Sense/Stage - low cost, open source wireless sensor infrastructure for live performance and interactive, real-time environments

Marije A.J. Baalman, Vincent de Belleval, Harry Smoak Brett Bergmann, Christopher L. Salter Design and Computation Arts, Concordia University Joseph Malloch, Joseph Thibodeau, Marcelo M. Wanderley Input Devices and Music Interaction Laboratory (IDMIL), McGill University Montréal, Québec, Canada

Overview

» Overview

- Introduction and motivation
- SenseStage MiniBee

SenseWorld DataNetwork

Clients

Integration

Examples

- Introduction and motivation
- SenseStage MiniBee
- SenseWorld DataNetwork
- Clients
- Integration
- Examples
- Conclusions

What is Sense/Stage?

» Overview

Introduction and motivation	
» What is Sense/Stage?	
» Motivation	
SenseStage MiniBee	
SenseWorld DataNetwork	
Clients	
Integration	
Examples	
Conclusion	

Research-creation project to develop hardware and software for use in live performance (theater, music, dance) and interactive environments.

Components:

- small, battery powered wireless PCB's for sensing and actuation,
- software for real-time sharing of data, and
- modules to analyse datastreams and generate complex dynamics for output media.

Motivation

» Overview

- Economic and technical constraints of live performance
- Lack of tools for artistic use
- Real world testing scenarios

Motivation

» Overview

Introduction and motivation » What is Sense/Stage? » Motivation SenseStage MiniBee SenseWorld DataNetwork Clients Integration Examples Conclusion

- Economic and technical constraints of live performance Limited time in rehearsals to use and test technology
- Lack of tools for artistic use
 Low cost, integration with common software environments
- Real world testing scenarios
 Application in professional productions, outside of the lab

» Overview

Introduction and motivation

SenseStage MiniBee

- » Design goals
- » SenseStage MiniBee
- » Inputs and outputs
- » Firmware

SenseWorld DataNetwork

Clients

Integration

Examples

Conclusion

SenseStage MiniBee

Design goals

» Overview

Introduction and motivation

SenseStage MiniBee

- » Design goals
- » SenseStage MiniBee
- » Inputs and outputs
- » Firmware
- SenseWorld DataNetwork
- Clients
- Integration
- Examples
- Conclusion

- Low cost
- Small form factor
- Flexible sensor configuration
- Usable for control of motors, LEDs, and other actuators
- Operable in large groups (10+ nodes)
- Long battery life
- Ease of use
- Programmable, so that the board can take care of more logic and processing of data, if desired by the user

SenseStage MiniBee

» Overview

Introduction and motivation

SenseStage MiniBee

» Design goals

» SenseStage MiniBee

» Inputs and outputs

» Firmware

SenseWorld DataNetwork

Clients

Integration

Examples

- Small size: 42mm x 35mm
- Based on Arduino Mini Pro
- Useable with XBee radio (mesh network)
- Unit cost price 32 CAD (excluding XBee)

Inputs and outputs

» Overview

Introduction and motivation

SenseStage MiniBee
» Design goals
» SenseStage MiniBee
» Inputs and outputs
» Firmware
SenseWorld DataNetwork
Clients
Integration
Examples
Conclusion

- 8 analog inputs (left side): A4 (SDA), A5 (SCL), A0, A1, A2, A3, A6, A7
- 11 digital inputs or outputs (right side): D3 to D13
- Serial I/O (top left): RX, TX
- Power input (between 3.3V and 5V) (left side bottom): RAW, GND
- Regulated power output (left side bottom inside): 3.3V, GND
- I2C communication, (left side top): SDA, SCL
- PWM output, (right side), D3, D5, D6, D9, D10, D11

Firmware

» Overview

Introduction and motivation

SenseStage MiniBee

- » Design goals
- » SenseStage MiniBee

» Inputs and outputs

- » Firmware
- SenseWorld DataNetwork
- Clients
- Integration
- Examples
- Conclusion

Firmware library supports:

- Analog sensors (connected to the analog input pins, e.g. resistive sensors, analog accelerometers, infrared distance sensors)
- Digital sensors (on/off, e.g. buttons and switches)
- LIS302DL accelerometer, using I2C
- Relative humidity and temperature sensor
- Ultrasound sensors
- PWM output (e.g. dimmable LEDs, motors)
- Digital output (on/off)

Firmware

» Overview

Introduction and motivation

SenseStage MiniBee

- » Design goals
- » SenseStage MiniBee

» Inputs and outputs

» Firmware

|--|

Clients

```
Integration
```

Conclusion

Wireless configuration of the firmware (compare to Firmata)

- Board reads the serial number of the XBee and sends it to the coordinator
- Coordinator assigns an ID and tells the board whether or not it will receive a new configuration
 - Board sends a message back that it is waiting
 - Coordinator sends configuration
- Board sends a summary of the current configuration (for the coordinator to verify)
- Board starts sending data

Firmware

» Overview

Introduction and motivation

SenseStage MiniBee

- » Design goals
- » SenseStage MiniBee
- » Inputs and outputs

» Firmware

|--|

Clients

```
Integration
```

Conclusion

Wireless configuration of the firmware (compare to Firmata)

- Board reads the serial number of the XBee and sends it to the coordinator
- Coordinator assigns an ID and tells the board whether or not it will receive a new configuration
 - Board sends a message back that it is waiting
 - Coordinator sends configuration
- Board sends a summary of the current configuration (for the coordinator to verify)
- Board starts sending data

Firmware can be customized for tasks not implemented in our library.

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

» SenseWorld DataNetwork

- » Motivation
- » Concept
- » Design criteria
- » Client connection
- » Auto-recovery

Clients

Integration

Examples

Conclusion

SenseWorld DataNetwork

SenseWorld DataNetwork

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork » SenseWorld DataNetwork

- » Motivation
- » Concept
- » Design criteria
- » Client connection
- » Auto-recovery

Clients

Integration

Examples

Conclusion

The aim of the SenseWorld DataNetwork is to facilitate

- sharing and
- manipulation of
- multiple data streams
- between collaborators
- in heterogeneous interactive performance environments

SenseWorld DataNetwork

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork » SenseWorld DataNetwork

- » Motivation
- » Concept
- » Design criteria
- » Client connection
- » Auto-recovery

Clients

Integration

Examples

Conclusion

The aim of the SenseWorld DataNetwork is to facilitate

- sharing and
- manipulation of
- multiple data streams
- between collaborators
- in heterogeneous interactive performance environments

Personal experience in interactive dance/theatre: sharing data between light, video, sound and sensing

SenseWorld DataNetwork

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork » SenseWorld DataNetwork

- » Motivation
- » Concept
- » Design criteria
- » Client connection
- » Auto-recovery

Clients

Integration

Examples

Conclusion

The aim of the SenseWorld DataNetwork is to facilitate

- sharing and
- manipulation of
- multiple data streams
- between collaborators
- in heterogeneous interactive performance environments

Personal experience in interactive dance/theatre: sharing data between light, video, sound and sensing

Other frameworks:

- Mapper of the Digital Orchestra project
- KeyWorx

Motivation

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

» SenseWorld DataNetwork

» Motivation

» Concept

- » Design criteria
- » Client connection
- » Auto-recovery

Clients

Integration

Examples

- OpenSoundControl provides a low level communication protocol
- and is used by many programs for interactive media (e.g. SuperCollider, Max/MSP, PureData, Processing, ...)
- But there is no higher level protocol to facilitate the communication

Motivation

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

» SenseWorld DataNetwork

» Motivation

» Concept

- » Design criteria
- » Client connection
- » Auto-recovery

Clients

Integration

Examples

Conclusion

- OpenSoundControl provides a low level communication protocol
- and is used by many programs for interactive media (e.g. SuperCollider, Max/MSP, PureData, Processing, ...)
- But there is no higher level protocol to facilitate the communication

Support *coordinated* collaboration with real time data within a live performance context, involving multiple types of media

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

- » SenseWorld DataNetwork
- » Motivation

» Concept

- » Design criteria
- » Client connection
- » Auto-recovery

Clients

Integration

Examples

Design criteria

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

- » SenseWorld DataNetwork
- » Motivation
- » Concept

» Design criteria

- » Client connection» Auto-recovery
- Clients

Integration

- Examples
- Conclusion

- Any client should be able to subscribe to data
- Any client should be able to supply data
- Restore configuration quickly
- Usable within heterogeneous media software environments
- Enable collaboration between different design practices
- Enable efficiency of collaboration within the limited timeframe of rehearsals
- Integration with the wireless sensor network

Design criteria

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

- » SenseWorld DataNetwork
- » Motivation
- » Concept

» Design criteria

- » Client connection» Auto-recovery
- Clients

Integration

- Examples
- Conclusion

- Any client should be able to subscribe to data
- Any client should be able to supply data
- Restore configuration quickly
- Usable within heterogeneous media software environments
- Enable collaboration between different design practices
- Enable efficiency of collaboration within the limited timeframe of rehearsals
- Integration with the wireless sensor network

The framework defines an OSC-namespace for communication between host and clients, for exchanging and labeling data

Design criteria

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

- » SenseWorld DataNetwork
- » Motivation

» Concept

» Design criteria

- » Client connection
- » Auto-recovery

Clients

Integration

Examples

Conclusion

The framework defines an OSC-namespace for communication between host and clients, for exchanging and labeling data

DataNetwork the network itself

DataNode a node is a collection of slots, usually based upon a device or another common source

DataSlot a slot is a single data stream

Client client program receiving and/or setting data

Client connection

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

» SenseWorld DataNetwork

» Motivation

» Concept

» Design criteria

» Client connection

» Auto-recovery

Clients

Integration

Examples

Conclusion

The host writes a textfile with the network's OSC port can be found in the file

http://192.168.1.7/SenseWorldDataNetwork

The host broadcasts an announce message

Client connection

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

- » SenseWorld DataNetwork
- » Motivation
- » Concept
- » Design criteria

» Client connection

» Auto-recovery

Clients

Integration

Examples

Conclusion

The host writes a textfile with the network's OSC port can be found in the file

http://192.168.1.7/SenseWorldDataNetwork

- The host broadcasts an announce message
- The client sends a register message
- The client has to reply to regularly sent ping messages to confirm its presence
- The client queries which nodes and slots are present

Client connection

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

- » SenseWorld DataNetwork
- » Motivation
- » Concept
- » Design criteria

» Client connection

» Auto-recovery

Clients

Integration

Examples

Conclusion

The host writes a textfile with the network's OSC port can be found in the file

http://192.168.1.7/SenseWorldDataNetwork

- The host broadcasts an announce message
- The client sends a register message
- The client has to reply to regularly sent ping messages to confirm its presence
- The client queries which nodes and slots are present
- The client subscribes to nodes/slots of interest
- The client can set data to nodes
- The client is informed of new or changed nodes that are created after registration

Auto-recovery

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

- » SenseWorld DataNetwork
- » Motivation
- » Concept
- » Design criteria
- » Client connection
- » Auto-recovery

Clients

Integration

Examples

Conclusion

Sometimes software and/or hardware is unexpectedly and fatally interrupted, even during rehearsals and performances.

Auto-recovery

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

» SenseWorld DataNetwork

- » Motivation
- » Concept
- » Design criteria
- » Client connection
- » Auto-recovery

Clients

Integration

Examples

Conclusion

Sometimes software and/or hardware is unexpectedly and fatally interrupted, even during rehearsals and performances.

The host writes a textfile with the network's OSC port can be found in the file

http://192.168.1.7/SenseWorldDataNetwork.

-> The client looks this file up, upon startup

Auto-recovery

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

- » SenseWorld DataNetwork
- » Motivation
- » Concept
- » Design criteria
- » Client connection
- » Auto-recovery

Clients

Integration

Examples

Conclusion

Sometimes software and/or hardware is unexpectedly and fatally interrupted, even during rehearsals and performances.

The host writes a textfile with the network's OSC port can be found in the file

http://192.168.1.7/SenseWorldDataNetwork.

- -> The client looks this file up, upon startup
- The host broadcasts an announce message
 - -> The client reacts with register message

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

» SuperCollider host and client

- » Processing client
- » Processing client
- » PureData client
- » C++ client library
- » Max/MSP client

Integration

Examples

Conclusion

Clients

SuperCollider host and client

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

» SuperCollider host and client

- » Processing client
- » Processing client
- » PureData client
- » C++ client library
- » Max/MSP client

Integration

Examples

Conclusion

Host:

x = SWDataNetwork.new; // define the network

x.createHost;

SuperCollider host and client

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

» SuperCollider host and client

» Processing client

» Processing client

» PureData client

» C++ client library

» Max/MSP client

Integration

Examples

Conclusion

Host:

x = SWDataNetwork.new; // define the network
x.createHost;

Client:

у =

```
SWDataNetworkClient.new("192.168.0.104","Marije");
y.makeGui;
y.addExpected( 100, "testnode", 5 );
```

```
y.setData( 100, [0,1,2,3,4] );
```

```
y.queryNodes; // query available nodes
```

```
y.subscribeNode( 101 ); // subscribe to node 101
```

SuperCollider host and client

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

» SuperCollider host and client

- » Processing client
- » Processing client
- » PureData client
- » C++ client library
- » Max/MSP client

Integration

Examples

nil			V	0 Db	W		60	OSC			(curre	ent va	alue o	f the slot			
Register	Unregister		Quer	y all	Quer	y expe	cted	Query nodes	- 0	luery	slots		Query	clients	Query subsc	riptions	Quei	ry setter
100 updateDT	65.178 Db	Mon	Bus	iub Get	26	<	100) updateDT	65.181	Db	Mon	Bus	Sub	Get 1	02 US2raw	65.466	Db	Mon
101 US1 raw	65.345 Db	Mon	Bus	iub Get	3	>	_) nil	0	Db	Mon	Bus	Sub	_	0 US2IdrRaw	0	Db	Mon
102 US2raw	65.463 Db	Mon	Bus	ub Get	3	<	$ \nabla$			1-24			Get	5)	1 a		ri n a
103 IR3raw	65.611 Db	Mon	Bus S	iub Get	2	>			0	Db	Mon	Bus	Sub	C	1 US2rangeHB 7	0	Db	Mon
104 IR4raw	65.374 Db	Mon	Bus	ub Get	2	> =		nil	0	Db	Mon	Bus	Sub		2 US2rangeLB	1 0	Db	Mon
105 glovesRaw	65.085 Db	Mon	Bus	iub Get	2	2		- 1212			1000000		Get	C)		0.020200	0.0010
105 shoes Raw	65 333 Db	Mon	Bus	ub Cet	2 1	5	Ť	3 nil	0	Db	Mon	Bus	Sub	Y				
107 albourd Paur	CS ADD DE	Man	Pue	ub Cat	-		\bigcirc	104		50			Get					
		mon	Dus 1	ub Ger	2		4	k nil	0	Db	Mon	Bus	Sub					
108 elbow2Raw	65.627 Db	Mon	Bus	ub Get	2	2	$ \nabla$	1		1120	(iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii		Get					
109 kneel Raw	65.241 Db	Mon	Bus S	ub Get	2	>		5 nil	0	Db	Mon	Bus	Sub					
110 knee2Raw	65.644 Db	Mon	Bus	ub Get	2	>		- linit	0	Db	Man	Ruc	Get					
111 accell Raw	65.617 Db	Mon	Bus S	iub Get	3	>		, <u>im</u>]			a on	Dus	Get					
112 accel2Raw	65.696 Db	Mon	Bus	iub Get	3 [>	, ·	nil	0	Db	Mon	Bus	Sub					
113 accel3Raw	65.369 Db	Mon	Bus	iub Get	4 [>	Q	14					Get					
114 accel4Raw	65.669 Db	Mon	Bus	ub Get	4 [>	8	3 nil	0	Db	Mon	Bus	Sub					
115 envir1 Raw	65.186 Db	Mon	Bus S	iub Get	9	>			1			-1	Get					
116 envir2Raw	65.146 Db	Mon	Bus	ub Get	9	>	-	nil	0	Db	Mon	Bus	Sub					
117 envir3Raw	65.657 Db	Mon	Bus	iub Get	9	5		-		DE	Max	Pure	Get					
118 envir4Raw	65 593 Db	Mon	Bus	ub Get	9	-		ulun]	0	08	Mon	BUS	Get					
120 manuarl Paul		Man	Pure 1	ub Cet	2		11	nil	0	Db	Mon	Bus	Sub					
120 paperriaw	103.419 00	mon	bus 3	un Get	8	_	0			1				5				

Processing client

» Overview

```
Introduction and motivation
```

SenseStage MiniBee

```
SenseWorld DataNetwork
```

Clients

```
» SuperCollider host and client
```

» Processing client

```
» Processing client
```

```
» PureData client
```

```
» C++ client library
```

```
» Max/MSP client
```

```
Integration
```

Examples

```
import datanetwork.*;
```

```
DNConnection dn; //DNConnection instance
DNNode node; //DNNode instance
```

```
void setup() {
    dn = new DNConnection(this, "192.168.0.104",
        dn.getServerPort("192.168.0.104"),
        6009, "p5Client");
    node = new DNNode(2000, 5, 0, "p5Node");
```

```
void stop() {
   dn.unsubscribeAll();
   dn.removeAll();
   dn.close();
```

Processing client

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

» SuperCollider host and client

» Processing client

» Processing client

» PureData client

```
» C++ client library
```

» Max/MSP client

Integration

Examples

```
void keyPressed() {
    if(key == 'r') dn.register();
    else if(key == 'q') dn.queryAll();
    else if(key == 'f') dn.subscribeNode(401);
    else if(key == 'd') dn.setData(node,
        new float[] { 4.0, 2.0, 1.0, 2.3, 4.4 } );
```

```
void dnEvent(String addr, float[] args) {
    print("Float: " + addr);
    for(int i = 0;i < args.length;i++)
        print(" "+args[i]);
    println();
}</pre>
```

PureData client

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

- » SuperCollider host and client
- » Processing client
- » Processing client
- » PureData client
- » C++ client library
- » Max/MSP client

Integration

Examples

Conclusion

dn.node - get data from node(s)

dn.makenode - supply data to a node

PureData client

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

» SuperCollider host and client

» Processing client

» Processing client

» PureData client

» C++ client library

» Max/MSP client

Integration

Examples

Conclusion

🕻 💿 dn.makenode-help.pd -	/home/nescivi/sha	are/SuperCollider/q	uarks/DataNetwork/Help/Clients/p 📀 🔗	×
ile Edit Put Find Windows	s Media			Help
dn.makenode The makenode object can se datanetwork. You have to s (here "PdClient"), a uniqu and the number of data "sl After you set up your make data slots with "dn.node" people on the datanetwork by referencing its unique	and data to the s specify the name le ID for your no lots" provided by mode, you can su objects as seen can also subscri ID.	senseworld of your patch ode (here 777), y the object. ubscribe to its here. Other ibe to your node		2
This abstraction learns t dn-host" object - this MU patcher. Similarly, the client nam	he host IP addre IST be included i e of the patch i	ess using the "pv In the parent Is shared between	pv dn-host 192.168.0.104	
all objects and must also	be included.		pv dn-clientName PdClient	
Send data as a list o a slot. pack 0 0 0 dn.makenode 759 3 Arguments: node id, r	s dn.node f floats. Each e Bang in right in "dn.node" (see a	lement correspond let re-initializa ubove)	is to es, as does bang sent to	
this node subscribes to dn.node 759 Argumen prepend set data here matches 0 0 0 0	b the node you ju ts: node id the data sent to	ust made! makenode	Print messages from the server r senseworld.local route /ping print SENSEWORLD	

Sense/Stage - wireless sensor infrastructure for realtime interactive environments - p. 21/33

C++ client library

DataNode * node;

DataNetwork * dn;

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

» SuperCollider host and client

» Processing client

» Processing client

» PureData client

```
» C++ client library
```

» Max/MSP client

Integration

Examples

```
dn = new DataNetwork();
dn->createOSC( "127.0.0.1", 7000, "libdn" );
dn->registerMe();
dn->query();
dn->subscribeNode( 5, true );
dn->createNode( 4, "world", 5, 0, true );
float dummydata[] = \{0.1, 0.3, 0.4, 0.5, 0.6\};
node = dn->getNode( 4 );
node->setData( 5, dummydata);
node->send( true );
```

Max/MSP client

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

» SuperCollider host and client

» Processing client

» Processing client

» PureData client

» C++ client library

» Max/MSP client

Integration

Examples

Conclusion

dn.node - get data from node(s)

dn.makenode - supply data to a node

dn->dot - bridge from the datanetwork to the digital orchestra mapping tools

Max/MSP client

	o unnouennaxitelp
n.node	
sy interaction with the Sens	eStage Data Network!
pv dn-host 192.168.0.104	Arguments specify nodes to subscribe to. Bang in inlet re-initializes, as does "init" message sent to "dn.node".
dn.node 114	
114 149 127 124 120	
0.917647 0.85098 0.1	Digital Orchestra Toolbox
This photostion looses the heat I	R address
using the "pv dn-host" object - th	is MUST be dot.3dpolar 🛟
nondee in the parent paterier.	

Max/MSP client

LAC - May 1-4, 2010

init

s dn.node

\$

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

Integration

» Integration MiniBee and DataNetwork

Examples

Conclusion

Integration

Integration MiniBee and DataNetwork

SenseStage MiniBee

SenseWorld DataNetwork

Clients

Integration » Integration MiniBee and DataNetwork

Examples

- Reading in data from the wireless nodes in the DataNetwork host
- Each MiniBee "node" corresponds to a DataNode
- Each sensor on the MiniBee corresponds to a DataSlot

Integration MiniBee and DataNetwork

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

Integration » Integration MiniBee and DataNetwork

Examples

- Reading in data from the wireless nodes in the DataNetwork host
- Each MiniBee "node" corresponds to a DataNode
- Each sensor on the MiniBee corresponds to a DataSlot
- Dialog for wireless configuration of nodes
- Storing current configuration of all nodes with DataNetwork setup

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

Integration

Examples

» Chronotopia

» JND/Semblance

» SenseStage Workshop

Conclusion

Examples

Chronotopia

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

Integration

Examples

» Chronotopia» JND/Semblance

» SenseStage Workshop

Conclusion

Chronotopia - a dance piece with the Attakkalari Centre for Movement (India), music from Matthias Duplessy, video from Christian Ziegler, interactive light installation controlled from SuperCollider

Sense/Stage - wireless sensor infrastructure for realtime interactive environments - p. 27/33

Chronotopia

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

Integration

Examples

» Chronotopia
 » JND/Semblance

» SenseStage Workshop

Conclusion

Chronotopia - a dance piece with the Attakkalari Centre for Movement (India), music from Matthias Duplessy, video from Christian Ziegler, interactive light installation controlled from SuperCollider

premiere at the Attakkalari India Dance Biennial in Bangalore (2 shows) and 2 other shows in India (Chennai, Heggodu) tour in March in Germany (Kassel, Frankfurt) and Sweden (Vara)

(video, performance Feb. 2009, in Bangalore, India)

Hardware: light matrix and handheld lights - camera based videotracking

- 6 control boards for 6 CCFL lights based on XBee-Arduino
- 3 handheld CCFL lights with SenseStage MiniBee

Chronotopia

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

Integration

Examples

» Chronotopia
 » JND/Semblance

» SenseStage Workshop

Conclusion

Chronotopia - a dance piece with the Attakkalari Centre for Movement (India), music from Matthias Duplessy, video from Christian Ziegler, interactive light installation controlled from SuperCollider

premiere at the Attakkalari India Dance Biennial in Bangalore (2 shows) and 2 other shows in India (Chennai, Heggodu) tour in March in Germany (Kassel, Frankfurt) and Sweden (Vara)

(video, performance Feb. 2009, in Bangalore, India)

Shared data: camera motion tracking, beat tracking, pitch tracking, light output data, frame timing

- 2 clients
- 15 datanodes
- with each 1 to 12 slots

JND/Semblance

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

Integration

Examples

» Chronotopia

» JND/Semblance

» SenseStage Workshop

Conclusion

JND/Semblance - a one-person installation piece by Chris Salter, Marije Baalman and Harry Smoak, interactive sound, light and vibration controlled from SuperCollider

public preview at Empac, Troy, NY, March 3-7, 2010 ISEA, Essen, August 2010; Today's Art, The Hague, September 2010

JND/Semblance

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

Integration

Examples

» Chronotopia

» JND/Semblance

» SenseStage Workshop

Conclusion

JND/Semblance - a one-person installation piece by Chris Salter, Marije Baalman and Harry Smoak, interactive sound, light and vibration controlled from SuperCollider

public preview at Empac, Troy, NY, March 3-7, 2010 ISEA, Essen, August 2010; Today's Art, The Hague, September 2010

Sensing:

- 24 pressure sensing pads made of paper
- 3 SenseStage MiniBees

JND/Semblance

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

Integration

Examples

» Chronotopia

» JND/Semblance

» SenseStage Workshop

Conclusion

JND/Semblance - a one-person installation piece by Chris Salter, Marije Baalman and Harry Smoak, interactive sound, light and vibration controlled from SuperCollider

public preview at Empac, Troy, NY, March 3-7, 2010 ISEA, Essen, August 2010; Today's Art, The Hague, September 2010

Sensing:

- 24 pressure sensing pads made of paper
- 3 SenseStage MiniBees

Shared data: light settings, paper sensing, derived data, amplitude tracking

- 2 clients
- 17 datanodes
- with each 1 to 24 slots

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

Integration

Examples

» Chronotopia

» JND/Semblance

» SenseStage Workshop

Conclusion

SenseStage workshop - one-week workshop at Concordia, using 25+ wireless sensor/actuation nodes and camera tracking, in which five projects were created by the participants.

(video, workshop presentations May 2009, Montreal, Canada)

http://sensestage.hexagram.ca/workshop/

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

Integration

Examples

» Chronotopia

» JND/Semblance

» SenseStage Workshop

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

Integration

Examples

» Chronotopia

» JND/Semblance

» SenseStage Workshop

Conclusion

SenseStage workshop - one-week workshop at Concordia, using 25+ wireless sensor/actuation nodes and camera tracking, in which five projects were created by the participants.

(video, workshop presentations May 2009, Montreal, Canada)

http://sensestage.hexagram.ca/workshop/

- up to 10 clients
- up to 80 datanodes
- with each 2 to 12 slots

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

Integration

Examples

» Chronotopia

» JND/Semblance

» SenseStage Workshop

Conclusion

SenseStage workshop - one-week workshop at Concordia, using 25+ wireless sensor/actuation nodes and camera tracking, in which five projects were created by the participants.

(video, workshop presentations May 2009, Montreal, Canada)

http://sensestage.hexagram.ca/workshop/

- up to 10 clients
- up to 80 datanodes
- with each 2 to 12 slots
- server was running for ca. 48 hours nonstop, with clients connecting and disconnecting, hardware nodes turning on and off

Current work

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

Integration

Examples

Conclusion

- » Current work
- » Future directions
- » Website
- » Acknowledgements

SenseStage MiniBee

- Board revision
- Extensive documentation
- Wireless bootloading
- Hopefully MiniBee for sale from second half of 2010

Current work

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

Integration

Examples

Conclusion » Current work

- » Future directions
- » Website
- » Acknowledgements

SenseStage MiniBee

- Board revision
- Extensive documentation
- Wireless bootloading
- Hopefully MiniBee for sale from second half of 2010

SenseWorld DataNetwork

- Addition of enabling requests for "derived" data, such as statistical analysis, smoothed data, etc.
- Further integration with the Digital Orchestra Toolset

Future directions

» Overview

Introduction and motivation	
-----------------------------	--

SenseStage MiniBee

SenseWorld DataNetwork

Clients

Integration

Examples

Conclusion

» Current work
 » Future directions

» Website

» Acknowledgements

Many data streams require methods and tools to deal with this real time data to make sense of the information and to create meaningful content with it.

- organisation and visualisation of data
- feature extraction (environmental/gestures)
- fusion of data streams
- correlations between data streams
- emergent dynamics

Development of tools integrated with the current infrastructure, as well as a lexicon of techniques.

Website

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

Integration

Examples

Conclusion

» Current work

» Future directions

» Website

» Acknowledgements

http://sensestage.hexagram.ca

Software available under the GNU/(L)GPL

Acknowledgements

» Overview

Introduction and motivation

SenseStage MiniBee

SenseWorld DataNetwork

Clients

Integration

Examples

Conclusion

» Current work

» Future directions

» Website

» Acknowledgements

Our collaborators: Mark Marshall, Nicholas Munoz, Elio Bidinost and all the "SenseStage Workshop" participants.

Funding by grants from the Social Sciences and Humanities Research Council of Canada (SSHRC),

Social Sciences and Humanities ada Research Council of Canada Canada

Fonds de recherche sur la société et la culture, Québec (FQRSC),

and the

Hexagram Institute for Research/Creation in Media Arts and Sciences, Montréal, QC, Canada.

