
Work Stealing Scheduler for Automatic
Parallelization in FAUST

Linux Audio Conference

S. Letz, Y. Orlarey, D. Fober

GRAME
Centre national de création musicale

Utrecht, May 2 2010

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 1 / 46



Outline

1 Work Stealing Scheduler

2 Demo

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 2 / 46



FAUST compilation stack

New Work Stealing Scheduler

scalar code generator

vector code generator
(loop separation)

parallel code 
generator
(OpenMP 
directives)

parallel code 
generator

(Work Stealing 
Scheduler)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 3 / 46



FAUST compilation stack

How is the code generated?
Scalar code is compiled as a unique big loop
Vectorized code is compiled as separated smaller loops
communicating with vectors
Parallel code executes the graph of loops (= tasks) in parallel

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 4 / 46



FAUST compilation stack

How is the code generated?
Scalar code is compiled as a unique big loop
Vectorized code is compiled as separated smaller loops
communicating with vectors
Parallel code executes the graph of loops (= tasks) in parallel

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 4 / 46



FAUST compilation stack

How is the code generated?
Scalar code is compiled as a unique big loop
Vectorized code is compiled as separated smaller loops
communicating with vectors
Parallel code executes the graph of loops (= tasks) in parallel

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 4 / 46



FAUST compilation stack

How is the code generated?
Scalar code is compiled as a unique big loop
Vectorized code is compiled as separated smaller loops
communicating with vectors
Parallel code executes the graph of loops (= tasks) in parallel

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 4 / 46



FAUST compilation stack

How is the code generated?
Scalar code is compiled as a unique big loop
Vectorized code is compiled as separated smaller loops
communicating with vectors
Parallel code executes the graph of loops (= tasks) in parallel

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 4 / 46



Parallelizing the DAG

The computation DAG
Tasks are organized as a Direct Acyclic Graph
The graph is executed on a "vector size" that can be less or equal
to callback buffer size
Input buffers are consumed and output buffers are produced

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 5 / 46



Parallelizing the DAG

The computation DAG
Tasks are organized as a Direct Acyclic Graph
The graph is executed on a "vector size" that can be less or equal
to callback buffer size
Input buffers are consumed and output buffers are produced

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 5 / 46



Parallelizing the DAG

The computation DAG
Tasks are organized as a Direct Acyclic Graph
The graph is executed on a "vector size" that can be less or equal
to callback buffer size
Input buffers are consumed and output buffers are produced

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 5 / 46



Parallelizing the DAG

The computation DAG
Tasks are organized as a Direct Acyclic Graph
The graph is executed on a "vector size" that can be less or equal
to callback buffer size
Input buffers are consumed and output buffers are produced

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 5 / 46



Parallelizing the DAG

The computation DAG
Tasks are organized as a Direct Acyclic Graph
The graph is executed on a "vector size" that can be less or equal
to callback buffer size
Input buffers are consumed and output buffers are produced

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 5 / 46



Parallelizing the DAG

Using OpenMP
The DAG is sorted to express a sequence of parallel group of
tasks
OpenMP pragmas are then added at appropriate location
Synchronization points between parallel sections

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 6 / 46



Parallelizing the DAG

Using OpenMP
The DAG is sorted to express a sequence of parallel group of
tasks
OpenMP pragmas are then added at appropriate location
Synchronization points between parallel sections

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 6 / 46



Parallelizing the DAG

Using OpenMP
The DAG is sorted to express a sequence of parallel group of
tasks
OpenMP pragmas are then added at appropriate location
Synchronization points between parallel sections

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 6 / 46



Parallelizing the DAG

Using OpenMP
The DAG is sorted to express a sequence of parallel group of
tasks
OpenMP pragmas are then added at appropriate location
Synchronization points between parallel sections

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 6 / 46



Parallelizing the DAG

Using OpenMP
The DAG is sorted to express a sequence of parallel group of
tasks
OpenMP pragmas are then added at appropriate location
Synchronization points between parallel sections

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 6 / 46



Parallelizing the DAG

OpenMP model

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 7 / 46



Parallelizing the DAG

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 8 / 46



Parallelizing the DAG

OpenMP performances
Works quite well with Intel icc compiler
But not so well with gcc... (even not at all on OSX)
Expressed parallelism is not optimal (too much synchronization
points...)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 9 / 46



Parallelizing the DAG

OpenMP performances
Works quite well with Intel icc compiler
But not so well with gcc... (even not at all on OSX)
Expressed parallelism is not optimal (too much synchronization
points...)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 9 / 46



Parallelizing the DAG

OpenMP performances
Works quite well with Intel icc compiler
But not so well with gcc... (even not at all on OSX)
Expressed parallelism is not optimal (too much synchronization
points...)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 9 / 46



Parallelizing the DAG

OpenMP performances
Works quite well with Intel icc compiler
But not so well with gcc... (even not at all on OSX)
Expressed parallelism is not optimal (too much synchronization
points...)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 9 / 46



Parallelizing the DAG

OpenMP performances
Works quite well with Intel icc compiler
But not so well with gcc... (even not at all on OSX)
Expressed parallelism is not optimal (too much synchronization
points...)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 9 / 46



Explicit graph scheduling

Data-flow model
Input tasks are ready to be executed
Activations go from input to output following data dependencies
links
A given task can be executed when it’s inputs have been executed
We want to minimize the global execution time

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 10 / 46



Explicit graph scheduling

Data-flow model
Input tasks are ready to be executed
Activations go from input to output following data dependencies
links
A given task can be executed when it’s inputs have been executed
We want to minimize the global execution time

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 10 / 46



Explicit graph scheduling

Data-flow model
Input tasks are ready to be executed
Activations go from input to output following data dependencies
links
A given task can be executed when it’s inputs have been executed
We want to minimize the global execution time

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 10 / 46



Explicit graph scheduling

Data-flow model
Input tasks are ready to be executed
Activations go from input to output following data dependencies
links
A given task can be executed when it’s inputs have been executed
We want to minimize the global execution time

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 10 / 46



Explicit graph scheduling

Data-flow model
Input tasks are ready to be executed
Activations go from input to output following data dependencies
links
A given task can be executed when it’s inputs have been executed
We want to minimize the global execution time

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 10 / 46



Explicit graph scheduling

Data-flow model
Input tasks are ready to be executed
Activations go from input to output following data dependencies
links
A given task can be executed when it’s inputs have been executed
We want to minimize the global execution time

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 10 / 46



Static versus dynamic graph scheduling

Scheduling models
A lot has been written on the subject
Basically two different approaches:
- static scheduling: finding a "mapping" of tasks on the set of
cores before actual execution
- dynamic scheduling: doing the "mapping" at runtime

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 11 / 46



Static versus dynamic graph scheduling

Scheduling models
A lot has been written on the subject
Basically two different approaches:
- static scheduling: finding a "mapping" of tasks on the set of
cores before actual execution
- dynamic scheduling: doing the "mapping" at runtime

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 11 / 46



Static versus dynamic graph scheduling

Scheduling models
A lot has been written on the subject
Basically two different approaches:
- static scheduling: finding a "mapping" of tasks on the set of
cores before actual execution
- dynamic scheduling: doing the "mapping" at runtime

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 11 / 46



Static versus dynamic graph scheduling

Scheduling models
A lot has been written on the subject
Basically two different approaches:
- static scheduling: finding a "mapping" of tasks on the set of
cores before actual execution
- dynamic scheduling: doing the "mapping" at runtime

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 11 / 46



Static versus dynamic graph scheduling

Scheduling models
A lot has been written on the subject
Basically two different approaches:
- static scheduling: finding a "mapping" of tasks on the set of
cores before actual execution
- dynamic scheduling: doing the "mapping" at runtime

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 11 / 46



Static versus dynamic graph scheduling

Scheduling models
A lot has been written on the subject
Basically two different approaches:
- static scheduling: finding a "mapping" of tasks on the set of
cores before actual execution
- dynamic scheduling: doing the "mapping" at runtime

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 11 / 46



Static scheduling

Static model
Usually requires that the cost of task execution and
communication time in known in advance
More of theoretical interest

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 12 / 46



Static scheduling

Static model
Usually requires that the cost of task execution and
communication time in known in advance
More of theoretical interest

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 12 / 46



Static scheduling

Static model
Usually requires that the cost of task execution and
communication time in known in advance
More of theoretical interest

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 12 / 46



Static scheduling

Static model
Usually requires that the cost of task execution and
communication time in known in advance
More of theoretical interest

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 12 / 46



Dynamic scheduling

Dynamic model
Choice of task execution done at runtime
A set of worker threads to execute tasks
Worker threads have to find ready tasks, execute them and
propagate "activations"

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 13 / 46



Dynamic scheduling

Dynamic model
Choice of task execution done at runtime
A set of worker threads to execute tasks
Worker threads have to find ready tasks, execute them and
propagate "activations"

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 13 / 46



Dynamic scheduling

Dynamic model
Choice of task execution done at runtime
A set of worker threads to execute tasks
Worker threads have to find ready tasks, execute them and
propagate "activations"

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 13 / 46



Dynamic scheduling

Dynamic model
Choice of task execution done at runtime
A set of worker threads to execute tasks
Worker threads have to find ready tasks, execute them and
propagate "activations"

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 13 / 46



Dynamic scheduling

Dynamic model
Choice of task execution done at runtime
A set of worker threads to execute tasks
Worker threads have to find ready tasks, execute them and
propagate "activations"

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 13 / 46



Simple "one global queue" model

Simple "one queue" model
One global shared queue of "ready" tasks
When a task is executed, possibly push ready output tasks in the
queue
All idle threads try to Pop ready tasks from the queue
Needs lock-free access, a lot of contention on the global queue...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 14 / 46



Simple "one global queue" model

Simple "one queue" model
One global shared queue of "ready" tasks
When a task is executed, possibly push ready output tasks in the
queue
All idle threads try to Pop ready tasks from the queue
Needs lock-free access, a lot of contention on the global queue...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 14 / 46



Simple "one global queue" model

Simple "one queue" model
One global shared queue of "ready" tasks
When a task is executed, possibly push ready output tasks in the
queue
All idle threads try to Pop ready tasks from the queue
Needs lock-free access, a lot of contention on the global queue...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 14 / 46



Simple "one global queue" model

Simple "one queue" model
One global shared queue of "ready" tasks
When a task is executed, possibly push ready output tasks in the
queue
All idle threads try to Pop ready tasks from the queue
Needs lock-free access, a lot of contention on the global queue...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 14 / 46



Simple "one global queue" model

Simple "one queue" model
One global shared queue of "ready" tasks
When a task is executed, possibly push ready output tasks in the
queue
All idle threads try to Pop ready tasks from the queue
Needs lock-free access, a lot of contention on the global queue...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 14 / 46



Simple "one global queue" model

Simple "one queue" model
One global shared queue of "ready" tasks
When a task is executed, possibly push ready output tasks in the
queue
All idle threads try to Pop ready tasks from the queue
Needs lock-free access, a lot of contention on the global queue...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 14 / 46



Work Stealing Scheduler (1)

Principle
A well known algorithm used for instance in Cilk++ (an extension
to C/C++ for multithreaded parallel programs)
Aims at improving the simple model previously described
Has some interesting properties useful for fined-grained
parallelism

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 15 / 46



Work Stealing Scheduler (1)

Principle
A well known algorithm used for instance in Cilk++ (an extension
to C/C++ for multithreaded parallel programs)
Aims at improving the simple model previously described
Has some interesting properties useful for fined-grained
parallelism

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 15 / 46



Work Stealing Scheduler (1)

Principle
A well known algorithm used for instance in Cilk++ (an extension
to C/C++ for multithreaded parallel programs)
Aims at improving the simple model previously described
Has some interesting properties useful for fined-grained
parallelism

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 15 / 46



Work Stealing Scheduler (1)

Principle
A well known algorithm used for instance in Cilk++ (an extension
to C/C++ for multithreaded parallel programs)
Aims at improving the simple model previously described
Has some interesting properties useful for fined-grained
parallelism

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 15 / 46



Work Stealing Scheduler (1)

Principle
A well known algorithm used for instance in Cilk++ (an extension
to C/C++ for multithreaded parallel programs)
Aims at improving the simple model previously described
Has some interesting properties useful for fined-grained
parallelism

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 15 / 46



Work Stealing Scheduler (2)

Operations
One queue by thread (considered as "private")
The Work Stealing Queue has a "private" Push, LIFO Pop and a
"public" FIFO Pop operations
Each thread push ready tasks in it’s private queue
It get ready tasks from it’s private queue until empty
It can then "steal" tasks from other threads using their FIFO Pop
operation

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 16 / 46



Work Stealing Scheduler (2)

Operations
One queue by thread (considered as "private")
The Work Stealing Queue has a "private" Push, LIFO Pop and a
"public" FIFO Pop operations
Each thread push ready tasks in it’s private queue
It get ready tasks from it’s private queue until empty
It can then "steal" tasks from other threads using their FIFO Pop
operation

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 16 / 46



Work Stealing Scheduler (2)

Operations
One queue by thread (considered as "private")
The Work Stealing Queue has a "private" Push, LIFO Pop and a
"public" FIFO Pop operations
Each thread push ready tasks in it’s private queue
It get ready tasks from it’s private queue until empty
It can then "steal" tasks from other threads using their FIFO Pop
operation

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 16 / 46



Work Stealing Scheduler (2)

Operations
One queue by thread (considered as "private")
The Work Stealing Queue has a "private" Push, LIFO Pop and a
"public" FIFO Pop operations
Each thread push ready tasks in it’s private queue
It get ready tasks from it’s private queue until empty
It can then "steal" tasks from other threads using their FIFO Pop
operation

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 16 / 46



Work Stealing Scheduler (2)

Operations
One queue by thread (considered as "private")
The Work Stealing Queue has a "private" Push, LIFO Pop and a
"public" FIFO Pop operations
Each thread push ready tasks in it’s private queue
It get ready tasks from it’s private queue until empty
It can then "steal" tasks from other threads using their FIFO Pop
operation

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 16 / 46



Work Stealing Scheduler (2)

Operations
One queue by thread (considered as "private")
The Work Stealing Queue has a "private" Push, LIFO Pop and a
"public" FIFO Pop operations
Each thread push ready tasks in it’s private queue
It get ready tasks from it’s private queue until empty
It can then "steal" tasks from other threads using their FIFO Pop
operation

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 16 / 46



Work Stealing Scheduler (2)

Operations
One queue by thread (considered as "private")
The Work Stealing Queue has a "private" Push, LIFO Pop and a
"public" FIFO Pop operations
Each thread push ready tasks in it’s private queue
It get ready tasks from it’s private queue until empty
It can then "steal" tasks from other threads using their FIFO Pop
operation

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 16 / 46



Work Stealing Queue

Operations on the WSQ

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 17 / 46



Work Stealing Scheduler (3)

Properties
Less contention since each thread has its own queue
Each thread can follow a "computation path" until its end,
improving cache behaviour
The "stolen" tasks are the ones pushed first, they are "near the
inputs", thus they usually correspond to longer computation path

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 18 / 46



Work Stealing Scheduler (3)

Properties
Less contention since each thread has its own queue
Each thread can follow a "computation path" until its end,
improving cache behaviour
The "stolen" tasks are the ones pushed first, they are "near the
inputs", thus they usually correspond to longer computation path

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 18 / 46



Work Stealing Scheduler (3)

Properties
Less contention since each thread has its own queue
Each thread can follow a "computation path" until its end,
improving cache behaviour
The "stolen" tasks are the ones pushed first, they are "near the
inputs", thus they usually correspond to longer computation path

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 18 / 46



Work Stealing Scheduler (3)

Properties
Less contention since each thread has its own queue
Each thread can follow a "computation path" until its end,
improving cache behaviour
The "stolen" tasks are the ones pushed first, they are "near the
inputs", thus they usually correspond to longer computation path

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 18 / 46



Work Stealing Scheduler (3)

Properties
Less contention since each thread has its own queue
Each thread can follow a "computation path" until its end,
improving cache behaviour
The "stolen" tasks are the ones pushed first, they are "near the
inputs", thus they usually correspond to longer computation path

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 18 / 46



Work Stealing Scheduler (4)

Computation path

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 19 / 46



Compilation of the Work Stealing Scheduler

Why?
Since the graph is know in at compilation time, the WSS can be
compiled and "embedded" in the generated code
For each task after DSP computation, the code to propagate
activations only depends of the graph topology

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 20 / 46



Compilation of the Work Stealing Scheduler

Why?
Since the graph is know in at compilation time, the WSS can be
compiled and "embedded" in the generated code
For each task after DSP computation, the code to propagate
activations only depends of the graph topology

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 20 / 46



Compilation of the Work Stealing Scheduler

Why?
Since the graph is know in at compilation time, the WSS can be
compiled and "embedded" in the generated code
For each task after DSP computation, the code to propagate
activations only depends of the graph topology

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 20 / 46



Compilation of the Work Stealing Scheduler

Why?
Since the graph is know in at compilation time, the WSS can be
compiled and "embedded" in the generated code
For each task after DSP computation, the code to propagate
activations only depends of the graph topology

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 20 / 46



Compilation of the Work Stealing Scheduler (2)

ComputeThread method
Tasks are numbered
For a given task, its "activation" value (number of inputs) is
prepared
The DAG is compiled as a big switch/case block to be executed by
each thread
Each sub-block contains the actual DSP code and the "propagate
activations" code
Two additional tasks are added: a "work stealing" task and an
"end task"
Before entering the switch/case block, ready input tasks are
distributed among worker threads

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 21 / 46



Compilation of the Work Stealing Scheduler (2)

ComputeThread method
Tasks are numbered
For a given task, its "activation" value (number of inputs) is
prepared
The DAG is compiled as a big switch/case block to be executed by
each thread
Each sub-block contains the actual DSP code and the "propagate
activations" code
Two additional tasks are added: a "work stealing" task and an
"end task"
Before entering the switch/case block, ready input tasks are
distributed among worker threads

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 21 / 46



Compilation of the Work Stealing Scheduler (2)

ComputeThread method
Tasks are numbered
For a given task, its "activation" value (number of inputs) is
prepared
The DAG is compiled as a big switch/case block to be executed by
each thread
Each sub-block contains the actual DSP code and the "propagate
activations" code
Two additional tasks are added: a "work stealing" task and an
"end task"
Before entering the switch/case block, ready input tasks are
distributed among worker threads

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 21 / 46



Compilation of the Work Stealing Scheduler (2)

ComputeThread method
Tasks are numbered
For a given task, its "activation" value (number of inputs) is
prepared
The DAG is compiled as a big switch/case block to be executed by
each thread
Each sub-block contains the actual DSP code and the "propagate
activations" code
Two additional tasks are added: a "work stealing" task and an
"end task"
Before entering the switch/case block, ready input tasks are
distributed among worker threads

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 21 / 46



Compilation of the Work Stealing Scheduler (2)

ComputeThread method
Tasks are numbered
For a given task, its "activation" value (number of inputs) is
prepared
The DAG is compiled as a big switch/case block to be executed by
each thread
Each sub-block contains the actual DSP code and the "propagate
activations" code
Two additional tasks are added: a "work stealing" task and an
"end task"
Before entering the switch/case block, ready input tasks are
distributed among worker threads

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 21 / 46



Compilation of the Work Stealing Scheduler (2)

ComputeThread method
Tasks are numbered
For a given task, its "activation" value (number of inputs) is
prepared
The DAG is compiled as a big switch/case block to be executed by
each thread
Each sub-block contains the actual DSP code and the "propagate
activations" code
Two additional tasks are added: a "work stealing" task and an
"end task"
Before entering the switch/case block, ready input tasks are
distributed among worker threads

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 21 / 46



Compilation of the Work Stealing Scheduler (2)

ComputeThread method
Tasks are numbered
For a given task, its "activation" value (number of inputs) is
prepared
The DAG is compiled as a big switch/case block to be executed by
each thread
Each sub-block contains the actual DSP code and the "propagate
activations" code
Two additional tasks are added: a "work stealing" task and an
"end task"
Before entering the switch/case block, ready input tasks are
distributed among worker threads

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 21 / 46



Compilation of the Work Stealing Scheduler (2)

ComputeThread method
Tasks are numbered
For a given task, its "activation" value (number of inputs) is
prepared
The DAG is compiled as a big switch/case block to be executed by
each thread
Each sub-block contains the actual DSP code and the "propagate
activations" code
Two additional tasks are added: a "work stealing" task and an
"end task"
Before entering the switch/case block, ready input tasks are
distributed among worker threads

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 21 / 46



ComputeThread method

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 22 / 46



Compilation of the Work Stealing Scheduler (3)

Activation code for each connection type
When possible a task is chosen at the "direct" output
Ready tasks are Pushed into private WSQ
Atomic decrement the activation counter of output tasks with
several inputs (possibly getting one to execute...)
Otherwise WORK_STEALING_INDEX is returned and Work
Stealing task will be executed

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 23 / 46



Compilation of the Work Stealing Scheduler (3)

Activation code for each connection type
When possible a task is chosen at the "direct" output
Ready tasks are Pushed into private WSQ
Atomic decrement the activation counter of output tasks with
several inputs (possibly getting one to execute...)
Otherwise WORK_STEALING_INDEX is returned and Work
Stealing task will be executed

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 23 / 46



Compilation of the Work Stealing Scheduler (3)

Activation code for each connection type
When possible a task is chosen at the "direct" output
Ready tasks are Pushed into private WSQ
Atomic decrement the activation counter of output tasks with
several inputs (possibly getting one to execute...)
Otherwise WORK_STEALING_INDEX is returned and Work
Stealing task will be executed

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 23 / 46



Compilation of the Work Stealing Scheduler (3)

Activation code for each connection type
When possible a task is chosen at the "direct" output
Ready tasks are Pushed into private WSQ
Atomic decrement the activation counter of output tasks with
several inputs (possibly getting one to execute...)
Otherwise WORK_STEALING_INDEX is returned and Work
Stealing task will be executed

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 23 / 46



Compilation of the Work Stealing Scheduler (3)

Activation code for each connection type
When possible a task is chosen at the "direct" output
Ready tasks are Pushed into private WSQ
Atomic decrement the activation counter of output tasks with
several inputs (possibly getting one to execute...)
Otherwise WORK_STEALING_INDEX is returned and Work
Stealing task will be executed

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 23 / 46



Compilation of the Work Stealing Scheduler (3)

Activation code for each connection type
When possible a task is chosen at the "direct" output
Ready tasks are Pushed into private WSQ
Atomic decrement the activation counter of output tasks with
several inputs (possibly getting one to execute...)
Otherwise WORK_STEALING_INDEX is returned and Work
Stealing task will be executed

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 23 / 46



Compiling tasks activation code

Several outputs tasks (without other inputs)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 24 / 46



Compiling tasks activation code

Several outputs tasks (some without other inputs, some with other
inputs)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 25 / 46



Compiling tasks activation code

Several outputs tasks (with other inputs)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 26 / 46



Compilation of the Work Stealing Scheduler (4)

Special tasks
Work Stealing task aims to find a ready task in other threads
(possibly "busy-looping")
All output of the DAG are connected to the "end task"
When executed, end task returns from the thread

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 27 / 46



Compilation of the Work Stealing Scheduler (4)

Special tasks
Work Stealing task aims to find a ready task in other threads
(possibly "busy-looping")
All output of the DAG are connected to the "end task"
When executed, end task returns from the thread

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 27 / 46



Compilation of the Work Stealing Scheduler (4)

Special tasks
Work Stealing task aims to find a ready task in other threads
(possibly "busy-looping")
All output of the DAG are connected to the "end task"
When executed, end task returns from the thread

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 27 / 46



Compilation of the Work Stealing Scheduler (4)

Special tasks
Work Stealing task aims to find a ready task in other threads
(possibly "busy-looping")
All output of the DAG are connected to the "end task"
When executed, end task returns from the thread

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 27 / 46



Compilation of the Work Stealing Scheduler (4)

Special tasks
Work Stealing task aims to find a ready task in other threads
(possibly "busy-looping")
All output of the DAG are connected to the "end task"
When executed, end task returns from the thread

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 27 / 46



Special tasks

Work stealing and end tasks

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 28 / 46



Compilation of the Work Stealing Scheduler (5)

Compute method
Called by "master thread"
Init graph state (activations)
Wakes up worker threads, also participates
After computation, synchronization code to wait for all worker
threads to finish

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 29 / 46



Compilation of the Work Stealing Scheduler (5)

Compute method
Called by "master thread"
Init graph state (activations)
Wakes up worker threads, also participates
After computation, synchronization code to wait for all worker
threads to finish

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 29 / 46



Compilation of the Work Stealing Scheduler (5)

Compute method
Called by "master thread"
Init graph state (activations)
Wakes up worker threads, also participates
After computation, synchronization code to wait for all worker
threads to finish

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 29 / 46



Compilation of the Work Stealing Scheduler (5)

Compute method
Called by "master thread"
Init graph state (activations)
Wakes up worker threads, also participates
After computation, synchronization code to wait for all worker
threads to finish

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 29 / 46



Compilation of the Work Stealing Scheduler (5)

Compute method
Called by "master thread"
Init graph state (activations)
Wakes up worker threads, also participates
After computation, synchronization code to wait for all worker
threads to finish

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 29 / 46



Compilation of the Work Stealing Scheduler (5)

Compute method
Called by "master thread"
Init graph state (activations)
Wakes up worker threads, also participates
After computation, synchronization code to wait for all worker
threads to finish

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 29 / 46



Compute method

Called by "master " thread

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 30 / 46



Compilation of the Work Stealing Scheduler (6)

Init method
Creates worker threads, put them in sleep mode
Worker threads will inherit "compute method" thread scheduling
properties and priorities

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 31 / 46



Compilation of the Work Stealing Scheduler (6)

Init method
Creates worker threads, put them in sleep mode
Worker threads will inherit "compute method" thread scheduling
properties and priorities

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 31 / 46



Compilation of the Work Stealing Scheduler (6)

Init method
Creates worker threads, put them in sleep mode
Worker threads will inherit "compute method" thread scheduling
properties and priorities

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 31 / 46



Compilation of the Work Stealing Scheduler (6)

Init method
Creates worker threads, put them in sleep mode
Worker threads will inherit "compute method" thread scheduling
properties and priorities

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 31 / 46



More parallelism (1)?

Pipelining
Some graph are sequential by nature
Pipelining idea : duplicating each task several times
Connecting with the appropriate outputs
Each "sub-task" to be run on a slice of the buffer
Recursive and non-recursive tasks are treated differently
Still to be tested...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 32 / 46



More parallelism (1)?

Pipelining
Some graph are sequential by nature
Pipelining idea : duplicating each task several times
Connecting with the appropriate outputs
Each "sub-task" to be run on a slice of the buffer
Recursive and non-recursive tasks are treated differently
Still to be tested...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 32 / 46



More parallelism (1)?

Pipelining
Some graph are sequential by nature
Pipelining idea : duplicating each task several times
Connecting with the appropriate outputs
Each "sub-task" to be run on a slice of the buffer
Recursive and non-recursive tasks are treated differently
Still to be tested...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 32 / 46



More parallelism (1)?

Pipelining
Some graph are sequential by nature
Pipelining idea : duplicating each task several times
Connecting with the appropriate outputs
Each "sub-task" to be run on a slice of the buffer
Recursive and non-recursive tasks are treated differently
Still to be tested...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 32 / 46



More parallelism (1)?

Pipelining
Some graph are sequential by nature
Pipelining idea : duplicating each task several times
Connecting with the appropriate outputs
Each "sub-task" to be run on a slice of the buffer
Recursive and non-recursive tasks are treated differently
Still to be tested...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 32 / 46



More parallelism (1)?

Pipelining
Some graph are sequential by nature
Pipelining idea : duplicating each task several times
Connecting with the appropriate outputs
Each "sub-task" to be run on a slice of the buffer
Recursive and non-recursive tasks are treated differently
Still to be tested...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 32 / 46



More parallelism (1)?

Pipelining
Some graph are sequential by nature
Pipelining idea : duplicating each task several times
Connecting with the appropriate outputs
Each "sub-task" to be run on a slice of the buffer
Recursive and non-recursive tasks are treated differently
Still to be tested...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 32 / 46



More parallelism (1)?

Pipelining
Some graph are sequential by nature
Pipelining idea : duplicating each task several times
Connecting with the appropriate outputs
Each "sub-task" to be run on a slice of the buffer
Recursive and non-recursive tasks are treated differently
Still to be tested...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 32 / 46



Pipeling the graph

Example of graph rewriting

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 33 / 46



More parallelism (2)?

Bottleneck-task duplication ?
Some tasks have "bottleneck" behaviour
Could be interesting to just duplicate them, (executing them
several times in different threads...)
Less synchronization points, thus better global results
Need to find a proper a method to find out those tasks
More generally we need to explore "graph rewriting" techniques

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 34 / 46



More parallelism (2)?

Bottleneck-task duplication ?
Some tasks have "bottleneck" behaviour
Could be interesting to just duplicate them, (executing them
several times in different threads...)
Less synchronization points, thus better global results
Need to find a proper a method to find out those tasks
More generally we need to explore "graph rewriting" techniques

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 34 / 46



More parallelism (2)?

Bottleneck-task duplication ?
Some tasks have "bottleneck" behaviour
Could be interesting to just duplicate them, (executing them
several times in different threads...)
Less synchronization points, thus better global results
Need to find a proper a method to find out those tasks
More generally we need to explore "graph rewriting" techniques

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 34 / 46



More parallelism (2)?

Bottleneck-task duplication ?
Some tasks have "bottleneck" behaviour
Could be interesting to just duplicate them, (executing them
several times in different threads...)
Less synchronization points, thus better global results
Need to find a proper a method to find out those tasks
More generally we need to explore "graph rewriting" techniques

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 34 / 46



More parallelism (2)?

Bottleneck-task duplication ?
Some tasks have "bottleneck" behaviour
Could be interesting to just duplicate them, (executing them
several times in different threads...)
Less synchronization points, thus better global results
Need to find a proper a method to find out those tasks
More generally we need to explore "graph rewriting" techniques

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 34 / 46



More parallelism (2)?

Bottleneck-task duplication ?
Some tasks have "bottleneck" behaviour
Could be interesting to just duplicate them, (executing them
several times in different threads...)
Less synchronization points, thus better global results
Need to find a proper a method to find out those tasks
More generally we need to explore "graph rewriting" techniques

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 34 / 46



More parallelism (2)?

Bottleneck-task duplication ?
Some tasks have "bottleneck" behaviour
Could be interesting to just duplicate them, (executing them
several times in different threads...)
Less synchronization points, thus better global results
Need to find a proper a method to find out those tasks
More generally we need to explore "graph rewriting" techniques

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 34 / 46



Bottleneck task duplication

Example of Karplus8 graph

Task to 
duplicate

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 35 / 46



Benchmarks (1)

Finding where time is spent
Estimating "busy-loop" cost (in the order of 30-50 usec on Sampo
Combo organ run with 4 threads)
Possibly yiedling if waiting for too long (with a configurable
parameter, similar to icc OpenMP KMP_BLOCKTIME )
Estimating worker threads wake up time (in the order of 10-30
usec on 2 Ghz 4 cores OSX machine)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 36 / 46



Benchmarks (1)

Finding where time is spent
Estimating "busy-loop" cost (in the order of 30-50 usec on Sampo
Combo organ run with 4 threads)
Possibly yiedling if waiting for too long (with a configurable
parameter, similar to icc OpenMP KMP_BLOCKTIME )
Estimating worker threads wake up time (in the order of 10-30
usec on 2 Ghz 4 cores OSX machine)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 36 / 46



Benchmarks (1)

Finding where time is spent
Estimating "busy-loop" cost (in the order of 30-50 usec on Sampo
Combo organ run with 4 threads)
Possibly yiedling if waiting for too long (with a configurable
parameter, similar to icc OpenMP KMP_BLOCKTIME )
Estimating worker threads wake up time (in the order of 10-30
usec on 2 Ghz 4 cores OSX machine)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 36 / 46



Benchmarks (1)

Finding where time is spent
Estimating "busy-loop" cost (in the order of 30-50 usec on Sampo
Combo organ run with 4 threads)
Possibly yiedling if waiting for too long (with a configurable
parameter, similar to icc OpenMP KMP_BLOCKTIME )
Estimating worker threads wake up time (in the order of 10-30
usec on 2 Ghz 4 cores OSX machine)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 36 / 46



Benchmarks (1)

Finding where time is spent
Estimating "busy-loop" cost (in the order of 30-50 usec on Sampo
Combo organ run with 4 threads)
Possibly yiedling if waiting for too long (with a configurable
parameter, similar to icc OpenMP KMP_BLOCKTIME )
Estimating worker threads wake up time (in the order of 10-30
usec on 2 Ghz 4 cores OSX machine)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 36 / 46



Benchmarks (2)

Simple FAUST examples
Usually do not benefit from parallelization or marginally
See Yann workshop from yesterday...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 37 / 46



Benchmarks (2)

Simple FAUST examples
Usually do not benefit from parallelization or marginally
See Yann workshop from yesterday...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 37 / 46



Benchmarks (2)

Simple FAUST examples
Usually do not benefit from parallelization or marginally
See Yann workshop from yesterday...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 37 / 46



Benchmarks (2)

Simple FAUST examples
Usually do not benefit from parallelization or marginally
See Yann workshop from yesterday...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 37 / 46



Benchmarks (3)

WSS versus OpenMP
Comparable with icc OpenMP, even better in some cases
Much better than gcc OpenMP
Better, finer control of threading behaviour especially in RT
context (starting/stopping threads, maximum busy-time value...)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 38 / 46



Benchmarks (3)

WSS versus OpenMP
Comparable with icc OpenMP, even better in some cases
Much better than gcc OpenMP
Better, finer control of threading behaviour especially in RT
context (starting/stopping threads, maximum busy-time value...)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 38 / 46



Benchmarks (3)

WSS versus OpenMP
Comparable with icc OpenMP, even better in some cases
Much better than gcc OpenMP
Better, finer control of threading behaviour especially in RT
context (starting/stopping threads, maximum busy-time value...)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 38 / 46



Benchmarks (3)

WSS versus OpenMP
Comparable with icc OpenMP, even better in some cases
Much better than gcc OpenMP
Better, finer control of threading behaviour especially in RT
context (starting/stopping threads, maximum busy-time value...)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 38 / 46



Benchmarks (3)

WSS versus OpenMP
Comparable with icc OpenMP, even better in some cases
Much better than gcc OpenMP
Better, finer control of threading behaviour especially in RT
context (starting/stopping threads, maximum busy-time value...)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 38 / 46



Sonik Cube

1 2 3 4 5 6 7 8

0

20

40

60

80

100

120

140

160

180

Sonik Cube

Mac Pro 8, Faust 0.9.20, icc 11.1.069

omp
sch
scal
vec

performance (MB/s)

n
u

m
b

e
r 

o
f 

c
o

re
s

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 39 / 46



Benchmarks (4)

One well working example : the famous 8 min compilation time,
50% CPU usage...

Sampo YC20 Combo Organ
Compiled with llvm-g++-4.2 on OSX MacPro 4 cores 2 GHz
machine (gcc 4.2 compilation is way too slow...)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 40 / 46



Benchmarks (4)

One well working example : the famous 8 min compilation time,
50% CPU usage...

Sampo YC20 Combo Organ
Compiled with llvm-g++-4.2 on OSX MacPro 4 cores 2 GHz
machine (gcc 4.2 compilation is way too slow...)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 40 / 46



Benchmarks (4)

One well working example : the famous 8 min compilation time,
50% CPU usage...

Sampo YC20 Combo Organ
Compiled with llvm-g++-4.2 on OSX MacPro 4 cores 2 GHz
machine (gcc 4.2 compilation is way too slow...)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 40 / 46



Benchmarks (4)

One well working example : the famous 8 min compilation time,
50% CPU usage...

Sampo YC20 Combo Organ
Compiled with llvm-g++-4.2 on OSX MacPro 4 cores 2 GHz
machine (gcc 4.2 compilation is way too slow...)

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 40 / 46



YC20

Graph of 991 tasks...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 41 / 46



YC20

At 128 frames, 48 kHz with JACK : with 4 threads, 2 times faster than
vectorized mode, 2.5 faster than scalar mode

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 42 / 46



Known issues (1)

Limits of the current approach
Code size, compilers may fail to compile it...
Threading issues: too much threads for the available cores,
combining FAUST parallel modules...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 43 / 46



Known issues (1)

Limits of the current approach
Code size, compilers may fail to compile it...
Threading issues: too much threads for the available cores,
combining FAUST parallel modules...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 43 / 46



Known issues (1)

Limits of the current approach
Code size, compilers may fail to compile it...
Threading issues: too much threads for the available cores,
combining FAUST parallel modules...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 43 / 46



Known issues (1)

Limits of the current approach
Code size, compilers may fail to compile it...
Threading issues: too much threads for the available cores,
combining FAUST parallel modules...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 43 / 46



Known issues (2)

Some idea of solutions
Re-organising the task code in separated methods helps
compilers
Still need to improve task code sharing...
Using threading libraries like "libdispatch" (part of OSX Grand
Central Dispatch), but not yet adapted for RT fined grained code
Using inter-process audio frameworks (like JACK...) to share
context between audio RT applications (like for instance the
adequate RT threads number to be used, depending of graph
topology...)
Dynamic adaptation: continuously measuring CPU use and
starting/stopping threads accordingly...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 44 / 46



Known issues (2)

Some idea of solutions
Re-organising the task code in separated methods helps
compilers
Still need to improve task code sharing...
Using threading libraries like "libdispatch" (part of OSX Grand
Central Dispatch), but not yet adapted for RT fined grained code
Using inter-process audio frameworks (like JACK...) to share
context between audio RT applications (like for instance the
adequate RT threads number to be used, depending of graph
topology...)
Dynamic adaptation: continuously measuring CPU use and
starting/stopping threads accordingly...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 44 / 46



Known issues (2)

Some idea of solutions
Re-organising the task code in separated methods helps
compilers
Still need to improve task code sharing...
Using threading libraries like "libdispatch" (part of OSX Grand
Central Dispatch), but not yet adapted for RT fined grained code
Using inter-process audio frameworks (like JACK...) to share
context between audio RT applications (like for instance the
adequate RT threads number to be used, depending of graph
topology...)
Dynamic adaptation: continuously measuring CPU use and
starting/stopping threads accordingly...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 44 / 46



Known issues (2)

Some idea of solutions
Re-organising the task code in separated methods helps
compilers
Still need to improve task code sharing...
Using threading libraries like "libdispatch" (part of OSX Grand
Central Dispatch), but not yet adapted for RT fined grained code
Using inter-process audio frameworks (like JACK...) to share
context between audio RT applications (like for instance the
adequate RT threads number to be used, depending of graph
topology...)
Dynamic adaptation: continuously measuring CPU use and
starting/stopping threads accordingly...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 44 / 46



Known issues (2)

Some idea of solutions
Re-organising the task code in separated methods helps
compilers
Still need to improve task code sharing...
Using threading libraries like "libdispatch" (part of OSX Grand
Central Dispatch), but not yet adapted for RT fined grained code
Using inter-process audio frameworks (like JACK...) to share
context between audio RT applications (like for instance the
adequate RT threads number to be used, depending of graph
topology...)
Dynamic adaptation: continuously measuring CPU use and
starting/stopping threads accordingly...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 44 / 46



Known issues (2)

Some idea of solutions
Re-organising the task code in separated methods helps
compilers
Still need to improve task code sharing...
Using threading libraries like "libdispatch" (part of OSX Grand
Central Dispatch), but not yet adapted for RT fined grained code
Using inter-process audio frameworks (like JACK...) to share
context between audio RT applications (like for instance the
adequate RT threads number to be used, depending of graph
topology...)
Dynamic adaptation: continuously measuring CPU use and
starting/stopping threads accordingly...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 44 / 46



Known issues (2)

Some idea of solutions
Re-organising the task code in separated methods helps
compilers
Still need to improve task code sharing...
Using threading libraries like "libdispatch" (part of OSX Grand
Central Dispatch), but not yet adapted for RT fined grained code
Using inter-process audio frameworks (like JACK...) to share
context between audio RT applications (like for instance the
adequate RT threads number to be used, depending of graph
topology...)
Dynamic adaptation: continuously measuring CPU use and
starting/stopping threads accordingly...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 44 / 46



Conclusion

Possible reuse
Work Stealing Scheduler is quite efficient
Easy to implement in the FAUST case (knowledge at compilation
time...)
Could be of interest for other graph based audio languages or
environments : SuperCollider, PD...etc...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 45 / 46



Conclusion

Possible reuse
Work Stealing Scheduler is quite efficient
Easy to implement in the FAUST case (knowledge at compilation
time...)
Could be of interest for other graph based audio languages or
environments : SuperCollider, PD...etc...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 45 / 46



Conclusion

Possible reuse
Work Stealing Scheduler is quite efficient
Easy to implement in the FAUST case (knowledge at compilation
time...)
Could be of interest for other graph based audio languages or
environments : SuperCollider, PD...etc...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 45 / 46



Conclusion

Possible reuse
Work Stealing Scheduler is quite efficient
Easy to implement in the FAUST case (knowledge at compilation
time...)
Could be of interest for other graph based audio languages or
environments : SuperCollider, PD...etc...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 45 / 46



Conclusion

Possible reuse
Work Stealing Scheduler is quite efficient
Easy to implement in the FAUST case (knowledge at compilation
time...)
Could be of interest for other graph based audio languages or
environments : SuperCollider, PD...etc...

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 45 / 46



Outline

1 Work Stealing Scheduler

2 Demo

S. Letz, Y. Orlarey, D. Fober (GRAME Centre national de création musicale)Work Stealing Scheduler for Automatic Parallelization in FAUST 2 may 2010 46 / 46


	Work Stealing Scheduler
	Demo

