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Abstract

Sample processing in Pure Data generally is block-
based, while control or message data are computed
one by one. Block computation in Pd can be
suspended or blocked to save CPU cycles. Such
“blocked signals” can be used as an optimization
technique for computation of control data. This pa-
per explores possible applications for this “Blocked
Signal Processing” (BSP) technique and presents a
system for physical modelling and for feature extrac-
tion as examples.
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1 Introduction

Software for computer music and realtime syn-
thesis has to deal with two competing require-
ments: It continuously has to compute audio
samples at a rate specified by the underlying
samplerate (like 44.1 kHz as “CD quality”) and
it has to deal with sporadic events, for instance
note events coming from midi streams. In many
computer music system, the events of such con-
trol streams are computed less often than the
actual audio samples: In addition to the sample
rate as a defining parameter of a music software
a slower control rate was added: “The control
rate is the speed at which significant changes
in the sound synthesis process occur. For ex-
ample, the control rate in the simplest program
would be the rate at which the notes are played.
[. . . ] The idea of a control rate is possible be-
cause many parameters of a sound are ’slowly
varying’.”1

The separation of control and sample rate has
been a part of computer music software since its
early days: “Among the languages of the Mu-
sic N family, Music IV and its derivatives (in-
cluding Music 4C) are sample-oriented, whereas

1[Dodge and Jerse, 1985, p. 70]

Music V and Cmusic are block-oriented. The
Csound language is also block-oriented, since it
updates synthesis parameters at a control rate
set by users.”2

The introduction of different rates for audio
and control streams makes specific optimiza-
tions for each domain possible. For the spo-
radic events of control streams, that only hap-
pen rarely compared to the calculation of audio
samples, redundant or unnecessary calculations
can be omitted.

Audio data however can be computed in
blocks of samples. Instead of computing every
sample and then the next, several samples are
computed in one go, which significantly reduces
the overhead in systems based on “unit genera-
tors”: “This is done to increase the efficiency of
individual audio operations (such as Csound’s
unit generators and Max/MSP and Pd’s tilde
objects). Each unit generator or tilde object
incurs overhead each time it is called, equal to
perhaps twenty times the cost of computing one
sample on average. If the block size is one, this
means an overhead of 2,000%; if it is sixty-four
(as in Pd by default), the overhead is only some
30%.”3

Apart from avoiding the overhead of function-
calls for each unit generator, blocked process-
ing also can be implemented in a way that re-
duces the number of memory allocations neces-
sary. For this, the block size has to be constant
over a sufficient time.

But block computation also has a major dis-
advantage: It adds latency of at least one block
duration. “Sample-oriented compilers are more
flexible, since every aspect of the computation
can change for any sample”.4

Contrary to audio data control streams usu-
ally are not computed in blocks. As most con-

2[Roads, 1996, p. 801-802]
3[Puckette, 2007, p. 63]
4[Roads, 1996, p. 801]



trol events happen only sporadically there may
not be enough data to fill a block that would
be useful to compute. For instance midi notes
may be produced only every quarter beat which
at a tempo of 120 BPM would amount to only
one note event every 500 milliseconds. Filling a
block of 60 quarter notes would then take half
a minute - no sane musician would accept a la-
tency of that duration.

While this is an extreme and admittedly a
bit silly example, the number of control events
often is small enough to not let the overhead of
calling the unit generators for every event affect
the overall performance of the system.

But this is only valid, as long as the number
of events to compute stays small. Especially in
algorithmic composition, in simulations or sim-
ilar cases the amount of data in a “score” can
become very big. The overhead of control infor-
mation now becomes a problem. Computation
in blocks may yield a significant performance
gain. The results of the control computations
may still only be needed infrequently compared
to the rate of audio signals. Some modern lan-
guages like LuaAV or ChucK are designed to
deal with this problem right from the start. In
ChucK, “the timing mechanism allows for the
control rate to be fully throttled by the pro-
grammer - audio rates, control rates, and high-
level musical timing are unified under the same
timing mechanism.”5

Pure Data was not designed with variable
control rates in mind, but a peculiar feature of
Pd can be exploited to do block computations
on control data, confessedly in a limited way.
Pd can suspend its own audio computations lo-
cally using the [switch∼] object. This object
can stop all sample computations inside of a Pd
subpatch or canvas and restart it on demand. A
common use is to activate parts of a Pd patch
only when needed, for example to manage voices
in a polyphonic synthesizer: inactive voices can
be switched off when not in use to save CPU
cycles.

A not so common use case for switched-off
subpatches is introduced and explored in this
paper. We use subpatches to perform block-
computations at rates much lower than the au-
dio samplerate. These computations will em-
ploy the unit generators originally intended to
do audio signal computations. The computa-
tion rate is adjusted by suspending blocks lo-
cally. We will call this approach “Blocked Sig-

5[Wang and Cook, 2004]

nal Processing” or BSP to have a catchy and
short buzzword available.

2 Blocked Signal Processing

A very simple example will now show the basic
principle of BSP in Pd, how it can optimize cer-
tain actions and how it compares to traditional
message computations. The task solved by the
following two Pd code examples is simple: Read
4096 numbers stored in a table “ORIG”, add 0.5
to it and store the result in table “RESULT”.

inlet

tabread ORIG

tabwrite RESULT

t f f

4096

b  

+ 0.5

f 0 + 1

0  until

t a b

counts from 0 to 4096

Figure 1: Transposing a table by 0.5 using mes-
sage computations

Implemented with message objects, a counter
is started by an incoming bang-message, its in-
dex number is used to read out the table data, a
control-rate addition object adds 0.5 to it, then
the value is stored.

The BSP implementation uses a pair of
[tabreceive∼] and [tabsend∼] objects to con-
stantly read and write the tables as a block of
samples. The signal-rate addition object adds
0.5 in between. The [switch∼ 4096 1 1] object
resizes the blocksize to 4096 for this sub-canvas,
so that the table-accessing objects can process
that many samples. Additionally it switches off
the DSP computation inside the subpatch at the
beginning. So unless some messages to [switch∼]
switch on the computation, this part of the



tabreceive~ ORIG

tabsend~ RESULT

inlet

b  

switch~ 4096 1 1

+~ 0.5

<size of block> <overlap> <resampling>

Figure 2: Transposing a table by 0.5 using BSP
computations

patch doesn’t consume any CPU resources. By
sending a “bang”-message to [switch∼], the sub-
patch is switched on for exactly one block of
samples, then it’s switched off again. During
the time it is on, the actual computation hap-
pens, so the end result is the same as for the
message version.

One small difference is important to note
here: Probably for performance reasons Pd de-
fers updates of the graphics in arrays or tables
that are used with active [tabsend∼] objects.
Changes to the included data are only visible
when the graph is closed and opened again.

The two implementations of the “transposer”
don’t show much difference in CPU usage. This
is expected, as the simple calculations made
here do not involve many objects so the over-
head is negligible. Also both the BSP and the
traditional method avoid any memory alloca-
tion by directly working on pre-allocated tables.
When dealing with lists of numbers of arbitrary
size, a common idiom in Pd is to build these
lists by pre- or appending elements to existing
lists stored in [list] objects.6 For longer lists
this can become a major cause of slowdown in
Pd patches.

3 [physigs] - Physical Modelling
implemented with BSP

The BSP technique should show more of its po-
tential when applied to algorithms involving a
bigger number of unit generators and more par-
allel tasks. We will now turn to such a use case
and take a look at a physical modelling system
based on spring-connected particles.

6See the list-help.pd file in Pd’s documentation for an
example. This file also shows the opposite operation of
serializing a list with [list split] which is slow as well.

A particle simulation applies the Newtonian
laws of mechanics to a simulation of point
masses. The physically-inspired rules are used
to calculate velocities and accelerations of point
particles, that are defined by vectors describ-
ing their positions and impulses. Every particle
also includes a force accumulator that holds any
external forces applied to a particles. Forces,
positions and impulses fully specify the current
state of a particle system. Transitions from one
state to a next are calculated in discrete steps:
Usually a world clock is employed that advances
one simulation step and initiates a new run of
the physics calculations to find the new posi-
tions of the particles. As the same set of phys-
ical rules has to be applied to many particles,
the problem is an ideal candidate for doing the
calculations in blocks of particles.

With PMPD7 and MSD8, two implementa-
tions for this already exist as extensions to
Pd (so called externals). For this paper a
BSP-implementation of a particle system called
“[physigs]” was written in Pd and is tested
against the MSD and PMPD implementations.
It’s help file is shown in Fig. 7 at the end of this
paper.

[physigs] is a particle simulation in two di-
mensions. In consists of a main Pd abstraction
called [physigs] that can be called with a prefix-
tag to make using the object several times in
a single project possible. The state of the sys-
tem is held in a number of Pd [table] objects for
positions, velocities, masses, forces and a table
that holds meta-data, currently only the mobil-
ity state of masses is watched: A mass can be
mobile or fixed. A particle is identified by an
integer number which is used as a lookup index
into the state-holding tables. Particle 10 for ex-
ample would hold its x-position in the 10th ele-
ment of the table “pos-x”, its y-position would
be the 10th element in table “pos-y” and so
on for tables “force-x”, “force-y”, “mobile” or
“mass”.

The size of these tables controls the size of the
system: Tables of size 64 can control up to 64
particles. All 64 particles are computed regard-
less of particles actually being used. The table
size can be selected when creating the [physigs]
object.

In Figure 3 the calculations that advance the
simulation one step are shown.

At the top left, the current x-positions and

7[Henry, 2004]
8[Montgermont, 2005]



friction tabreceive~ $1-mass

vdot = f/m
/~ 

xdot = v

get state

+~ x + xdot

+~ v + vdot

set new position

set new velocity

pd checkbounds

*~ 0.99

tabreceive~ $1-pos-x

tabreceive~ $1-vel-x tabreceive~ $1-force-x

tabsend~ $1-vel-x

tabsend~ $1-pos-x

*~ 

tabreceive~ $1-mobile

r $0-drag

pd clip-x

*~ 

Figure 3: Advancing the world simulation one
time step

x-velocities are read using [tabreceive∼] objects.
Respective [tabsend∼] objects write the new po-
sitions back, after the physics laws have been
applied. A table “force-x” holds an accumu-
lation of all forces that have been applied to
particles. The “mobile” table is 0 when a par-
ticle should be fixed, and 1 when it is mobile.
Weights are stored in a “mass” table. Some
friction is applied to fight instabilities and sim-
ulate air drag. The actual algorithm is rather
simple: Any force on a particle is converted to
an acceleration by dividing the mass, the accel-
eration is added to the velocity, which in turn is
added to the position. The forces then get reset
to zero, which is a step not shown in the fig-
ure. The subpatches “checkbounds” and “clip”
restrict the possible positions to a configurable
range and possibly flip the velocity to simulate
bouncing of the world’s ends. The same calcu-
lations are made for the y-coordinates as well.

The system is driven by an outside [metro]
whose speed specifies the speed of the physical
simulations. Metro periods in “haptic” ranges
of 20 to 100 milliseconds are good choices. The
[metro] then regularly generates bang-messages
to switch on and off the DSP-signal computa-
tions in the subpatch holding the simulation
step.

A similar construction in [physigs] calculates
the forces of visco-elastic springs connecting two
particles. These springs are defined by a num-

ber of tables again, where each spring indexes
tables with its integer-ID. Any spring links two
particles. The ID numbers of these two parti-
cles are held in two state tables called “link-m1”
and “link-m2”. Other state tables hold param-
eters like damping, stiffness, relaxed length and
so on.

Springs generate forces that have to be ac-
cumulated into the tables holding the forces for
each particle. This currently is realised in a sep-
arate step that doesn’t use the BSP technique,
because the “vanilla” version of Pd doesn’t of-
fer an object that can write into a table at a
position specified by an audio signal. Miller
Puckette intends to include such an object in
future versions of Pd, the C-code for the ob-
ject is rather trivial and it already exists as an
external. Unfortunately falling back to tradi-
tional control-rate calculations in this part de-
stroy many of the performance gains as we will
see in the benchmark section.

3.1 Performance comparison

To compare the different implementations of a
particle system, a test system has been devised
that creates a configurable number of particles
at random positions and with random mass and
daisy-chains them with spring links. Such a per-
formance test is part of the MSD distribution.
Pd’s built-in “Load meter” has been used to get
rough CPU usage values. The world advances
one step every 50 milliseconds (or 2 * 25 msec in
[physigs] for link and mass computations each).
Table 1 shows the results of several test runs.

It turned out, that [physigs] runs much slower
than both MSD and PMPD when the control-
rate calculations are used to distribute the
spring-forces to each particle. Switching off this
part of the patch in the BSP implementation
will let [physigs] catch up to MSD and beat
PMPD.

MSD doesn’t have any overhead, as it com-
putes the full simulation in just a single object.
PMPD however has separate objects for each
particle and link. In the example patch 4096
objects for the simulation participants alone are
used. So here the overhead is significant as ex-
pected.

[physigs], especially when used without the
control-rate workaround for a missing “write
to table”-object, turns out to be a capable
contender for physical modelling in Pd-vanilla
or Pd-almost-vanilla environments. Note that
these benchmarks are only meant to give a per-



Simulation Type CPU Usage
MSD 5
physigs 30
physigs (w/o force distribution) 5
PMPD 16

Table 1: Simulation of 2048 particles and 2048
springs at metro-period of 50 ms using three
different implementations

formance estimation and should not be taken
as “hard numbers”. But the author has suc-
cessfully run [physigs] on the “RjDj” version of
Pure Data on the iPhone with its much slower
CPU compared to standard computers.

4 Feature extraction and analysis
with BSP

[physigs] generates data-heavy control streams
in a completely artificial manner. Similar
amounts of data points have to be handled
when analysing external audio coming in over
the ADC (soundcard) and looking for certain
features to guide a musical composition. Pitch
tracking or onset detection work on single sound
objects and must be prepared to react quickly.
The [sigmund∼] or [bonk∼] objects that are part
of Pd, thus run at audio rate. In this case, ap-
plying BSP would not be viable. But if a com-
poser is interested in features on a ”slower” time
scale, BSP can be applied.

As an example lets consider the differences
in time scale of physically moving between
two rooms compared with playing two differ-
ent notes on a clarinet. Changing rooms takes
much more time than playing notes on instru-
ments. To detect the clarinet’s pitch changes,
the software has to be constantly “alarmed”
of the spectral content registered through the
soundcard. However when trying to detect if a
person holding a microphone changes rooms by
analysing the spectral or reverberant character-
istics of the two environments, spectral snap-
shots can be made and compared much less fre-
quently than in the case of pitch detection.

The author has developed a set of BSP fea-
ture extraction (FE) objects mainly intended to
be used in the RjDj version of Pd that runs on
mobile devices. The timbreID collection of Pd
externals by William Brent9 served as an inspi-

9[Brent, 2009]. Newer versions of timbreID include
both audio- and control-rate versions of its analysis ob-
jects.

ration for these. Detecting ”changed rooms” is
a common need of composers working for RjDj.
The analysis rate of the FE objects is config-
urable similar to the [physigs] object by adapt-
ing the speed of a [metro] object that blocks and
activates them. Just as in the introductory ex-
ample of a “table transposer” the objects work
on shared table data and extract statistical fea-
tures like centroid, mean, energy or flatness.

If the table to be analysed holds a magnitude
spectrum, the extracted features describe the
frequency content of the sound environment. Of
course the objects may be used to acquire sta-
tistical analysis of tables holding other kinds of
data as well.

As is well-known spectrum analysis with
Fourier transformations is a relatively costly op-
eration. In Pd it is already carried out in sub-
patches, so the analysis is a natural candidate
to be “blocked” with the BSP technique. Of
course the time resolution gets worse in this
case, and overlapping analysis is not useful any-
more, when there are pauses between adjoin-
ing runs of the transformation. But if all that
is needed is a “snapshot” of an environment’s
spectral status, BSP-blocking is a viable way to
save CPU resources.

Results of a spectral analysis written to a ta-
ble can be analysed by several objects at the
same time, forming feature vectors that can
be post-processed for classification. The costly
Fourier transformation has to be run only once
for each vector.

;
pd dsp 1

pd accumulate

pd get-mean

0.392

b  

$0-spectrum

loadbang

u_loadmeter 4

0

metro 50

1024 element table.

Figure 4: Calculating the arithmetic mean with
BSP - main patch



As an example for an FE-BSP object we will
take a closer look at the calculation of the mean
of a table. The arithmetic mean needs an ac-
cumulation of all table values, which then is di-
vided by the table size.

While it would be possible to divide every sin-
gle value by the table size before adding them,
here the accumulation is calculated first, then
a single division is made. This gives a minor
speed-up, but here it should also illustrate the
way, the execution order for BSP calculations
can be controlled.

With Pd’s normal message computations,
[trigger] objects are used to specify a certain ex-
ecution order. With signal objects the execution
order can only be manipulated by laying out
the operations into subpatches, that are con-
nected by signal patchcords.10 The connected
subpatches are calculated by Pd’s main sched-
uler in the order they are connected with objects
earlier in the chain calculated first (contrasting
Pd’s depth first scheduling for messages).

In Figure 4 both subpatches are connected
like this, so first every signal object in [pd ac-
cum] is run, then every signal object in [pd get-
mean]. Dummy signal inlets and outlets are in-
cluded in both subpatches to allow making these
order-forcing connections.

The accumulation of all values in a table can
be coded using only a handful of objects: Using
a one-pole recursive filter as supplied by Pd in
the [rpole∼] object with a coefficient of 1 will
accumulate all data as long as its switched on.
The filter is reset to zero after each run using
the [bang∼] object that outputs a bang after
each DSP cycle.

The output of [rpole∼] is written into a
summing-table using [tabsend∼]. The final po-
sition in this table will hold the accumulation
value.

In the second subpatch (Fig.6) it’s a [bang∼]
object that will transport this value to the divi-
sion by N before it is reported to the outlet after
the block calculation has completed. Mean cal-
culation has a latency of one block of samples
or blocksize divided by samplerate. Upsampling
inside of subpatches to reduce this latency can
be achieved by changing the third argument of
the switch-objects or by sending it respective
messages.

When implementing the FE objects, the lack
of a Pd object to selectively write a value into
a table at a certain position specified by an au-

10[Puckette, 2007, p. 212-216]

inlet

b  

switch~ 1024 1 1

bang~

rpole~ 1

clear

tabreceive~ $0-spectrum

outlet~

accumulate

tabsend~ $0-sum

dummy outlet to get correct excecution order

table $0-sum 1024

Figure 5: Subpatch “accumulate“: Accumulat-
ing table values with a one-pole filter

dio signal was especially limiting. For example
while finding local extrema (minima or maxima)
in a table is easy by scanning through the table
once and comparing two adjacent table values,
the author hasn’t yet found a way to efficiently
store the locations of these extrema for later use.

Indexed table writing would also make an-
other workaround or “hack” in the FE objects
unnecessary: To calculate the geometric mean
the product of all values in a table is needed,
but there is no “vanilla”-way to reuse the result
of the multiplication of previous samples again
as it is with the one-pole filter that adds pre-
vious results (output values) back to its input:
the next sample in a block. The workaround
currently applied is to transform the multipli-
cations to additions using logarithms.

5 Other Applications of BSP

The BSP technique can be applied to various
other areas, where parallel, block-based pro-
cessing is needed. Examples would be Cellular
Automata, L-Systems or swarm/flock systems.



inlet

b  

switch~ 1024 1 1

inlet~

tabread $0-sum

outlet

bang~

1023

"blocksize - 1" to get final value

/ 1024

dummy inlet for execution order

Figure 6: Subpatch “get-mean“: Calculating
the mean from the accumulated table and the
table size.

But even for much simpler daily tasks in the
life of a Pd user, BSP is worth a look. For ex-
ample to copy the content of one table to an-
other one, a blocked combination of tabplay∼
and tabwrite∼ can be used.

6 Limitations of BSP

As many optimization techniques, BSP has sev-
eral limitations that have to be weighted against
the possible performance gains. One important
problem is execution order. Pd alternates au-
dio and message computations. BSP however
lives in a grey area between the audio signal and
control computations. New results will be com-
puted in the signal pass, where no other control
calculations happen. It is not possible to trigger
other control-events in the middle of a BSP-run.

The algorithms to be used in BSP cannot use
recursion inside one block, because feedback of
results computed at a later point in the DSP
tree to an earlier point is not possible. The
minimal feedback delay time in Pd is one block,
other constructs result in “DSP loop detected”-
errors in Pd. This limit is expected to compli-
cate applying BSP in recursive algorithms like
L-Systems. The inclusion of a suitable table-
writing object in Pd vanilla as mentioned above
could alleviate this problem a bit.

BSP deals only with numbers, so it’s applica-
bility to text processing is very limited, which
affects the use of formal grammars. The sym-
bols used in alphabets of L-Systems or similar
systems based on rewrite rules have to be con-
verted to numbers by implementing a transla-
tion map.

7 Conclusions and future work

BSP has been successfully applied to a simple
physical simulation for this paper and a growing
set of feature extraction objects. The [physigs]
object will be refined and published under an
open source license, while the feature extraction
objects will become a part of the “rj” library
developed for the RjDj application. While BSP
is a powerful and so far under-used technique in
Pd, it cannot magically transform Pd to become
a true multiple-rate software. Music compilers
like ChucK, SND-RT or LuaAV still deal with
the competing demands of variable control rates
in a cleaner and more flexible way.
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Figure 7: Help-file for the [physigs] abstraction


