sse -msse -msse2 -msse3 -ffast-math
-ftree-vectorize -fgcse-sm -funsafe-math-
optimizations

GCC was unable to compile the scheduler
versions of the emulation with non-branching
PolyBLEP operations.

The multi-threaded scheduler tests were no-
tably faster than other benchmarks. There is
an increase of 50% in memory bandwidth when
compared to vectorized single thread tests. This
data is backed by tests done by measuring the
performance of the YC-20 emulation running as

®Subversion repository available at http://foo-

plugins.googlecode.com/svn/trunk/

a jack application. The measurements shown
in table 3 were done by running the emulation
compiled with different flags and observing the
DSP percentage meter in gjackctl. This meter
tells how much of the time between jack engine
callbacks is spent doing processing inside jack
clients.

] Tests \ Faust flags \ Load \
scalar none ~ 49%
vectorized | -vec -vs 32 ~ 34%
scheduler | -sch -g -vs 256 | ~ 29%

Table 3: All tests were compiled with the fol-
lowing gcc flags:

-03 -march=native -mfpmath=sse -msse -msse2
-msse3 -ffast-math -ftree-vectorize.

Jack 1 was running real-time with a dummy
back-end simulating a 48kHz sample rate with
512 frame buffers.

5 Conclusions

The software presented in this paper emulates
the YC-20 organ well. While some parts of
the emulation could benefit from more polish,
other parts of the emulation can sound very
much like a real YC-20. A better quality anti-
aliasing method could be beneficial, although
these methods would come at the expense of
CPU cycles. The real organ has considerable
bleed and inconsistencies which might also be
worth emulating.

5.1 How to improve Faust

As discussed in section 3.2, and shown in the
benchmarks in section 4, there is a strong case
for a truly branching select operation. However,
the semantics of Faust requires all of the pro-
cessing graph to be evaluated for every frame.
Truly branching operations would cause some
function evaluations to be skipped. The op-
erating semantics are however compatible with
branching operations if the skipped functions
are stateless. This is because if the function
has no state, the next evaluation of the func-
tion does not depend on previous evaluations.
There are two ways truly branching opera-
tions could be added to Faust: either select2 and
selectd calls with no stateful function branches
are compiled automatically as truly branching
or a new branching select call is created. Both
cases require the specification of rules on what
a stateless function is. Also, the compiler must

check whether the functions being skipped over
comply to these specifications before allowing
compilation of such code.

This logic could also be generalized to multi-
plication functions. Function f(x) in equation
3 is an example of a function where evaluating
t2(x) can be skipped if < 0 as t1(z) evaluates
to 0 for x < 0 and t2 is stateless.

t1(z) = (z > 0)
t2(z) = 2° — fmod(z,1.0) (3)
f(z) =tl(z) = t2(x)

The compiler error messages are often unhelp-
ful. They do not always specify in which file the
compilation error occurred. Optimally the com-
piler should identify the file name, line number
and if possible, the name of the function the
error occurred in. One specific issue with the
compiler messages is worth giving special atten-
tion to. It is cases where the number of inputs
and outputs of functions in a sequential compo-
sition do not match. In such cases, instead of
printing the names of the offending functions,
Faust outputs a quite exhaustive description of
both functions. For example, if the YC-20 emu-
lation would fail to cut the phase output of the
last divider (dividers would then output a total
of 108 instead of 96 streams), the resulting error
message is 67 kilobytes.

For signal processing, the lack of support for
Fourier transforms restricts what problems can
be solved. As mentioned in section 3.2, the bet-
ter band-limiting method (BLEP) is not possi-
ble to implement in pure Faust. Fourier trans-
forms would naturally be useful for a variety of
other tasks as well. Fortunately there has been
promising news of multi-rate support for Faust
which would allow processing such as Fourier
transforms.

As procedural programming is the prevailing
model of programming, it is safe to say many
potential users of Faust are familiar with only
that model. This applies pressure to the quality
of documentation. The current documentation
should abbreviate the definitions of the more
advanced features of the language. Especially
recursion and the rdtable and rwtable functions
could benefit from better explanations. Cur-
rently the features are almost side-stepped and
almost nothing but their syntax is described.

Implementing the matrix mixer required a lot
of hand-crafting. Having a concept of index-
able arrays would help such operations. If the

96 inputs of the keyboard mixer and the but-
tons representing the keys of the organ could
be arranged into arrays, the mixing could be
done algorithmically using the aggregate func-
tions such as sum and vector multiply. Such op-
erations also open up ways to further optimize
the created C++ code. As it stands, the key-
board mixing is compiled into a large amount
of separate discrete multiplication and addition
operations which can not be vectorized.

The Faust code shown as equation 4 is am-
biguous, but can be compiled without any warn-
ing. This can lead to anywhere from unexpected
results to complete failure. It would be good
form for the Faust compiler to at least warn the
user of the situation.

fl@y)=2+y
with{z =y xy; };)

5.2 Benefits of Faust

Functional thinking suits audio applications
very well as solutions to problems can often
be expressed as mathematical equations. This
model sidesteps many of the issues procedural
programs face, as the processes can be written
at a higher abstraction level. Unlike with proce-
dural languages, Faust allows signal processing
programmers to not worry about buffers, their
lengths or loop structures or real-time thread
constraints. This also saves time for the pro-
grammer as less time is spent debugging issues
not directly connected with the signal process-
ing task at hand.

Faust code is easy to keep readable as the syn-
tax offers tools, such as sequential composition,
which help keep functions simple and concise.
See listings 1, 2 and 3 for an example. While
listing 2 is pretty compact, one should note that
functions are presented to the reader in reverse
order and it is also difficult to see to which func-
tion return value the multiplication is applied
to.

float dostuff(float f) {
f = funcl(f);
f = func2(f);
f =1 % 2.5;
f = func3(f);
return f;

}

Listing 1: Consecutive calls

float dostuff(float f) {
return func3(func2(funcl(f)) * 2.5);

-~~~ —(1p00'0)(0006€)dy I fenuew -

X
QO
[}
®,
<
0 I('D
—_ 0
© 3
j &
O o
o
(=}
S
S
J/ L I -o
= L
a
0]
w
w
w
&

3

[

+

(ee€851°0)(00561)dy enIssed

<

Figure 4: Faust SVG output of section II high
pass filtering for a single drawbar. The param-
eters for the filters are resistance in ohms and
capacitance in microfarads.

Listing 2: Enclosed statements

dostuff = funcl func?2 x(2.5)

Listing 3: Faust sequential composition

func3;

The SVG output of the Faust compiler is
also worth mentioning. The compiler can create
hyper-linked SVG documents which depict the
process function. This document can be an ex-
cellent learning and debugging tool as it shows
how the compiler understood the source code.
Figure 4 shows an example of this output.

The stream concept also makes code reusable.
When combining procedural code from multi-
ple sources you often need to either convert
data types between the different modules or

refactor the modules to match. Faust proces-
sors naturally fit with each other. This model
works very well with open source as it makes
it easier to spread good ideas and implementa-
tions. It might even lead to a resource library
of truly reusable components usable with any
Faust project — as long as the licenses are com-
patible.

Faust also provides automatic parallelization
and vectorization. This allows all Faust pro-
grams to benefit from these advanced optimiza-
tion methods which usually require expert pro-
gramming skills to implement. These capabil-
ities have been discussed in detail by Orlarey,
Fober and Letz[Yann Orlarey, 2009a]. Faust
also allows the developer to easily test and
compare different optimization methods with-
out refactoring their code.

6 Acknowledgements

Thanks to Petri Junno for support and all the
help with analyzing the original organ. I would
also like to thank Sakari Bergen, Torben Hohn
and Yann Orlarey for providing advice. Thanks
also to Fons Adriaensen for Japa which was an
excellent tool for comparing the emulation to
the real organ.

References

Eli Brandt. 2001. Hard sync without aliasing.
In Proceedings of the International Computer
Music Conference (ICMC), Havana, Cuba,
September.

Jussi Pekonen. 2007. Computationally effi-
cient music synthesis — methods and sound
design. Master’s thesis, TKK Helsinki Uni-

versity of Technology.

Tim Stilson. 1996. Alias-free digital synthesis
of classic analog waveforms.

Vesa Viliméaki and Antti Huovilainen. 2007.
Antialiasing oscillators in subtractive syn-

thesis. Signal Processing Magazine, IEREE,
24(2):116-125.

Yamaha, 1969. YC-20 Service Manual.
Yamaha Corporation.

Stephane Letz Yann Orlarey, Do-
minique Fober. 2009a. Adding automatic

parallelization to faust. In Grame, editor,
Linuz Audio Conference 20009.

Stephane Letz Yann Orlarey, Do-
minique Fober. 2009b. FAUST : an Efficient
Functional Approach to DSP Programming.

