Real-Time Kernel For Audio and Visual Applications

John Kacur
Red Hat
19243, Wittenburg
Germany

jkacur@gmail.com

Abstr act

Abstract: Many of the Linux Distributions that are
dedicated to audio and video make use of the
Linux real-time kernel. This paper explores some
of the advantages and disadvantages of using real-
time. It explains how the real-time kernel achieves
low-latency and shows how user-space can take
advantage of real-time capabilities. This talk is
presented by one of the real-time kernel
programmers, and gives an overview of the real-
time kernel for audio and video.

Keywords

real-time, linux kernel

1 Introduction

Linux distributions dedicated to audio and video
were some of the first distributions to ship the
Linux real-time kernel to a general audience.
Software such as Jack and Ardour among many
other programs are designed to take advantage of
real-time capabilities. The standard Linux Kernel
has the facillities to do priority based scheduling,
but for optimum low latency, the PREEMPT_RT
kernel is required. Indeed many features of the
PREEMPT_RT kernel have already been
integrated into the standard kernel as an option,
most notibaly soft and hard threaded irgs.
Debugging features such as ftrace and lockdep also
were originally designed for the real-time kernel.
This paper will explore how the real-time Linux
Kernel achieves such low latency, how to
configure a system to take advantage of the
capabilities it offers, and an introdution to the
programming interface from user-space.

2 What is real-time?

When we talk about real-time systems, the most

important feature is predictability or determinism.
Often people who are new to real-time think it is
about raw speed, but this isn't so. Real-time
actually sacrifices some throughput performance
in-order to achieve predictability and low latency
where it is deemed important. A standard kernel
will achieve better throughput on average, but a
process may run very quickly some of the time but
be delayed the rest of the time.. In contrast a real-
time system will be less “bursty”, but have
predictable performance. The measurement of the
degree that time deviates from the average is
called jitter, and it is this jitter that is greatly
reduced with real-time.

The PREEMPT-RT kernel achieves
predictability by ensuring that no operation takes
more than 100 microseconds. In some cases the
latency is as low as 50 microseconds which is
close to the capabilities of the hardware. The low
latency is important for high priority processes to
accomplish what is required of them on time. By
this, we mean the process must do what is required
neither too slowly, nor too fast. If you are playing
a note in a song, it is just as wrong for it to play
too late as it is for it to play too early.

Although some throughput is sacrificed for
determinism and low-latency, kernel programmers
are working to lower the throughput gap as well.

2.1 Hard real-time vs soft real-time

Surprisingly no single definition exists of hard-
real time. Hard real-time can be thought of as a
system that never misses it's deadlines, and a soft-
real-time system is one that sometimes can be
allowed to miss it's deadlines.

The reality is more like a spectrum between
these two poles. Since no hardware (or software
for that matter) is perfect, it is doubtful that the
ideal of hard real-time actually exists. So, the
interesting question is, what should the system do

if it misses a deadline? For example, if a deadline
is missed, should an event be cancelled or
delivered late? If we are talking about video, it is
often okay to drop some frames without it being
noticeable, so that would be a case where we could
cancel meeting a deadline. In cases where we are
controlling a machine, it might actually be useless
to deliver an event that controls, say a motor after
it is too late.

Sometimes a softer version of hard real-time is
acceptable. An audio application may have a
desired latency of 5 milliseconds, but can
occasionally be allowed to miss this deadline, but
only if it isn't more than 10 milliseconds. [1}

2.1.1 What is PREEMPT_RT?

PREEMPT_RT is a real-time solution for Linux
in which almost everything in the kernel is
preemptable. The standard Linux kernel has an
option called Preemtible Kernel (Low-Latency
Desktop) PREEMPT_DESKTOP, in which all
kernel code that is not in a critical section, that
means protected by locks, is involuntarily
preemtible. The PREEMPT_RT option extends
this to make even most critical sections
involuntarily preemtible. It does this by replacing
kernel spinlocks with rt-mutexes. In addition rt-
mutexes are supported by priority inheritance —
more on that latter

PREEMPT_RT includes threaded soft and hard
irq interrupts — this is now an option in the
standard kernel. By making interrupts threaded,
they are also now preemtible, they can be
scheduled just like any other process, and can be
given a priority, which can undergo priority
inheritance if necessary.

Another critical component of a real-time
system developed for PREEMPT_RT is high
resolution timers.

Finally, many tracing and verification features
such as ftrace and lockdep were originally
developed for PREEMPT_RT, but are now part of
the standard kernel.

21.2 How doesPREEMPT_RT work?

First some background: Voluntary preemption is
when kernel code can choose at preselected points
in the code to be preempted by higher priority
processes. Involuntary preemption is when the
scheduler can force a process to stop running in
order to allow a higher priority process to run.

The Linux Kernel is designed to run on SMP
(Symmetric Multiprocessing) systems. This means
that code must safely run on multiprocessors. In
order for this to work properly, kernel
programmers must identify critical sections.
Critical sections are code with data that could be
corrupted if it were suddenly interrupted, and later
rerun on the same or a different processor. In order
to protect this data, various types of locks are used.
The most prevelant kind of lock is a spinlock. It
works by simply waiting (spinning) while another
process holds the lock to a critical section. When
hopefully a short time later the lock is released, the
waiting process can then grab the lock and
continue to work. PREEMPT_DESKTOP can
preempt most code, but not code that is running a
critical section — that is locked code.

PREEMPT_RT works by converting most
spinlocks into sleeping spinlocks, which in turn
can be preempted. If you need a lock that can't
sleep on -rt, then you identify it by making it a
raw_spinlock. Obviously the goal is to have the
bare minimum of these raw_spinlock as necessary,
since they reduce the areas of code that are
preemtible.

21.3 What is Priority Inversion and Priority
Inheritance?

Priority Inversion occurs when a lower priority
task runs at the expense of a higher priority task.
Here is one of the simplest ways in which this can
occur:

Imagine you have a high priority task A with a
resource needed by an even high priority task B.
Task B must block until task A frees it's resource.
Then imagine a task C with a priority between A
and B. Because the priority of C is higher than that
of A, it preempts A and steals the processor. Thus
we have process C running at the expense of the
higher priority task B The solution that
PREEMPT_RT provides to deal with this siutation
is called priority inheritance. Priority Inheritance
works by having higher priority tasks temporarily
lending their prirority to lower priority tasks that
hold resources that they require. So in the situation
described here, task B would lend it's priority to
task A, and A's prirority would rise to the same
level as A's. That way task C would not be allowed
to preempt A. Task A would run until it freed the
resource required by B. B would then be scheduled
to run, and A would return to it's original priority.

Time flows in this direction

Task B requires
resource R, so
it blocks until A
frees R

Task C preempts
Aand runs even
though it has a
priority less than B

Task A starts to run
and grabs resource R

Fig.1. Without priority inversion, C preempts A
and runs at the expensive of higher priority B

Time flows in this direction

After A release resource R, A
returns to priority =10, B is
no longer blocked on R and
can preemptA

Task B requires
resource R, so
it blocks until A
frees R. It lends it's

priority to A
Aruns with . i
priority = 30 Task C waits until
until it releases Higher priority process B
resource R releases the processor

Task A starts to run
and grabs resource R

Fig.2. With priority inversion, B lends it's priority to A
until A frees resource R, allowing B to run

3 Configuring real-time

3.1 Fetching, building and configuring the
kernel

Some of the audio distributions are a little
slower than the mainline distributions to update.
So, if you need the latest hardware support, or
simply want to try out the latest and greatest
kernel, you may have to fetch, compile and install
it by hand. Here's how to do so.

You can fetch the latest rt-patch (and archived
ones as well) from:
http://www.kernel.org/pub/linux/kernel/projects/rt/

The latest one when I wrote this document
(March 2010) was patch-2.6.33.1-rt10.bz2

From the name we can tell that it patches linux-
2.6.33 with the stable patch linux-2.6.33.1 so we
will need to fetch those as well.

wget
http://www.kernel.org/pub/linux/ke
rnel/v2.6/1linux—2.6.33.tar.bz?2

wget
http://www.kernel.org/pub/linux/ke
rnel/v2.6/patch-2.6.33.1.bz2

wget
http://www.kernel.org/pub/linux/ke

rnel /projects/rt/patch-2.6.33.1-
rtl0.bz2

Now untar and apply the patches

tar xjf linux-2.6.33.tar.bz2

cd linux-2.6.33

bunzip2 -c ../patch-2.6.33.1.bz2 |
patch -pl

bunzip2 -c ../patch-2.6.33.1-
rtl10.bz2 | patch -pl

The rt kernel is also available via git for those
who know how. For more information, see the rt-
users mailing list, or Rtwiki. (below)

linux—-rt—-users@vger.kernel.org
https: rt.wiki.kernel.org

You can base your configuration on your
distribution's configuration. Look in your /boot
directory for the config that matches your current
running kernel, or copy it from /proc/config.gz if
available as the real-time kernel's .config file. This

http://www.kernel.org/pub/linux/kernel/projects/rt/
https://rt.wiki.kernel.org/
mailto:inux-rt-users@vger.kernel.org
mailto:linux-rt-users@vger.kernel.org
http://www.kernel.org/pub/linux/kernel/projects/rt/patch-2.6.33.1-rt10.bz2
http://www.kernel.org/pub/linux/kernel/projects/rt/patch-2.6.33.1-rt10.bz2
http://www.kernel.org/pub/linux/kernel/projects/rt/patch-2.6.33.1-rt10.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/patch-2.6.33.1.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/patch-2.6.33.1.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.33.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.33.tar.bz2
http://www.kernel.org/pub/linux/kernel/projects/rt/patch-2.6.33.1-rt10.bz2

will save you from having to answer all the
questions when you run make menuconfig and
friends. A few choices are necessary for real-time.
Under “Processor type and features”, it is
important that you select Complete Preemption
(PREEMPT_RT) which will automatically select
Thread Softirgs (PREEMPT_SOFTIRQS) and
Thread Hardirqgs (PREEMPT_HARDIRQS) for
you. Also recommended are
TREE_PREEMPT_ RCU, Tickless System
(Dynamic Ticks) (NO_HZ), and High Resolution
Timer Support (HIGH_RES_TIMERS). You can
also select FTRACE without any noticeable effect
on latency when not enabled. One more note of
caution, in the “General Setup” section, for
“Choose SLAB allocator”, you must choose SLAB
as SLUB is not currently supported.

3.2 Configuring your system

There are many possible ways this can be done,
but the key element is a way to specify either
which users or programs get real-time privileges.
One possible scheme is to create a group called
“realtime”, and make sure any user that requires
real-time privileges is assigned to it. Other
possible groups that are commonly used are
“audio”, or “jackuser”. The following creates the
group “realtime”, and adds username jkacur to it.

sudo groupadd realtime
sudo usermod -G realtime jkacur

3.2.1 /etc/security/limits.conf

Here we need to modify users or groups to give
them the privileges they require to run with real-
time priorities, without being superuser.

Typical values would be.

@realtime soft cpu unlimited
@realtime - rtprio 100
@realtime - nice -20
@realtime - memlock unlimited

These allow users that belong to the realtime group
to run with unlimited cpu time, the maximum real-
time priority, the maximum nice value, and to lock
unlimited amounts of memory. You may have to
reboot your system before these changes take
effect.

3.2.2 [proc/sygkernel/sched rt_runtime_us
/proc/sys/kernel/sched rt_period us

The default values here are:

sched_rt_period_us 1000000
sched_rt_runtime_us 950000

The first value is the amount of time in
microseconds that represents 100% of the CPU
bandwidth. [3] The second value is the amount of
time in microseconds that real-time processes are
allowed to run. This means that 1000000 - 950000
= 50000 microseconds or 0.05 seconds are
reserved for non-realtime tasks, in other words for
SCHED_OTHER tasks to run. This is a soft-real-
time behaviour, designed to protect you against
runaway real-time processes that could hijack your
system. You should definitely leave this at the
default setting for testing. However, when you are
ready to go to production, and want something
closer to hard-realtime behaviour, you can set
sched_rt_runtime_us to -1. This will now allow
real-time tasks to monopolize the processor 100%
of the requested time. Once again, use caution
here, because this means that a misbehaving user-
space program can make your system unuseable.

To change the setting, do:

sudo —-c¢ 'echo -1 >
/proc/sys/kernel/sched_rt_runtime_
us'

323 IRQs

Now that IRQs are threads, they can be given a
priority. An -rt distribution will set these values
with a start-up script. However, for optimum
performance, and because of differences between
your particular hardware, you may want to tune
these values.

To see the current values on your system, use ps
with the -o which is the option to control the
output. We will select, pid, cls for the scheduling
class, see table below

CLS Scheduling Class reported from ps

- not reported
TS SCHED_OTHER
FF SCHED_FIFO

RR SCHED_RR

? unknown value

Table 1.

rtprio for the real-time priority, prio for the
priority, nice, and finally the cmd. [2]

For example, on an untuned vanilla distribution
running a real-time kernel, looking at the tasklets
which are similar to the bottom halves of
traditional interrupts: (that is, the part of the
interrupt that is scheduled to run later than the part
that is serviced right away)

$ ps —elLo

pid,cls, rtprio,pri,nice,cmd | grep
-1 tasklet

10 FF 49 89 - [sirg-tasklet/0]
25 FF 49 89 - [sirg-tasklet/1]

These values can be changed using the chrt
command. Chrt changes or retrieves the real-time
scheduling attributes of a process or task. It is
usually installed by default on most distributions.
It is part of the util-linux-ng package.

Tasklets should run higher than most real-time
processes so 82 would be a reasonable value to set
them to on this machine. [4]

To change the above.

$ su —-c "chrt -f -p 82 10"
$ su —¢ "chrt -f -p 82 25"

$ ps —eo

pid, cls, rtprio,pri,nice,cmd | grep
-i tasklet

10 FF 82 122 - [sirg-tasklet/0]
25 FF 82 122 - [sirg-tasklet/1]

In general hardirgs (hardware interrupts) should be
set slightly higher than the soft-interrupts (which
you recognize by ‘“sirq”). With tasklets at 82, 85
would be a reasonable priority for hardirgs.

Certain threads have the highest real-time
priority, of 99

ps —eo pid,cls,rtprio,pri,nice,cmd
| grep -1 ff | grep 99

3 FF 99 139 - [migration/0]

14 FF 99 139 - [posixcputmr/0]
15 FF 99 139 - [watchdog/0]

17 FF 99 139 - [migration/1]

18 FF 99 139 - [posixcputmr/1]
29 FF 99 139 - [watchdog/1]

These are critical to the system, and it is not
recommented that userspace real-time process
compete with them. Some papers suggest, and
some distributions and scripts set the audio and
video processes to run between the highest
priorities and that of the tasklets and hardirgs. For
this to work well, the audio and video processes
would have to be very well written and run with
real-time priorities for very short periods. I would
suggest that audio and video run at the highest
priority just under the tasklets. Given the scheme
presentented here, 80 would be a good value.

@audio - rtprio 80
@audio - nice =20

This should give the audio / video processes high
enough priorities to achieve very low latency
without interfereing with any systerm critical real-
time processes, which in turn could degrade the
overall perforance of a system.

4 Tests, Benchmarks, measuring

4.1 Rt-tests

Rt-tests is a suite of tests to stress various parts
of the real-time kernel. The core of it is cyclictest
written by Thomas Gleixner. It is now being
maintained by Clark Williams, and can be fetched
via git here:
git://git.kernel.org/pub/scm/linux/kernel/git/clrkwll
ms/rt-tests.git

The idea behind cyclictest is simply to fire off a
number of high resolution timers from real-time
threads and measure the difference between the
time the timer is supposed to conclude and the
time that it actually concludes. cyclictest can be
used to measure your system's minimum, average
and maximum latencies, and can thus be useful for
tuning. Here is a typical run, just accepting the
defaults.

./cyclictest

defaulting realtime priority to 2
policy: fifo: loadavg: 0.13 0.06
0.01 1/319 6879
T: 0 (6879) P:
Min: 16 Act:
Max: 298

2 I:1000 C: 7889
117 Avg: 107

The above shows two fifo threads, running at
priority 2. The timer is firing at intervals of 1000
nanoseconds. (1 microsecond). So far, 7889 cycles
occurred.

The results were a minimum latency of 16
microseconds, and average latency of 107
microseconds, and a maximum of 298.

4.2 hwlatdetect and SMIs

Hwlatdetect is a tool supplied with rt-tests to try
to detect unexplained hardware latencies. One
source of hardware latencies that we have very
little influence over is SMIs — System
Management Interrupts. These interrupts cannot be
handled by software and can last tens of
microseconds. It can be very dangerous for the
stability of your hardware to attempt to turn them
off too, because they often are in charge of such
functions as making sure that your cpu doesn't
overheat. In some cases with extreme caution, if
your BIOS allows you to, you can turn some of
them off. In some cases the SMI routines have
been poorly written and the best we can do is bring
to the attention of hardware makers that an SMI on
a particular piece of hardware is taking an
excessive amount of time.

Hwlatdetect works in cooperation with the
hwlat_detect. ko kernel module. This kernel
module comes as a standard feature in recent rt
kernels. It tries to detect SMIs by monopolizing a
cpu for a long time, with interrupts disabled. Since
the only thing that could interrupt such a cpu is an
SMI, any gaps detected in the time that hwlatdetect
calls stop_machine are thus likely due to SMIs.

4.3 Rteval

Rteval is a program for evaluating the latency
and performance of your system. The idea is
simply to stress your system with some standard
linux benchmarks such as dbench and hackbench,
to see if they have an effect on the real-time
capabilities of your system as measured by
cyclictest.

You can fetch it via git here:

git://git.kernel.org/pub/scm/linux
/kernel/git/clrkwllms/rt-tests.git

5 Userspace Programming, a whirlwind tour
and a caution.

What does a real-time program look like in
userspace? Surprisingly simple. Of course it is a
real art to identify which processes need to run
with real-time priorities, and in most cases it is
optimal to run with a higher priority for the
minimum amount of time necessary.

Here is a whirlwind tour of some of the calls.

To raise the priority of a process, you can use
standard POSIX calls such as:

sched_setscheduler (pid_t pid, int
policy, const struct sched param
*param)

This call sets both the policy (SCHED_FIFO in
the example below) and the priority. If the process
id is set to O, the parameters are applied to the
calling process.

For example. (error checking code omitted)

struct sched_param param;

struct sched_param *pparm =
¶m;

pparam—>sched_priority = 50;
sched_setscheduler (0, SCHED_FIFO,
pparam) ;

You can retrieve the current scheduling policy
with

sched_getscheduler (pid_t pid)

To retrieve or set the priority, you can use:

sched_getparam(pid_t pid, struct
sched_param *param)
sched_setparam (pid_t pid, const

struct sched_param *param)

To determine the minimum and maximum
priorities allowed for a particular scheduling
policy on your system, you can use:

int sched_get_priority_max(int
policy);

int sched_get_priority min(int
policy);

To prevent unexpected page faults of real-time
programs, it is common to lock all current and
future memory.

mlockall (MCL_CURRENT | MCL_FUTURE)

However, one caution, priority inheritance is
only supported by rt_mutexes in the kernel. In user
space this translates to pthread_mutexes. Ordinary
unix semaphores in user-space are not supported
by priority inheritance. The reason for this is, that
it is not possible (or easy in any case) to identify
the owner (pid) that blocked around a semaphore.

If you don't want to use pthread programming
but want support for priority inheritance, you can
create a lock wusing shared memory and a
pthread_mutex that the usual POSIX style process
calls can access. For an example of how this is
done, see pip_stress in the rt-test suite.

6 Conclusion

Linux is well suited as a low-latency real-time
operating system for audio and video. With a little
bit of back-ground knowledge, an end user can
tune his / her system for maximum performance
and real-time determinism. This paper should get
you well on your way to experimenting and tuning
your real-time Linux system for optimal audio and
video performance.

7 Acknowledgements

Ingo Molnar, Thomas Gleixner, Paul
McKenney, Steven Rostedt, Peter Zilstra and
countless others for creating PREEMPT_RT.

References

[1} Paul McKenney, 2007.

SMP and Embedded Rea Time, January 2007
Linux Journal, issue #153 — There are more
examples here illustrating the differences
between hard and soft real-time.

[2] http://subversion.ffado.org/wiki/IrgPriorities

does an excellent job and explaining how to set
irq priorities for real-time audio.

[3] See Documentation/scheduler/sched-rt-
group.txt in linux kernel source 2.6.33.1-rt1l or
later

[4] The suggested values are based on Red Hat's
MRG distribution.

Other Sources of information

“Real Time” vs “Real Fast”: How to Choose?

Paul McKenney, Eleventh Real-Time Linux
Workshoop, Dresden, 2009

Programming for the Real World, POSIX.4

Bill O.Gallmeister, O'Reilly & Associates, INC.
Copyright 1995

Web Resources

https://rt.wiki.kernel.org

Approaches to Real-time, Jon Corbet
http://lwn.net/Articles/106010/

Realtime preemption, part 2, Jon Corbet
http://Iwn.net/Articles/107269/

A real-time preemption overview, Paul McKenney
http://lwn.net/Articles/146861/

http://lwn.net/Articles/107269/
http://lwn.net/Articles/106010/
https://rt.wiki.kernel.org/
http://subversion.ffado.org/wiki/IrqPriorities

	1 Introduction
	2 What is real-time?
	2.1 Hard real-time vs soft real-time
	2.1.1 What is PREEMPT_RT?
	2.1.2 How does PREEMPT_RT work?
	2.1.3 What is Priority Inversion and Priority Inheritance?

	3 Configuring real-time
	3.1 Fetching, building and configuring the kernel
	3.2 Configuring your system
	3.2.1 /etc/security/limits.conf
	3.2.2 /proc/sys/kernel/sched_rt_runtime_us
/proc/sys/kernel/sched_rt_period_us
	3.2.3 IRQs

	4 Tests, Benchmarks, measuring
	4.1 Rt-tests
	4.2 hwlatdetect and SMIs
	4.3 Rteval

	5 Userspace Programming, a whirlwind tour and a caution.
	6 Conclusion
	7 Acknowledgements

