
QuteCsound, a Csound Frontend

Andrés CABRERA
Sonic Arts Research Centre
Queen’s University Belfast

UK
acabrera01@qub.ac.uk

Abstract

QuteCsound is a front-end application for Csound
written using the Qt toolkit. It has been developed
since 2008, and is now part of the Csound distri-
bution for Windows and OS X. It is a code editor
for Csound, and provides many features for real-time
control of the Csound engine, through graphical con-
trol interfaces and live score processing.

Keywords

Csound, Front-end, Qt, Widgets, Interface builder

1 Introduction

QuteCsound was born out of the desire to have a
cross-platform front-end for Csound [Boulanger,
2000] like MacCsound [Ingalls, 2005] which only
runs on OS X. It is based on the idea of hav-
ing real-time control of Csound through graph-
ical widgets, and making Csound accessible for
novice users. It is however designed to be also
a powerful editor for advanced users and also
offline (non-realtime) work. The most recent
version is 0.5.0. It has been tested on Linux,
Mac OS X, Windows and Solaris. QuteCsound
has been translated to Spanish, French, Italian,
German and Portuguese.

One of the main goals was also to make a
new interface for Csound which would be com-
fortable for a musician whose background is not
in programming. Existing cross-platform inter-
faces for Csound were either too basic or some-
what impractical. The Csound Manual [Cabr-
era, 2010] is very comprehensive, but few front-
ends take full advantage of its resources like op-
code listing in XML format.

QuteCsound uses the Csound API [ffitch,
2005], which enables tight integration and con-
trol of Csound.

It is licensed under the GPLv3 and LGPLv2
for compatibility with the Csound licence to
ease distribution alongside Csound. More in-
formation on QuteCsound can be found in the

Figure 1: The main QuteCsound window

Figure 2: The transport bar

QuteCsound Front page1 and the QuteCsound
sources and binaries can be found on its Source-
forge page2.

2 GUI

The main application window is shown in figure
1. The main component is a text editor with
syntax highlighting. Documents can be opened
as separate tabs in this area. There is a large
icon bar with the main actions, which contains
the usual open/save and cut/copy/paste action
icons, a section with transport controls (see fig-
ure 2), and a section for handling visibility of
the rest of the application windows and panels.

Around the editor many dockable widgets can
be positioned freely. These dockable widgets
are:

Widget Panel In the widget panel, control
widgets like sliders and knobs can be cre-
ated. The design and manipulation of the

1http://qutecsound.sourceforge.net
2http://www.sourceforge.net/projects/qutecsound



widgets is all graphical, and requires no
textual programming. See 2.1 below.

Manual Panel The html version of the
Csound Manual can be displayed in this
panel. The reference for an opcode under
the editor cursor can be called with the de-
fault short-cut Shift+F1.

Console Panel The output from Csound for
the current document is displayed in this
panel.

Inspector Panel Shows a dynamically gener-
ated hierarchical list of important sections
from the current file. It shows instrument
definitions and labels, definition of User de-
fined opcodes, f-table definitions, and score
sections.

When the current document tab is changed,
all the panels which depend on the document
like the widget panel and the inspector panel,
change to show the current data.

There are three additional windows in the
GUI:

Configuration dialog Allows setting options
for Csound execution, Environment and in-
terface options.

Utilities dialog Simplifies usage of the
Csound utilities -applications which pre-
process files for certain opcodes- can be
called and controlled through this dialog
window.

Live Event Panels These windows which
vary in number according to the current
document contain a spreadsheet-like in-
terface for manipulating Csound score
events which can be sent, manipulated and
looped while Csound is running. They can
also be processed using the simple python
qutesheet API (see section 2.3).

2.1 Widgets

The widget panel allows creation of versatile
graphical control interfaces. Data widgets pro-
vide bi-directional interchange of values with
Csound through the API. The values can be
updated synchronously or asynchronously de-
pending on the QuteCsound configuration and
the usage of invalue/outvalue or chnget/chnset3

opcodes in the csd file.

3The invalue/outvalue opcodes call a registered call-
back when they are used, while chnget/chnset only
change internal values which must be polled

Figure 3: Widget Panel detail

An example of how the widget panel can be
used is shown in figure 3.

These are the available data widgets:

Slider Ordinary sliders which become horizon-
tal or vertical depending on the relation be-
tween width and height.

Knob Simple rotary knobs.

Labels and Displays Text widgets that dis-
play immutable text (labels), or text that
can be changed only from Csound, not us-
ing the mouse4.

Text Editor A text entry widget.

Number widgets The ScrollNumber and
SpinBox widgets offer number value inputs
and outputs with mouse and keyboard
control.

Menus The menu widget allows creating a
Drop-down or Combo Box for selection
from a list.

Controller The controller widget can be a
slider, a meter or an XY controller. It can
also be used as a “LED” display.

Button Buttons can be data widgets (sending
different values depending on whether they
are pressed or not) or score event genera-
tors. They can also hold images.

CheckBox A simple checkbox which can take
a value of 1 or 0.

There are three other widgets which are used to
display information from Csound:

4While this separation is not really necessary or use-
ful, it follows the MacCsound format choices, and was
kept for compatibility purposes only



Figure 4: The Widget Preferences dialog

Graphs The Graph Widget displays Csound
F-tables, as they are created by Csound,
and also displays data from the dispfft and
display opcodes, which allow monitoring
any signal or its spectrum. There is a Com-
boBox which allows selection of the current
tables. The table shown can also be se-
lected through a Csound API channel.

Scopes The Scope widget shows visual repre-
sentations of Csound output buffer. It can
act as a traditional Oscilloscope or as a Lis-
sajou, or Poincare display.

Consoles The Console widget shows the
Csound console output as a widget in the
widget panel.

Widgets can be created by right-clicking on
the widget panel, and selecting a type of widget
from a list. They can be moved and resized
by entering the ‘Edit Mode’ with the keyboard
short-cut Ctrl+E.

All widgets have a configuration dialog which
can be shown by right clicking on them and se-
lecting ‘Properties’ or by double clicking when
in edit mode. The Properties dialog for a text
widget is shown on figure 4. Properties like size
and position can be set in these dialogs. The
channel name through which the widget trans-
mits (if it can according to its type) can also be
set here.

To receive data from the widgets, they must
be assigned to a control variable (k-rate) using
the invalue opcode like this:

kval invalue "channel"

Conversely, to send data to a widget, the out-
value opcode can be used.

outvalue "chan", kval

There are some handy organization functions
for selected widgets like align and distribute to
aid in creating better looking widget panels.

The widgets are saved as text in the csd file,
but this text is always hidden from the user5.
Each widget is currently represented by a single
line of text, which looks something like this:

ioSlider {23, 244} {414, 32} -1.000000
1.000000 -1.000000 amount

This follows the original MacCsound format
strictly, which enables QuteCsound to open and
generate files which are interchangeable with
MacCsound. It is somewhat human-readable
and editable, but impossible to extend without
breaking compatibility. A lot of internal work
has already been done to move past the MacC-
sound widget format to an XML based format
which will allow easier extensibility and parsing,
and new widget types.

2.2 Live events panel

Each document can have any number of Live
Event Panels. A live event panel is a place
where Csound score events can be placed for
interactive usage during a Csound run. It is
shown in figure 5. The live event panel can dis-
play the information in the traditional Csound
score format or as a spreadsheet with editable
cells. It offers a group of common processing
functions which can be applied quickly to a
group of cells like addition, multiplication, and
generation functions like fill linearly or exponen-
tially or random number generation. There is
also support for some of the basic Csound Score
preprocessor features like tempo control and the
carry operator ‘.’.

Score events can be copied/pasted to/from
text view and sheet view seamlessly.

Live Event Panels are also stored as text in
the main csd file, and are hidden from the user
in the main text editor.

2.3 The QuteSheet Python API

A simple python API has been devised to enable
transformation of data from the Live Events
Panel using Python. The cells (both the se-
lected and the complete set) are passed to the
python script as arrays in any particular orga-
nization (by rows, by columns, by individual
cells), and can be returned with a single func-
tion specifying the new data and where it should

5This behavior will probably change in the future to
allow text modification of the widgets



Figure 5: The Live Events Panel

be placed in the sheet. The python scripts can
be stored in a directory which is scanned every
time the right-click menu in the event sheet is
triggered, effectively allowing “live coding” of
score transformations while the Csound audio
engine is running.

2.4 Code Graph

QuteCsound can parse the currently active doc-
ument to generate a dot language file, which can
be rendered using graphviz6 . Although compli-
cated files produce diagrams that are too com-
plex, this feature is useful for beginners to see
how the variables and opcodes are connected in
a visual way. The output of this action can be
seen in figure 6.

3 Architecture

QuteCsound requires Qt 4[Nokia, 2010],
Csound and libsndfile[de Castro Lopo, 2010] to
build.

Qt is a mature cross-platform graphical tool-
kit, which is used in several well known free-
software audio projects like QJackCtl. It also
has cross-platform libraries for non GUI stuff
like networking, XML parsing, printing and
threading which has saved time and avoided the
need for additional dependencies. It also has
extensive facilities for internationalization and
translation. It is distributed in separate dy-
namic libraries which can be distributed with
the executable.

Libsndfile is a well established audiofile

6Graphviz is a package for generating flowchart style
graphics using the dot language. More information can
be found on www.graphviz.org

Figure 6: The Code Graph Output

read/write library, which is very well main-
tained, stable and efficient.

All audio and MIDI I/O is handled by Csound
itself, except the Record function, which copies
the Csound output buffer after every control
block to a ring buffer and writes it to disk from
another thread. This means that QuteCsound
supports output to Jack, Coreaudio and Win-
MME as well as generic interfaces like Portau-
dio.

Csound can be run either as a com-
pletely independent process in a separate
Terminal application, on the same appli-
cation thread (usually undesirable) or on
a separate thread using the API through
the CsoundPerformanceThread7 C++ interface
from interfaces/csPerfThread.hpp in the
Csound sources.

Data update is requested by Csound syn-
chronously through its callback functions (set
using the csoundSetInputValueCallback and
csoundSetOutputValueCallback functions)
when the invalue/outvalue opcodes are used.
Data for Csound is polled in that callback, but
data for the widgets is queued, to be processed

7this class handles some of the threading issues as-
sociated with passing events to Csound and with start-
ing/pausing/stopping the engine



at a slower rate. The values can also be up-
dated asynchronously with the chnset/chnget
opcodes. The values are then updated from a
timer triggered thread in QuteCsound, forcing
locking of values.

An interesting feature of MacCsound which
has been emulated in QuteCsound is that wid-
gets with the same channel name update each
other even when Csound is not running. This is
useful to avoid Csound code for common things
like showing the numeric value of a slider wid-
get, and it also gives a (false but expected and
rewarding) sense of an “always running” en-
gine. In practical terms, this implies that when
Csound is running, widgets must first take val-
ues generated from Csound, and then propagate
their values to other widgets.

3.1 Documentation integration

The Csound documentation is highly integrated
in QuteCsound. It can be easily called from
the Help menu, or to find the reference for the
opcode under the editor cursor. The documen-
tation also contains an XML file of all the op-
code definitions organized by category. This file
is used for syntax highlight, but also for show-
ing opcode syntax in the status bar, populating
an opcode selector organized by categories and
building the code graph code (to know the in-
put/output variable names and types).

4 Examples Menu

The Examples menu in QuteCsound includes
a large set of introductory examples and tu-
torials, reference examples for the widgets and
a group of ‘classic’ Csound compositions like
Boulanger’s Trapped in Convert, and Csound
realizations of important historical pieces like
Chowning’s Stria and Stockhausen’s Studie II.
The examples menu also contains a set of re-
altime synths, some useful files for things like
I/O monitoring and file processing, and a ‘Fa-
vorites’ menu which shows the csd files from a
user specified directory.

5 The future

Plans for the future include completion of the
new widget format, and development of new
widgets like a table widget. It would be nice
to have a synchronization option to make loops
sync to a master loop.

A lot of work has been done to enable the
exporting of stand alone applications, so this
will hopefully be finished soon.

And of course fix some of the bugs along the
way.

6 Acknowledgements

Many thanks to the Csound developers, spe-
cially John ffitch and Victor Lazzarini for their
assistance with usage of the API during the de-
velopment of QuteCsound, and their quick re-
sponse to issues and particular needs. Also,
many thanks go to the users who have con-
tributed many ideas, translations, bug reports
and testing. Thanks to people like Joachim
Heintz, Andy Fillebrown and François Pinot,
for their contribution to development and pack-
aging.

References

Richard Boulanger, editor. 2000. The Csound
Book: Perspectives in Software Synthesis,
Sound Design, Signal Processing and Pro-
gramming. MIT Press.

Andres Cabrera, editor. 2010. The Csound
5.12 Manual.

Erik de Castro Lopo. 2010.
Libsndfile. http://www.mega-
nerd.com/libsndfile/api.html.

John ffitch. 2005. On the design of csound
5. In Proceedings of the 2005 Linux Audio
Conference, ZKM, Karlsruhe, Germany.

Matt Ingalls. 2005. Maccsound.
http://www.csounds.com/matt/MacCsound/.

Nokia. 2010. Qt – cross-platform application
and ui framework. http://qt.nokia.com/.


