Emulating a combo organ
using Faust

Sampo Savolainen

LLAC 2010
Utrecht

- w — -— s T

n , | - n . - o
~ - r—
L] L @5 VoL LS 4 SNED | u

S —

s lUlHlllllllll.llll.Il

Yamaha YC-20

Designed circa 1969
One manual, 61 keys
“Levers” not actual drawbars

3 sections

= Section I (5 + 2 drawbars)
= Section II (4 drawbars) + brightness

= Bass manual (2 drawbars, bottom 17 keys)

Percussive drawbar, vibrato, touch vibrato

Oscillators

<

Y

Vibrato

Dividers

Y

Wave
transformer

Y

Keyboard

!

A

|
|
|
|
|
|
:
|
: Touch vibrato
|
|
|
|
1
|

Bus bars

Manual |

Balance
T—» Pre-amp (<

Y

Manual Il

Y

W Brightness

—\/W\/\/\J

Bass
manual

——

Y

Percussion

Y

Volume
pedal

—e Qutput

YC-20 block

diagram

Faust

= Functional AUdio STream

= A functional programming language designed for
signal processing

process(signal) = signal * input_gain : distortion;
input_gain = vslider(”gain” ...);

distortion(signal) = tanh(signal);

Faust

= The Faust compiler produces C++ code
= Jack client, LADSPA / VST plugin, etc.

= Faust can optimize the generated code using
different methods:

= Automatic vectorization (see LAC 2009)
= OpenMP parallelization (see LAC 2009)

= Work stealing scheduler (tomorrow at 12:15..)

Why use Faust?

= The divide-down architecture 1s 'always-on'

= Instead of routability and controllability, this requires
a large number of parallel fixed processes

= An organ synthesizer 1s DSP development, not CS
= Helps keep focus on the processing

= To try out Faust and test out the parallelization and
performance

The organ emulation

Not a polysynth but a generator + matrix mixer!

96 oscillators

204 RC filters

A matrix mixer (the keyboard)
Percussion envelope

Vibrato LFO

Mixing section

Oscillators |«

Vibrato

Y

Dividers

Y

Wave
transformer

Y

Keyboard |-----

!

vibrato

Emulated
architecture

= No horizontal aftertouch in
MIDI keyboards

Bus bars

= Pre-amp 1s just a mixer

Y Y

Y

Manual | Manual Il

manual

Y

Bass

L/WW\J Brightness

TV S—

Percussion| * Volume pedal can be done

Balance
T—> Pre-amp

s

Y

lu

—e Output

externally

Oscillators

= Main oscillators produce sawtooth waves

= Dividers are tlip-flops: they produce rectangles

= Oscillator anti-aliasing with PolyBLEPs

» Vilimiaki and Huovilainen 2007

= Not optimal quality but easy on the CPU

= True BLEP would require F

probably be fixed)

FT functions (will

PolyBLEP and branching

= Only two samples per discontinuity are reshaped

= Faust does not branch: all branches of an 'if' statement
are always calculated

= Thus the amount of PolyBLEPs/sec 1s a function of the
used sample rate

= Required amount 1s a function of oscillator frequency

= For a 500Hz rectangle at Fs=44.1k, not branching would
mean 352x PolyBLEPs per second than necessary

= Had to be implemented in C++ instead of Faust

Single osc + dividers

e |

* | ISAW . :
RECT ‘ :
: RECT
bias RECT

RECT RECT

RECT

RECT

= Common bias applies vibrato and pitch control

= Each oscillator produces both the voice and phase
information

= Dividers (marked RECT) contain a phase divisor and
a rectangle oscillator

Wave transformer

= Each generated voice 1s R highpass|
filtered individually

—— RC lowpass = RC highpass—

= Main oscillator 1s high- —RC lowpass | {RC highpass| -
passed

—— RC lowpass = RC highpass—

= Divider outputs are
both low and high-
passed

—{ RC lowpass = RC highpass—

—— RC lowpass | +={RC highpass}—

——= RC lowpass = RC highpass}—

—= RC lowpass = RC highpass}—

The keyboard

Each key 1s a seven contact switch (7PST)
Switches connect voices to bus bars

Enabling the bass switch separates the bass bus bars
from the main bus bars

Unconnected voices are filtered to emulate bleed
exhibited 1n the real instrument

A single bus bar

bus 1 = (key c0*c5 + key CO0*C5 + key d0*d5 + key DO*D5 + key eO*e5 + key fO*f5 +
key FO*F5 + key g0*g5 + key GO*G5 + key alO*a5 + key AO0O*A5 + key bO0*b5 +
key cl*c6 + key C1*C6 + key dl*dé6 + key D1*D6 + key el*eb)

* (1.0 - bass_engaged)

+ key fl*f6 + key F1*F6 + key gl*g6 + key G1*G6 + key al*a6 + key Al*A6 +
key bl*b6 + key c2*c7 + key C2*C7 + key d2*d7 + key D2*D7 + key e2*e7 +
key f2*f7 + key F2*F7 + key g2*g7 + key G2*G7 + key a2*a7 + key A2*A7 +
key b2*b7 + key c3*c8 + key C3*C8 + key d3*d8 + key D3*D8 + key e3*e8 +
key £3*f8 + key F3*F8 + key g3*g8 + key G3*G8 + key a3*a8 + key A3*A8 +
key b3*b8 + key c4*c8 + key C4*C8 + key d4*d8 + key D4*D8 + key ed*e8 +
key f4*f8 + key F4*F8 + key g4*g8 + key G4*G8 + key ad*a8 + key A4*A8 +
key bd4*b8 + key c5*c8;

bus 1 all = (¢5 + C5 + d5 + D5 + e5 + £5 + F5 + g5 + G5 + a5 + A5 + b5

+ c6 + C6 + d6 + D6 + e6) * (1.0 - bass engaged)
+ f6 + F6 + g6 + G6 + a6 + A6 + b6
+ c7 + C7 +d7 + D7 + e7 + £7 + F7 + g7 + G7 + a7 + A7 + b7
+ c8 + C8 + d8 + D8 + e8 + £f8 + F8 + g8 + G8 + a8 + A8 + bS8
+ c8 + C8 + d8 + D8 + e8 + f8 + F8 + g8 + G8 + a8 + A8 + b8
+ c8;
bus 1 bleed = bus 1 all - bus 1 bus bleed filter apply realism;

Voice sections

= Section I 1s trivial: there 1s no extra filtering

= Section II has a brightness control

= Bus bars are separated into high-passed and low-
passed streams

= Brightness controls a mix of the two
= Bass manual drawbars are mixes of multiple bus bars

= Not emulated perfectly — a simple lowpass 1s pretty
good though

Comparison - Section |

C2 played on 8' drawbar

Line marks analysis of
the emulation output

Crosses mark measured W f
harmonic peaks of the ¥

real organ W
Section I voices are WWWW

emulated nearly
perfectly

Comparison - Section i

C2 played on 8" drawbar,
full brightness)

Measured at the same
overall volume

Harmonics are within

3dB W
However, other notes

(C3 for example) line
up perfectly

o —

-0
—-10
—-20
20

Performance

= This much processing 1s inherently slow

= But the design leaves much room for parallelization
= ... which Faust should be good at

= Performance 1s sensitive to GCC flags

Performance numbers

Core2 T7400* Xeon**

DSP usage DSP usage
Scalar 53% 52%
Vectorized 35% 41%
Scheduler (2 cores) 25% 29%
Scheduler (3 cores) - 23%
Scheduler (4 cores) - 20%

Measured while running at 2.7ms latency, Fs=48kHz, buffer size 128
* 2.16GHz Core2 T7400 running 32-bit Ubuntu 9.10
*% 2 x 2Ghz Xeon dual core running 64-bit OS X 10.6.3

Things to improve

Section II filters are not pertect

Bass manual circuit 1s not truly emulated

The keyboard matrix should emulate passive mixing

= Voices connected to multiple bus bars

= Voices connected to a single bus bar through many key
switches (for example harmonics)

Streamlining

= Some filters might be unnecessary

= Use lookup tables for oscillators

Challenges with Faust

= No true branches — PolyBLEP had to be implemented
in C++

= Has been solved by compiling select() into true 1f()'s

= Could be improved by 1dentifying stateless functions
= And generalized to further optimize functions like:
tl(x) = (x > 0)
t2(x) = x"2 - fmod(x, 1.0)
f(x) = tl(x) * t2(x)

.. Challenges with Faust

= We need arrays!

= Coding the keyboard mixer was a PITA

= Generated code can not be optimized

= Compiling a complex project 1s slow
= Scalar 11s, vector 5 min, scheduler 8 min
= process() 1nto subroutines? Less register overload...

= Issues with vec and sch modes (solved partly)

.. Challenges with Faust

= Naming should be more strict, the following is
ambiguous but perfectly legal:

f(a, b) = a + b
with { a = b % b; };
= Compiler error messages can be very unhelpful

= 67kB error messages have been spotted

= Language documentation should be improved

Benefits of using Faust

= Functional programming 1s an excellent model for
signal processing

= Parallelization 1s the future!

= .. but realtime parallel programming requires a level
of expertise uncommon even for seasoned
programmers

= Let alone people whose career focus 1s in what these
programs actually do (the DSP)!

.. Benefits of using Faust

= Faust code 1s readable
gain(a) : distortion(f) : attenuation;
VS
attenuation(distortion(f, gain(a, signal)));

= SVG output is a very helpful tool

= Code re-use 1s a reality

= Combining C/C++ modules from different sources
often requires refactoring or runtime data
conversion

.. introducing

Foo YC-20

VDIUME BASS VOLUME REALISM VIBRATO VIE SPEED 16 8 manenss 16' i ! 3 : %' T eaamce emewr 16 8 .3 2' PERCUSSIVE
[S— T : ~ e | . i ,

FOOYC20

= Jack audio and MIDI
= MIDI for both notes and control

» Gtkmm/Cairo Ul

= Realism switch

=].0released ... now

Miscellaneous features

= Realism switch

= Off: nothing extra
= 2/4: slight oscillator detune

= 3/4:. percussion manual bleed
= 4/4. drawbar bleed

= Addition to the master output, there are separate
bass and treble section (sections I + II) outputs

Thanks for listening

= [would like to thank Petri Junno, Stéphane Letz,
Yann Orlarey, Thorsten Wilms, Torben Hohn,
Sakari Bergen, Edgar Aichinger

http://code.google.com/p/foo-yc20

http://code.google.com/p/foo-yc20

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

