Writing Audio Applications using GStreamer

Stefan KOST
GStreamer community, Nokia/Meego
Majurinkatu 12 B 43
Espoo, Finland, 02600
ensonic @sonicpulse.de

Abstract

GStreamer is mostly known for its use in media
players. Although the API and the plugin
collection has much to offer for audio composing
and editing applications as well. This paper
introduces the framework, focusing on features
interesting for audio processing applications. The
author reports about practical experience of using
GStreamer inside the Buzztard project.

Keywords

GStreamer, Framework, Composer, Audio.

1 GStreamer framework

GStreamer [1] is an open source, Cross
platform, graph based, multimedia framework.
Development takes place on freedesktop.org.
GStreamer is written in C, but in an object oriented
fashion using the GObject framework. Numerous
language bindings exist, e.g. for Python, C#, Java
and Perl. GStreamer has been ported to a wide
variety of platforms such as Linux, Windows,
MacOS, BSD and Solaris. The framework and
most plugins are released under LGPL license. The
project is over 10 years old now and has many
contributors. The current 0.10 series is API and
ABI stable and being actively developed since
about 5 years.

A great variety of applications is using
GStreamer already today. To give some examples,
then GNOME desktop is wusing it for its
Mediaplayers Totem and Rhythmbox and the
Chat&Voip client Empathy, platforms like Nokias

Maemo and Intels Moblin use GStreamer for all
multimedia tasks. In the audio domain two
applications to mention are Jokosher (a multitrack
audio editor) and Buzztard [2] (a tracker like
musical composer). The latter is the pet project of
the article's author and will be used later on as an
example case and thus deserves a little
introduction. A song in Buzztard is a network of
sound generators, effects and an audio sink. All
parameters on each of the elements can be
controlled interactively or by the sequencer. All
audio is rendered on the fly by algorithms and by
optionally accessing a wavetable of sampled
sounds. [3] gives a nice overview of live audio
effects in Buzztard.

1.1 Multimedia processing graph

A GStreamer application constructs its
processing graph in a GstPipeline object. This is a
container for actual elements (source, effect and
sinks). A container element is an element itself,
supporting the same API as the real elements it
contains. A pipeline is built by adding more
elements/containers and linking them through their
“pads”. A pipeline can be anything from a simple
linear sequence to a complex hierarchical directed
graph (see Illustration 1).

As mentioned above, elements are linked by
connecting two pads — a source pad of the source
element and a sink pad from the target element.
GStreamer knows about several types of pads —
always-, sometimes- and request-pads:

» always-pads are static (always available)
* sometimes-pads appear and disappear

pipeline

bin

file-source ogg-demuxer

vorbis-decoder

converter alsa-output

Y

'y

Y

|

Lllustration 1: A hierarchical GStreamer pipeline

according to data-flow (e.g. new stream on
multiplexed content)

* request-pads are a template that can be
instantiated multiple times (e.g. inputs for
a mixer element)

Besides generic containers (containers to
structure a pipeline like GstBin and GstPipeline)
several specialized containers exist:

* GstPlaybin2: builds a media playback
pipeline based on the media content, e.g.
used in Totem

* GstCamerabin: abstract still image/video
capture workflow, e.g. used in Nokia
N900

* Gnonlin: multitrack audio/video editor,
e.g. used in Jokosher and Pitivi

1.2 Dataformats

The GStreamer core is totally data format
agnostic. Formats like audio and video (and their
properties) are only introduced with the gst-
plugins-base module. New formats can be added
without modifying the core (consider adding
spectral audio processing plugins like VAMP [4]).
Data formats are described by GstCaps which is an
object containing a media-type and a list of {key,
value} pairs. Values can be fixed or variable (a
range or list of possible values). The GstCaps class
implements operations on caps (union,
intersection, iterator,...). This is quite different to
e.g. ladspa where the standard specifies a fix
format like float-audio with 1 channel.

Elements register template caps for their pads.
This describes the data formats that they can
accept. When starting the pipeline, elements agree
on the formats that they will use and store this in
their pads. Different pads can use different formats
and formats can also change while the pipeline is
running.

GStreamer plugin packages provide various data
format conversion plugins such as e.g.
audioconvert and audioresample. Such plugins
switch to pass-through mode if no conversion is
needed. For performance and quality reason it is of
course best to avoid conversion.

1.3 DataFlow

The framework provides various communication
and I/O mechanisms between elements and the
application. The main data-flow is done by

transferring buffers from pad to pad. A pipeline
can operate “push based”, “pull based” and in
“mixed mode”. In push mode, source elements are
active and deliver data downstream. In pull mode
sink elements request data form upstream elements
when needed. Pure pull based mode is interesting
for audio applications, but not yet fully supported
by all elements. Regardless of the scheduling,
buffers always travel downstream (from sources to
sinks).

Events are used for control flow between
elements and from the application to the pipeline.
Events inside the pipeline are bidirectional — some
go upstream, some go downstream. E.g. seeking is
done by using events.

Messages are used to inform the application
from the inside of the pipeline. Messages are sent
to a bus. There they are marshalled to the
application thread. The application can subscribe
to interesting messages. E.g. multimedia metadata
(such as id3 tags) are send as a tag-message.

Queries are mostly used by the application to
check the status of the pipeline. E.g. one can use a
position-query to check the current playback
position. Queries can also be used by elements,
both up- and downstream.

Type Direction
Buffer Between elements
Event From application to elements

and between elements

Message | From elements to application via
the message bus

Query From applications to elements
and between elements.

Table 1: Communication primitives

All the communication object are lightweight
object (GstMiniObject). They support subclassing,
but no properties and signals.

1.4 Multi threading

GStreamer pipelines always use at least one
thread distinct from the main ui thread'.
Depending on the scheduling model and pipeline
structure more threads are used. The message bus
described in the previous chapter is used to
transfer messages to the applications main thread.

IThis also applies to commandline applications

Together these mechanisms decouple the UI from
the media handling.

Sink elements usually run a rendering thread. In
pull based scheduling also all the upstream data
processing would run in this thread.

In push based scheduling (which is the default
for most elements), sources start a thread.
Whenever data-flow branches out, one would add
queue elements which again start new threads for
their source pad (see Illustration 2 for an example).

Threads are taken from a thread-pool.
GStreamer provides a default thread-pool, but the
application can also provide its own. This allows
(some) processing to run under different
scheduling modes. The threads from the default
pool are run with default scheduling (inherited
from parent and thus usually SCHED_OTHER).

15 Plugin/Element API

GStreamer elements are GObjects subclassing
GstElement or any other base-class build on top of
that. Also structural components like GstBin and
GstPipeline are subclassed from GstElement.
GStreamer has many specialized base-classes,
covering audio-sinks and -sources, filters and
many other use cases.

Elements are normally provided by installed
plugins. Plugins can be installed system wide or
locally. Besides applications can also register
elements directly from their code. This is useful
for application specific elements. Buzztard uses
this for loading sounds through a memory-buffer
sink.

The use of the GObject paradigm provides full
introspection of an element's capabilities. This
allows applications to use elements in a generic

! thread 1

way. New elements can be used without that the
application needs special knowledge about them.

1.6 Plugin wrappers

The GStreamer plugin packages provide bridge
plugins that integrate other plugin standards. In the
audio area, GStreamer applications can use ladspa,
Iv2 and buzzmachine plugins. The bridge plugins
register elements for each of the wrapped plugins.
This eases application development, as one does
not have to deal with the different APIs on that
level any more.

1.7 Input and Outputs

GStreamer supports sources and sinks for
various platforms and APIs. For audio on Linux
these include Alsa, OSS, OSS4, Jack, PulseAudio,
ESound, SDL as well as some esoteric options
(e.g. an Apple Airport Express Sink). Likewise
there are video sinks for XVideo, SDL, OpenGL
and others.

1.8 Audio plugins

Besides the plugin wrappers described in section
1.6, the input/output elements mentioned in 1.7
and generic data flow and tool elements (tee,
input/output-selector, queue, adder, audioconvert),
GStreamer has a couple of native audio elements
already. There is an equalizer, a spectrum analyser,
a level meter, some filters and some effects in the
gst-plugins-good module. The Buzztard project
has a simple monophonic synthesizer (simsyn) and
a fluidsynth wrapper in the gst-buzztard module.
Especially simsyn is a good starting point for an
instrument plugin (audio generator).

| thread 2

1 audlc decoder audlo sink
1

\MM

source

wdeo decoder wdeo sink

MM

Hllustration 2: Thread boundaries in a pipeline

thread 3

19 A/ Syncand Clocks

Time is important in multimedia application. A
common timebase is needed for mixing and
synchronisation. A GStreamer pipeline contains a
clock object. This clock can be provided by an
element inside the pipeline (e.g. the audio clock
from the audio sink) or a system clock is used as a
fall back. The system clock is based on POSIX
monotonic timers if available. Elements tag buffers
with timestamps. This is the stream-time for that
particular media object (see Illustration 3 for the
relation of different timebases). Sink elements can
now sync received buffers to the clock. If multiple
sinks are in use, they all sync against the same
clock source.

GStreamer also provides a network clock. This
allows to construct pipelines that span multiple
computers.

One can use seek-events to configure from
which time to play (and until what time or the
end). Seek-events are also used to set the playback
speed to achieve fast forward or playing media
backwards.

1.10 Sequencer

A sequencer records events over time. Usually
the sequence is split into multiple tracks too.

GStreamer elements are easy targets for event
automation. Each element comes with a number of
GObject properties as part of its interface. The
properties can be enumerated by the application.
One can query data types, ranges and display texts.
Changing the value of an element's property has
the desired effect almost immediately. Audio
elements update the processing parameters at least
once per buffer. In video elements a buffers is one
frame and thus parameter changes are always
immediate.

The GObject properties are a convenient
interface for live control. Besides multimedia

100 ms stream ” A

Stream time

Running time
) 10 20 30 40 50
Clock time

base time
Lllustration 3: Clock times in a pipeline

1 1] I - 1 | 1 1 1 i i i
10 20 30 40 50 60 70 80 90 100 60 70 80 90

60

@ 60 T0 a0 el 100 110 120 130 140 150 160 170

applications usually also need sequencer
capabilities. A Sequencer would control element
properties based on time. GStreamer provides such
a mechanism with the GstController subsystem.
The application can create control-source objects
and attach them to element properties. Then the
application would program the controller and at
runtime the element fetches parameter changes by
timestamps.

The control-source functionality comes as a
base-class with a few implementations in
GStreamer core: an interpolation control source
and an Ifo control source. The former takes a series
of {timestamp, value} pairs and can provide
intermediate values by applying various smoothing
functions (trigger, step, linear, quadratic and
cubic). The latter supports a few waveforms (sine,
square, saw, reverse-saw and triangle) plus
amplitude, frequency and phase control.

The GObject properties are annotated to help the
application to assign control-sources only to
meaningful parameters.

[5] has a short example demonstrating the
interpolation control source.

The sequencer in Buzztard completely relies on
this mechanism. All events recorded in the
timeline are available as interpolation control
sources on the parameters of the audio generators
and effects.

1.11 Preset handling

The GStreamer framework defines several
interfaces that can be implemented by elements.
One that is useful for music applications is the
preset interface. It defines the API for applications
to browse and activate element presets. A preset
itself is a named parameter set. The interface also
defines where those are stored in the file system
and how to merge system wide and user local files.

70 80 90 100 110 120 130 140

In Buzztard the preset mechanism is used to
defines sound preset on sound generators and
effects. Another use of presets are encoding
profiles for rendering of content so that it is
suitable for specific devices.

2 Development support

Previous chapters introduced the major
framework features. One nice side effect of a
widely used framework is that people write tools
to support the development.

The GStreamer core comes with a powerful
logging framework. Logs can be filtered to many
criteria on the fly or analysed off-line using the
gst-debug-viewer tool. Another useful feature is
the ability to dump pipeline layouts with all kinds
of details as graphviz dot graphs. This is how
[lustration 1 was generated.

Small pipelines can by tested with gst-launch on
the command-line. The needed elements can be
found with gst-inspect or by browsing the installed
plugins with its graphical counterpart gst-
inspector.

Gst-tracelib can provide statistics and
performance monitoring of any GStreamer based
application.

3 Performance

One often asked questions is regarding to the
framework overhead. This is discussed in the
sections below, looking at it from different angles.

3.1 Startup time

When initializing the gstreamer library, it load
and verifies the registry cache. The cache is a
dictionary of all known plugins and the features
they provide. The cache allows applications to
lookup elements by features, even before their
module is loaded.

The cache is built automatically if it is not
present. This spawns a separate process that will
load and introspect each plugin. Crashing plugins
are blacklisted. Obviously this takes some time,
especially if a large amount of plugins is installed.

This of course depends at lot on the amount of
installed plugins (in my case: 235 plugins, 1633
features) and the system”. As can been seen from
the above example, the 2™ round is quick.

2 Lenovo T60 using a Intel® CPU T2400@
1.83GHz (dual core)

> sync; echo 3 > /proc/sys/vm/drop caches
> time gst-inspect >/dev/null 2>&1

real Om2.710s

user Om0.084s

SyS 0m0.060s

> time gst-inspect >/dev/null 2>g&l

real Om0.074s

user Om0.036s

sys O0m0.040s

Example 1: Registry initialisation times
3.2 Pipeline construction

Initial format negotiation can take some time in
large pipelines. This gets especially worse if a lot
of conversion elements are plugged (they will
increase the number of possible formats). One way
to address this, is to define a desired default format
and plug conversion elements only as needed.
> export GST DEBUG="bt-cmd:3"
> ./buzztard-cmd 2>&1 -c p -i Aehnatron.bmw |
grep start
0:00:00.038075793 first lifesign from the app

0:00:02.583626430 song has been loaded
0:00:03.388285111 song is playing

Example 2: Playback start time for a Buzztard song

Example 2 is the authors poor mans approach to
meassure the time to go to playing. The timings
already use the optimization suggested in the
previous paragraph. The song used in the example
uses 44 threads and consists of 341 GStreamer
elements structured into 62 GstBins.

3.3 Running time

The actual run time overhead is quite low.
Pushing a buffer, will essentially just call the
process function on the peer pad. Likewise it
happens in pull mode. There is some overhead for
sanity checking and renegotiation testing.

> time ./buzztard-cmd -c e -i Aehnatron.bmw -o
/tmp/Aehnatron.wav
11:48.480 / 11:48.480

real 0m29.687s
user 0m41.615s
sSysS Omé4.524s

Example 3: Render a Buzztard song

Example 3 show how long it takes to render a
quite big song to a pcm wav file. Processing nicely
saturates both cpu cores. This benchmark uses the
same song as in Example 2.

4 Conclusion

GStreamer is more that just a plugin APL It
implements a great detail of the plugin-host

functionality. To compare GStreamer with some
technologies more known in the Linux Audio
ecosystem - one could understand GStreamer as a
mix of the functionality that e.g. Jack + Iv2
provide together. GStreamer manages the whole
processing filter graph, but in one process, while
jack would do something similar across multiple
processes. GStreamer also describes how plugins
are run together, while APIs like ladspa or 1v2
leave that freedom to the host applications.

The GStreamer framework comes with a lot of
features needed to write a multimedia application.
It abstracts handling of various media formats,
provides sequencer functionality, integrates with
the different media APIs on platforms like Linux,
Windows and MacOS. The multithreaded design
helps to write applications that make use of
modern multicore CPU architectures.

The media agnostic design is ideal for
application that like to use other media besides
audio as well.

As a downside all the functionality also brings
quite some complexity. Pure audio projects still
need to deal with some aspects irrelevant to their
area. Having support for arbitrary formats makes
plugins more complex. Pull based processing
remains an area that needs more work, especially if
it should scale as well as the push based processing
on multicore CPUs.

If there is more interest in writing audio plugins
as GStreamer elements, it would also be a good
idea to introduce new base-classes. While there is
already one for audio filters, there is none yet for
audio generators (there is a GstBaseAudioSrc, but
that is meant for a sound card source). Thus
simsyn introduced in chapter 1.8 is build from
1428 lines of C, while the audiodelay effect in the
same package only needs 620.

5 Acknowledgements

Thanks go the the GStreamer community for
their great passionate work on the framework and
my family for their patience regarding my hobby.

References

[1] GStreamer Project. 1999-2010. GStreamer:
Documentation. ww.freedesktop.org.

[2] Stefan Kost. 2003-2010. The Buzztard
project. www.buzztard.org

[3] Stefan Kost. 24 June 2007 . Fun with_
GSreamer Audio Effects The Gnome Journal.
[4] VAMP Project. 1999-2010. The Vamp audio
analysis plugin system. http://vamp-plugins.org
[5] GStreamer Project. 1999-2010.
GstController audio example.
http://cgit.freedesktop.org/gstreamer/gstreamer/tr

ee/tests/examples/controller/audio-example.c

http://www.buzztard.org/
http://cgit.freedesktop.org/gstreamer/gstreamer/tree/tests/examples/controller/audio-example.c
http://cgit.freedesktop.org/gstreamer/gstreamer/tree/tests/examples/controller/audio-example.c
http://vamp-plugins.org/
http://gnomejournal.org/article/58/fun-with-gstreamer-audio-effects
http://gnomejournal.org/article/58/fun-with-gstreamer-audio-effects

	1 GStreamer framework
	1.1 Multimedia processing graph
	1.2 Data formats
	1.3 Data Flow
	1.4 Multi threading
	1.5 Plugin/Element API
	1.6 Plugin wrappers
	1.7 Input and Outputs
	1.8 Audio plugins
	1.9 A/V Sync and Clocks
	1.10 Sequencer
	1.11 Preset handling

	2 Development support
	3 Performance
	3.1 Startup time
	3.2 Pipeline construction
	3.3 Running time

	4 Conclusion
	5 Acknowledgements

