
A MusicXML Test Suite and
a Discussion of Issues in MusicXML 2.0

Reinhold Kainhofer, http://reinhold.kainhofer.com, reinhold@kainhofer.com
Vienna University of Technology, Austria

and
GNU LilyPond, http://www.lilypond.org

and
Edition Kainhofer, http://www.edition-kainhofer.com, Austria

Abstract
MusicXML [Recordare LLC, 2010] has become one
of the standard interchange formats for music data.
While a ”specification” in the form of some DTD
files with comments for each element and equiva-
lently in the form of XML Schemas is available,
no representative archive of MusicXML unit test
files has been available for testing purposes. Here,
we present such an extensive suite of MusicXML
unit tests [Kainhofer, 2009]. Although originally in-
tended for regression-testing the musicxml2ly con-
verter, it has turned into a general MusicXML test
suite consisting of more than 120 MusicXML test
files, each checking one particular aspect of the Mu-
sicXML specification.

During the creation of the test suite, several short-
comings in the MusicXML specification were de-
tected and are discussed in the second part of this
article. We also discuss the obstacles encountered
when trying to convert MusicXML data files to the
LilyPond [Nienhuys and et al., 2010] format.

Keywords
MusicXML, Test suite, Software development, Mu-
sic notation

1 About the MusicXML test suite

MusicXML has become the de-facto exchange
format for visual music data, supported by
dozens of software applications. It has even
been proposed as a tool for musicological anal-
ysis [Vigliante, 2007; Ganseman et al., 2008],
online-music editing [Cunningham et al., 2006]
or evaluating OMR systems [Szwoch, 2008]
among others.

Recently, the first version of the Open
Score Format specification [Yamaha Corpo-
ration, 2009] was published together with a
PVG (Piano-Voice-Guitar) profile, which em-
ploys MusicXML as its data format. Thus most
problems with MusicXML will automatically
carry over to this new specification, too.

Despite a full syntactic definition of the Mu-
sicXML format [Recordare LLC, 2010], no offi-
cial suite of representative MusicXML test files

has been available for developers implementing
MusicXML support in their applications. The
only help were the comments and explanations
given in the specification to create test cases
manually. The predominant advice is to use the
Dolet plugin for Finale, which is a proprietary
Windows and MacOS application that is not
easily available for many Open Source develop-
ers employing Linux. Also, this approach invari-
ably will lead to MusicXML being interpreted as
behaving like the Dolet plugin instead of being
an application-independent specification. Fur-
thermore, the lack of a test suite means that
a lot of work is duplicated creating MusicXML
test cases.

This lack of a complete MusicXML test suite
for testing purposes was our main incentive for
creating such a semi-official test suite [Kain-
hofer, 2009]. Due to the complexity of musical
notation, a complete set of test cases, covering
every possible combination of notation and all
possible combinations of XML attributes and
elements, is apparently out of reach. However,
we attempted to create representative samples
to catch as many common combinations as pos-
sible. Our main goal was to create small unit
test cases, covering not only the most common
features of MusicXML, but also some less used
musical notation elements, like complex time
signatures, instrument specific markup, micro-
tones, etc.

The test suite together with sample render-
ings are available for download at its homepage:
http://kainhofer.com/musicxml/

2 Structure of the test suite

We identified twelve different feature categories,
each dealing with separate aspects of the Mu-
sicXML specification (like basic musical no-
tation, staff attributes, note-related elements,
page layout, etc.). Each of these categories
was further split into more specific aspects, for
which we created several test cases each.

http://reinhold.kainhofer.com
reinhold@kainhofer.com
http://www.fam.tuwien.ac.at/
http://www.lilypond.org/
http://www.lilypond.org
http://www.edition-kainhofer.com/
http://www.edition-kainhofer.com
http://kainhofer.com/musicxml/

01-09 ... Basics
01 Pitches
02 Rests
03 Rhythm
10-19 ... Staff attributes
11 Time signatures
12 Clefs
13 Key signatures
20-29 ... Note-related elements
21 Chorded notes
22 Note settings, heads, etc.
23 Triplets, Tuplets
24 Grace notes
30-39 ... Notations, articul., spanners
31 Dynamics and other single symbols
32 Notations and Articulations
33 Spanners
40-44 ... Parts
41 Multiple parts (staves)
42 Multiple voices per staff
43 One part on multiple staves
45-49 ... Measure issues and repeats
45 Repeats
46 Barlines, Measures
50-54 ... Page-related issues
51 Header information
52 Page layout
55-59 ... Exact positioning of items
60-69 ... Vocal music
61 Lyrics
70-75 ... Instrument-specific notation
71 Guitar notation
72 Transposing instruments
73 Percussion
74 Figured bass
75 Other instrumental notation
80-89 ... MIDI and sound generation
90-99 ... Other aspects
90 Compressed MusicXML files
99 Compatibility with broken MusicXML

Table 1: Structure of the files, categorized by
file name

The test suite currently consists of more than
120 test cases, where each file represents one
particular aspect of the MusicXML format and
is named accordingly. The file name starts with
two digits, encoding the area of the test (see Ta-
ble 1 for the exact meaning of the first two dig-
its), followed by a letter to enumerate the test
cases within each category. Finally, a short ver-
bal description1 of the test case is given in the
file name. The file extension follows the stan-
dard of .xml for normal MusicXML files and

1A more detailed description is given in a description
element inside the XML file.

.mxl for (ZIP-) compressed MusicXML archives
as defined in container.dtd.

Every test case is supposed to test one par-
ticular feature or feature combination of Mu-
sicXML. If a feature has multiple possible at-
tribute values or different uses within a score,
the corresponding test file contains several sub-
tests, separated as much as possible by using
different notes or even different measures or
staves for each of the values or combinations.
For example, parenthesized notes or rests use
the parentheses attribute of a notehead XML
element. However, for an application it might
make a difference if that note is a note on its
own, a note with a non-standard note head or
part of a chord. Similarly, parenthesized rests
can have a default position in the staff or an ex-
plicit position given in the MusicXML file (using
the pitch child element of the note describing
the rest). The test case for parenthesizing cov-
ers all these cases:

� ��� �
� �
� �
���

4
6�

� ��� �� � �
��� �� �

This choice of combining closely related com-
binations or aspects of the same feature into
one test case provides a nice balance between
clearly separating test cases for different fea-
tures to avoid influences of bugs in one feature
on another feature, while still keeping the num-
ber of test files relatively low, which is relevant
if running a test suite cannot be automated.

3 An example of a unit test

The unit test files are kept as simple as possi-
ble, so that they can best fulfill their purpose of
checking only one particular aspect. For exam-
ple, the unit test file 33b-Spanners-Tie.xml to
check the processing of simple ties – a trivial fea-
ture, which still needs to be tested in coverage
and regression tests – reads:

<?xml ve r s i on =”1.0” encoding=”ISO−8859−1”
standa lone=”no”?>

<!DOCTYPE score−partwi se PUBLIC
”−//Recordare //DTD MusicXML 0 .6b
Partwise //EN”

”http ://www. musicxml . org /dtds / partwi se . dtd”>
<score−partwise>

< i d e n t i f i c a t i o n >
<misce l l aneous >

<misce l l aneous− f i e l d
name=”de s c r i p t i o n”>Two simple t i e d

whole notes </misce l l aneous−f i e l d >
</misce l l aneous >

</ i d e n t i f i c a t i o n >

<part− l i s t >
<score−part id=”P1”/>

</part− l i s t >
<part id=”P1”>

<measure number=”1”>
<a t t r i bu t e s >

<d i v i s i o n s >1</d i v i s i o n s >
<key><f i f t h s >0</ f i f t h s ></key>
<time>

<beats >4</beats>
<beat−type>4</beat−type>

</time>
<s taves >1</staves>
<c l e f number=”1”>

<s ign>G</s ign>
<l i n e >2</l i n e >

</c l e f >
</a t t r i bu t e s >
<note>

<pitch>
<step>F</step>
<octave >4</octave>

</pitch>
<duration >4</durat ion>
<t i e type=”s t a r t ”/>
<voice >1</voice>
<type>whole</type>
<notat ions><t i e d

type=”s t a r t ”/></notat ions>
</note>

</measure>
<measure number=”2”>

<note>
<pitch>

<step>F</step>
<octave >4</octave>

</pitch>
<duration >4</durat ion>
<t i e type=”stop”/>
<voice >1</voice>
<type>whole</type>
<notat ions><t i e d

type=”stop”/></notat ions>
</note>

</measure>
</part>

</score−partwise>

�
4
4 � �

Other test files check for more exotic fea-
tures, like for example the test case for non-
traditional key signatures with microtone alter-
ations (excerpt of 13d-KeySignatures-Micro-
tones.xml):

<a t t r i bu t e s >
<d i v i s i o n s >1</d i v i s i o n s >
<key>

<key−step >4</key−step>
<key−a l t e r >−1.5</key−a l t e r >
<key−step >6</key−step>
<key−a l t e r >−0.5</key−a l t e r >
<key−step >0</key−step>
<key−a l t e r >0</key−a l t e r >
<key−step >1</key−step>
<key−a l t e r >0.5</key−a l t e r >
<key−step >3</key−step>

<key−a l t e r >1.5</key−a l t e r >
</key>

[. . .]
</a t t r i bu t e s >

�� ��� ��
4
2

However, in all cases the structure of the test
file is kept as simple as possible to avoid cross-
interactions of bugs in different areas of an ap-
plication.

4 Sample renderings

Originally, the files of the test suite were gener-
ated as test cases for the implementation of mu-
sicxml2ly, a utility to convert MusicXML files
to the LilyPond [Nienhuys and et al., 2010] for-
mat. Using this utility, sample renderings of all
the test cases can be created automatically and
are made available on the homepage of the test
suite.

However, these renderings cannot be regarded
as official reference renderings, either, since they
represent only one particular interpretation (the
one of the musicxml2ly converter), while the
MusicXML specification leaves several aspects
unclear, as detailed below. So several aspects
of the semantic interpretation of MusicXML are
left to the importing application. Furthermore,
the musicxml2ly converter does not yet fully
support every aspect of MusicXML. Rather,
these sample renderings should be understood
as an indication how one particular application
understands the files.

5 Shortcomings of the MusicXML
format

While generating the MusicXML test suite, we
encountered several problems or inconsistencies
with the MusicXML specification as given in the
DTDs or XML Schemas. Those issues involve
semantic ambiguities, suboptimal XML design
choices and missing features.

5.1 Semantic ambiguities of MusicXML
First, while the MusicXML specification gives a
precise syntactic specification of the format, the
complexities of music notation inevitably lead
to additional semantic restrictions, that can not
properly be expressed in a DTD or an XML
Schema. Additionally, MusicXML is also de-
signed to cover the features of several commer-
cially available music typesetting applications,
where each application has implemented some

aspects differently. Unless the MusicXML spec-
ification clearly describes how certain combina-
tions of attributes and/or elements are to be
understood, there cannot be a unique interpre-
tation of the exact musical or layout content of
some MusicXML snippet.

Thus, the first type of issues we identified
are semantic ambiguities, which might or rather
should be clarified in the specification itself.
Several of these were answered or explained
by Michael Good in email threads on the Mu-
sicXML mailing list, but the official specifica-
tion remains ambiguous to new developers.

5.1.1 Only a syntactical definition
The biggest problem with MusicXML is that
it is a purely syntactical definition, while the
musical content requires additional semantic re-
strictions. For example, spanners like tuplets,
ties, crescendi, analysis brackets etc. are simply
marked with a start, possibly some continuation
and an end element. Several spanners can be ar-
bitrarily overlapping, however, it is not possible
to properly specify that each of these spanners
must be closed (at a position where it makes
sense musically). Furthermore, it does not make
sense from a musical standpoint to have e.g. a
crescendo and a decrescendo overlapping in the
same voice. However, a part can have several
different voices, each with different hairpins, so
this is not a restriction for a part, only for a
voice in the conventional sense. Adding such
restrictions at the voice-level is simply not pos-
sible in a pure syntax specification like the DTD
or XSD.

5.1.2 Voice-Basedness
Many music notation and sequencer applica-
tions are based on the concept of voices, which
was also introduced in MusicXML through the
voice element of note. Notes with the same
voice element value are assumed to be in the
same voice, but the voice element is not re-
quired (in the OSF PVG profile, a voice ele-
ment is finally required). It is not clear, whether
a missing voice element implicitly means voice
one or whether notes without a voice element
should be placed in a voice of their own. In any
case, an importing application needs to check
whether the imported assignment of notes to
voices is possible in the application at all, and
thus the voice element can only be used as a
strong indication, but not as a definitive assign-
ment to voices. In particular, many applications
don’t allow overlapping notes in the same voice.

Such notes would need to be assigned to differ-
ent voices upon import.
5.1.3 Attributes
Another unclear part of the MusicXML specifi-
cation regards the display of the settings of the
attributes element. Some applications export
the time and key signature for every measure,
even if it hasn’t changed. The specification is
quiet on whether the presence of an attributes
element is supposed to imply the presence of a
graphical indication of these settings (i.g. ex-
plicitly displaying the key or time signature) or
only to assert specific values and leave the de-
cision to implementations. In the latter case
(which is apparently favored by Michael Good),
the MusicXML file does not specify the layout
uniquely and different applications will produce
different output.
5.1.4 Chords
Chords are another unclear area in the speci-
fication: A sequence of notes with the chord
element can only appear after a note that does
not have the chord element set and serves as the
base note for the chord. This restriction cannot
be handled in a DTD, but was introduced in the
PVG profile of OSF. Even worse, the grammar
allows e.g. forward or backward elements be-
fore a note with chord, so that the note does no
longer appear at the same time as the chord’s
base note. This additional restriction that no
forwards or backward appear between the notes
of a chord needs to be clarified. Also, theoreti-
cally the notes of a chord can belong to different
voices in the file, while this is not supported by
most applications.
5.1.5 Lyrics
Lyrics in MusicXML can have both a stanza
number and a name attribute to distinguish
different lyrics lines. But the specification is
quiet whether the number, the name alone or
the combination of number and name should
be used to determine, which syllables belong
together. Even worse, it seems that for the
page display, the vertical position of the lyrics
is the main factor to associate lyrics syllables
into words. This is a violation of the otherwise
rather strict separation of content and display.
5.1.6 Figured Bass
Figured bass numbers in MusicXML are always
assigned to the ”first regular note that follows”
per specification, but it does not say if this is
meant in XML order or in time-order. In par-
ticular, there might be a forward or backward

element immediately after the figured bass. In
this case, the XML-order and time-wise or-
der is clearly different. Also, the slash value
of the suffix child element does not distin-
guish forward slashes and back ticks (usually
through a ”6” to indicate a diminished chord).
The DTD only says ”The orientation and dis-
play of the slash usually depends on the figure
number.” While forward and backward slashes
might mean the same from a musical point of
view, the display of the figure will thus vary
from application to application. In most other
cases, in contrast, MusicXML tries to be as pre-
cise possible as far as the display is concerned.

5.1.7 Harp Pedal Diagrams
Finally, the harp-pedals element for harp pedal
diagrams lists the pedal states for the D, C,
B, E, F, G, and A harp pedals, but only rec-
ommends to give the pedals in the usual order.
For different orders, it is not clear whether the
harp pedal should be displayed in the usual or-
der or in the order given. Also, there is no way
to indicate the usual vertical delimiter for other
orders.

5.2 Sub-optimal XML design
A further type of issues with the MusicXML
format concerns the general design of the XML
format. As the MusicXML format is supposed
to be backward compatible, these design choices
cannot be undone. However, for completeness,
we will still discuss how they could have been
done better.

5.2.1 Strict Order of XML Child Nodes
The MusicXML DTDs specify that the children
of a note element (and of several similar ele-
ments) have to be in a fixed order. In particu-
lar, the duration, the optional voice and the
type elements have to be in this exact order,
although one would intuitively place the dura-
tion (the length in time units) and the type of
the note (the visual representation of the dura-
tion) together. Also, from a theoretical point of
view, there is no need to force a fixed ordering,
as all child elements simply specify properties of
that note. The only reason for this fixed order-
ing is – according to Michael Good2 – a tech-
nical one, namely that the DTD does not pro-
vide a proper way to allow arbitrary ordering of
the XML child elements while at the same time
adding restrictions on the number of times an

2Mail message to the MusicXML mailing list on
March 11, 2008

element appears. With an XML Schema this
would be possible to model, but the XSD for
MusicXML still enforces a fixed ordering to pro-
vide backwards compatibility.

5.2.2 Names of XML Elements
Containing Pitch Information

Another suboptimal design choice regards all el-
ements that contain some kind of pitch infor-
mation or alteration. Their names are chosen
to include the name of the enclosing XML ele-
ment, even though this can already be deduced
from the enclosing context. For example, the
alteration of a normal note uses the alter el-
ement inside a pitch, while the alteration of a
chord root uses the root-alter element inside
a root and the alteration of a chord note uses
degree-alter inside degree. As all of them
simply indicate an alteration of the enclosing
element, it would be cleaner to use the same el-
ement name alter for all these uses and instead
use the enclosing context, too. This would also
make implementations cleaner, as they can base
all pitch and alteration information on one com-
mon base class, using the same names for the
children. This issue appears not only with the
alter and (key|tuning|root|degree)-alter
elements, but also with the step and (key|
tuning|root)-step as well as with the octave
and(key|tuning)-octave elements.

5.2.3 Metronome Marks and
Non-Standard Key Signatures

Contrast this over-correctness in naming and
ignoring the context in the XML tree to the
metronome element. Tempo changes of the form
“old value = new value” using the metronome
element are defined in the DTD as

(beat-unit, beat-unit-dot*,
beat-unit, beat-unit-dot*)

where the two beat units indicate the value
before and after the tempo change. As a re-
sult of the optional dots, one cannot simply
access the old and the new tempo unit sepa-
rately by their child index of the metronome ele-
ment, but has to iterate through the children se-
quentially, checking for existing dots. For most
other purposes MusicXML tries to give each
item with even the slightest different function
its own name. Similarly, custom key signatures
are defined as

((...|((key-step, key-alter)*)),
key-octave*)

where steps and alterations alternate. This de-
sign has the additional problem that the (op-
tional) octave definitions for each of the key el-
ements are given after the step/alter pairs in
left-to-right order. As pointed out by Tulgan3,
this would be better represented by enclosing
each of the key element information (step, alter
and optional octave) in a separate key-element
child element.

5.2.4 Shortcomings of DTD and XSD
Formats

In the original DTD for MusicXML, enumerated
element values cannot be properly modeled, but
have to use the #PCDATA type and explain the
possible values in the comments. Thus, all enu-
merations are badly defined in the DTD, as only
some possible values are mentioned, which are
unaccessible to any syntax checker. In the XSD
specification for MusicXML, the possible val-
ues are mostly properly specified using an enu-
meration, which however makes extensions of
MusicXML to non-western music notation very
hard (for example, displaying microtone acci-
dentals used in Turkish music). Additionally,
the possible values are not further explained
(for example sharp-sharp vs. double-sharp
for accidentals).

A similar problem are attributes, where the
DTD allows a text value, which is then under-
stood as an integer or a real number. These
attributes are mainly fixed to integer values in
the OSF PVG profile.

5.2.5 Staff-assigned Elements
Markup text in MusicXML is mostly assigned
to a whole staff. In reality, however, a text
might be inherently assigned to one particular
note or voice. For example, when two instru-
ments are combined as two voices on one staff,
a markup “dolce” or “pizz.” might apply only
to one of the two instruments. Similar cases are
instrument cue names given in a piano reduc-
tion, as can be seen for example in the Tele-
mann MusicXML example provided by Recor-
dare. Unfortunately, the voice child element
of direction is optional and thus most Mu-
sicXML exporters ignore it, causing problems
for voice-based applications.

5.3 Missing features in MusicXML 2.0
While MusicXML 2.0 already added several im-
portant features over MusicXML 1.1, like exact

3Mail message to the MusicXML mailing list on Oc-
tober 7, 2006.

positioning and offsets, there are several settings
for professional music typesetting, which cannot
be encoded in MusicXML. For these issues, we
give some suggestions for a possible inclusion in
MusicXML 2.1 or 3.0.

5.3.1 Document-wide Header and
Footer Lines

First, while MusicXML allows one to completely
describe the page layout of the music sheet,
there is no way to specify a document-wide
header or footer line. The credit element al-
lows to place arbitrary text on any page, but
it refers to only one page (page 1 by default).
Thus, page headers and footers need to be de-
fined for each page separately. We propose to
add values ”all”, ”even” and ”odd” to the data
type of the page attribute for credit (currently
xsd:positiveInteger):

<c r e d i t page=”even”>
<c r ed i t−words de fau l t−x=”955”

de fau l t−y=”20”>Even
foo t e r </c r ed i t−words>

</c r ed i t >

5.3.2 No Information about Purpose of
Credit Elements

Another problem with the credits elements is
that they are simply text labels, but do not
store its function (i.e. whether such an element
gives the composer, poet, title, etc.). For a pure
layout-based application this might suffice, but
any application, that tries to extract metadata
from the MusicXML file or that has a different
handling for score titles and contributor names,
needs to extract that information. We propose
to add an enumerated type attribute to the
credit element with possible values title, sub-
title, composer, poet or lyricist, arranger, pub-
lisher, page number, header, footer, instrument,
copyright, etc.

<c r e d i t type=”composer”>
<c r ed i t−words

de fau l t−x=”1124” de fau l t−y=”1387”
j u s t i f y=”r i gh t”>Composer</c r ed i t−words>

</c r ed i t >

5.3.3 System Delimiters
In orchestral scores the systems are typically
separated with a system delimiter consisting
of two adjacent thick slashes. This is cur-
rently also not possible to express in Mu-
sicXML. One possible solution would be to add
it as a system-separator element inside the
defaults -> system-layout block of a score.

<de f au l t s >
<system−layout>

<system−separator>double−s l a s h
</system−separator>

</system−layout>
</de f au l t s >

5.3.4 Cadenzas
Finally, there is no proper way to encode a ca-
denza in MusicXML. While a measure can have
an arbitrary number of beats in MusicXML, ir-
respective of the time signature, the information
about where a cadenza starts cannot be repre-
sented. This will cause problems with applica-
tions and utilities that check MusicXML files
for correctness, as they have no way to distin-
guish incorrectly encoded files from files with a
cadenza.

6 Issues in MusicXML translation to
the LilyPond

In [Good, 2002] Michael Good discusses issues
that appear in the translation of MusicXML
files from and to the MuseData, NIFF, MIDI
and Finale file formats. In this section, we will
discuss issues that appear in the conversion of
the MusicXML format to the LilyPond file for-
mat.

6.1 Musical Content vs. Graphical
Representation

As LilyPond [Nienhuys and et al., 2010] is a
WYSIWYM (what you see is what you mean)
application, its data files describe the musical
contents of a score, rather than its graphical
description. Thus a converter from MusicXML
to LilyPond needs to extract the exact musi-
cal contents from a file. In MusicXML, several
elements – most notably dynamic signs like p,
f, crescendi etc. – are mainly tied to a posi-
tion on the staff and in some cases its onset and
end can only be deduced by the horizontal off-
set of the dynamic sign in the MusicXML file.
In LilyPond, however, almost all notation ele-
ments are attached to a note or rest, so these
elements need to be quantized and correctly as-
signed to a note or rest in LilyPond. This is
often not easily possible, due to explicit offsets
on the page, effectively assigning the element
to a different position than the position in the
MusicXML file.

6.2 Staff-Assigned Items
Another problem in the conversion to LilyPond
is caused by the same fact that in MusicXML

many notation elements like dynamic markings
or text markup is assigned to a staff, while in
LilyPond they must be assigned to a particular
note. If a staff contains two instruments (i.e.
two voices, one for each instrument), one has to
determine to which note to assign an encoun-
tered dynamic marking or text markup. In most
case assigning it to the nearest note will produce
the desired output, but there are many cases
where it is not possible to determine whether a
marking belongs to both instruments or just to
one of them. As an example, a dynamic sign like
”p” or ”ff” might either apply to both instru-
ments at the same time, or (e.g. if one of them
has a short solo) only to one of them. Similarly,
each instrument cue name provided as a help for
the conductor in a piano reduction apply only
to one particular voice in the (multi-voice) pi-
ano part, while other text markups will apply
to all voices simultaneously.

If one is only interested in generating the ex-
act layout as provided in the MusicXML file,
a misassignment will still lead to correct visual
output, although the extracted music informa-
tion is not entirely correct. However, if one also
wants to create separate instrumental parts for
the two instruments in the first case mentioned
above, then it is crucial to correctly assign each
staff-assigned element to either one or both in-
strumental voices. On the other hand, assigning
an element to both voices will then lead to du-
plicated items in the LilyPond output.

While it is true that MusicXML defined
the direction element to optionally contain a
voice element for that exact purpose, in real-
ity most GUI applications for music notation
will not cater for this functionality and thus
produce MusicXML files without proper voice-
assignment.

6.3 Voice-Based vs. Measure-Based

A further problem is that LilyPond is voice-
based, where the measure length is determined
by the current time signature, while MusicXML
is measure-based, where a measure can contain
an arbitrary number of beats, irrespective of the
time signature. In LilyPond, voices are inde-
pendently split into measures during processing
rather than in the input. Only later are those
measures synchronized. As a consequence, if
one voice has more beats in a measure than an-
other voice, LilyPond will not be able to prop-
erly synchronize them, so some skip elements
need to be inserted to line the voices up. The

voice-basedness of LilyPond also causes prob-
lems with MusicXML’s optional voice element,
which allows a voice to have overlapping notes,
which is not allowed in LilyPond, so that a Mu-
sicXML voice will possibly need to be split into
multiple voices.

6.4 Page Layout
Concerning the page layout, LilyPond needs
metadata about the score title and the contrib-
utors and will create its own labels on the ti-
tle page and the header and footer bars. As
discussed above, the credit element does not
contain that information, so that the title page
from the MusicXML file cannot be reproduced.
Even worse, page headers and other markup is
placed at absolute positions in the MusicXML
score, which is not possible in LilyPond.

6.5 Workarounds in MusicXML Files
Finally, even some sample files provided by
Recordare on the MusicXML homepage mix the
graphical display with the musical information.
For example, in the Chant.xml sample file a di-
visio minima (a short tick through the topmost
staff line) is not encoded as a barline with the
proper tick bar-style attribute, but as a words
direction element with text ”|”, which is then
shifted manually so that it appears at the cor-
rect position. Such hacks cannot work with any
application that tries to extract the musical con-
tents and not the exact page layout.

7 Conclusion

The MusicXML test suite presented in this ar-
ticle finally provides software developers in the
area of music notation with an extensive set of
representative test cases to check conformance
to the MusicXML specification and to perform
regression and coverage tests.

Even though MusicXML has established it-
self as an industry standard for exchanging mu-
sic notation, it is still encumbered with several
minor issues. Our discussion in the second part
of the paper attempts to provide implementors
of MusicXML import and export features with
some hints about possible pitfalls and ambigui-
ties in the format.

Nonetheless, MusicXML is a very useful file
format for the extremely hard and complex task
of music notation exchange. As the OSF speci-
fication has already shown, one can expect that
future versions of MusicXML will clarify, solve
or at least soften most of the issues we discuss
here.

References

Stuart Cunningham, Nicole Gebert, Rich
Picking, and Vic Grout. 2006. Web-based
music notation editing. In Proc. IADIS
Int. Conf. on WWW/Internet 2006. Murcia,
Spain, October 5-8, 2006.

Joachim Ganseman, Paul Scheunders, and
Wim D’haes. 2008. Using XQuery on Mu-
sicXML databases for musicological analysis.
In Proc. ISMIR 2008, pages 427–432. 9th
Int. Conf. on Music Information Retrieval.
Philadelpha, September 14-18, 2008.

Michael Good. 2002. MusicXML in prac-
tice: Issues in translation and analysis. In
Proc. First Int. Conf. MAX 2002: Musical
Application Using XML, pages 47–54. Milan,
September 19-20, 2002.

Michael Good. 2006. Lessons from the adop-
tion of MusicXML as an interchange stan-
dard. In Proc. XML 2006.

Reinhold Kainhofer. 2009. Unofficial Mu-
sicXML test suite. http://kainhofer.com/
musicxml/. Representative set of MusicXML
test cases.

Han-Wen Nienhuys and Jan Nieuwenhuizen
et al. 2010. GNU LilyPond. http://www.
lilypond.org/. The music typesetter of the
GNU project.

Recordare LLC. 2010. MusicXML 2.0.
Document Type Definition (DTD): http:
//musicxml.org/dtds, W3C XML Schema
Definition (XSD): http://musicxml.org/
xsd.

Mariusz Szwoch. 2008. Using MusicXML
to evaluate accuracy of OMR systems. In
Diagrammatic Representation and Inference:
Proc. Diagrams 2008, volume 5223 of Lec-
ture Notes in Computer Science, pages 419–
422. Springer Verlag, Berlin. Herrsching, Ger-
many, September 19-21, 2008.

Raffaele Vigliante. 2007. MusicXML: An
XML based approach to automatic musico-
logical analysis. In Proc. Digital Humanities
2007. Urbana-Champaign, IL, June 4-8, 2007.
Urbana-Champaign, IL, June 4-8, 2007.

Yamaha Corporation. 2009. Open Score For-
mat (OSF, ver. 1.0), packaging specification.
http://openscoreformat.sf.net/.

http://kainhofer.com/musicxml/
http://kainhofer.com/musicxml/
http://www.lilypond.org/
http://www.lilypond.org/
http://musicxml.org/dtds
http://musicxml.org/dtds
http://musicxml.org/xsd
http://musicxml.org/xsd
http://openscoreformat.sf.net/

	1 About the MusicXML test suite
	2 Structure of the test suite
	3 An example of a unit test
	4 Sample renderings
	5 Shortcomings of the MusicXML format
	5.1 Semantic ambiguities of MusicXML
	5.1.1 Only a syntactical definition
	5.1.2 Voice-Basedness
	5.1.3 Attributes
	5.1.4 Chords
	5.1.5 Lyrics
	5.1.6 Figured Bass
	5.1.7 Harp Pedal Diagrams

	5.2 Sub-optimal XML design
	5.2.1 Strict Order of XML Child Nodes
	5.2.2 Names of XML Elements Containing Pitch Information
	5.2.3 Metronome Marks and Non-Standard Key Signatures
	5.2.4 Shortcomings of DTD and XSD Formats
	5.2.5 Staff-assigned Elements

	5.3 Missing features in MusicXML 2.0
	5.3.1 Document-wide Header and Footer Lines
	5.3.2 No Information about Purpose of Credit Elements
	5.3.3 System Delimiters
	5.3.4 Cadenzas

	6 Issues in MusicXML translation to the LilyPond
	6.1 Musical Content vs. Graphical Representation
	6.2 Staff-Assigned Items
	6.3 Voice-Based vs. Measure-Based
	6.4 Page Layout
	6.5 Workarounds in MusicXML Files

	7 Conclusion
	References

