
MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

A MusicXML Test Suite and a

Discussion of Issues in MusicXML 2.0

Reinhold Kainhofer, reinhold@kainhofer.com

Vienna University of Technology, http://www.fam.tuwien.ac.at/
GNU LilyPond, http://www.lilypond.org/

Edition Kainhofer, Music publishing, http://www.edition-kainhofer.com/

Linux Audio Conference 2010, Utrecht, Netherlands
May 4, 2010

http://www.fam.tuwien.ac.at/
http://www.lilypond.org/
http://www.edition-kainhofer.com/

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Overview

1 What is MusicXML?
MusicXML Specification by Recordare

2 A MusicXML 2.0 Test Suite

3 MusicXML 2.0: Semantic Ambiguities

4 Sub-Optimal XML Design

5 Missing Features

6 Issues in the conversion from MusicXML to LilyPond

7 Conclusion and Acknowledgements

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

MusicXML Specification by Recordare

What is MusicXML?

XML format to represent western-style music notation
Musical content (Notes, chors, dynamics, time, key, clef, etc.)
Exact page layout (MusicXML 2.0)
Audio representation (like MIDI, not performance recording)

Defined originally via Document Type Definition (DTD) files and later also
via XML Schema (XSD) files.

Defined by Recordare LLC, plugins for Finale, Sibelius, etc.

Support (import and/or export) by many applications (notation, scanning,
sequencers, etc.)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

MusicXML Specification by Recordare

What is MusicXML?

XML format to represent western-style music notation
Musical content (Notes, chors, dynamics, time, key, clef, etc.)
Exact page layout (MusicXML 2.0)
Audio representation (like MIDI, not performance recording)

Defined originally via Document Type Definition (DTD) files and later also
via XML Schema (XSD) files.

Defined by Recordare LLC, plugins for Finale, Sibelius, etc.

Support (import and/or export) by many applications (notation, scanning,
sequencers, etc.)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

MusicXML Specification by Recordare

What is MusicXML?

XML format to represent western-style music notation
Musical content (Notes, chors, dynamics, time, key, clef, etc.)
Exact page layout (MusicXML 2.0)
Audio representation (like MIDI, not performance recording)

Defined originally via Document Type Definition (DTD) files and later also
via XML Schema (XSD) files.

Defined by Recordare LLC, plugins for Finale, Sibelius, etc.

Support (import and/or export) by many applications (notation, scanning,
sequencers, etc.)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

MusicXML Specification by Recordare

An example: Schubert’s Ave Maria (excerpt)

<?xml v e r s i o n =”1.0”
e n c o d i n g=”UTF−8”?>

<!DOCTYPE s c o r e−p a r t w i s e
PUBLIC [. . .] >

<s c o r e−p a r t w i s e
v e r s i o n =”2.0”>

<work>
<work−number>D.

839</work−number>
<work−t i t l e >Ave

Maria</work−t i t l e >
</work>
<i d e n t i f i c a t i o n >
<c r e a t o r

t y p e=”composer”>F .
Schubert</c r e a t o r>

<encod ing>
<s o f t w a r e>F i n a l e 2005 f o r

Windows</s o f t w a r e>
</encod ing>

</i d e n t i f i c a t i o n >
<d e f a u l t s>
[. . .]

<music−f o n t
f o n t−f a m i l y =”Maestro ”

f o n t−s i z e =”18”/>
</d e f a u l t s>
<part−l i s t >
<s c o r e−p a r t i d =”P1”>
<part−name>Voice</part−name>

[. . .]
</s c o r e−part>

[. . .]
</part−l i s t >
<!−−================−−>

<p a r t i d =”P1”>
<measure number=”1”>
<a t t r i b u t e s>
<d i v i s i o n s >48</d i v i s i o n s >
<key>
<f i f t h s >−2</f i f t h s >
<mode>major</mode>

</key>
<t ime symbol=”common”>
<beats>4</beats>
<beat−type>4</beat−type>

</time>
<c l e f>
<s i g n>G</s i g n>
<l i n e >2</l i n e>

</c l e f>
<s t a f f−d e t a i l s

p r i n t−o b j e c t =”no”/>
</a t t r i b u t e s>
<note>
<r e s t/>
<d u r a t i o n >192</d u r a t i o n>
<v o i c e >1</v o i c e>

</note>
</measure>

<!−−================−−>
<measure number=”2”>
<note>
<r e s t/>
<d u r a t i o n >192</d u r a t i o n>
<v o i c e >1</v o i c e>

</note>
</measure>

<!−−================−−>

<measure number=”3” width=”654”>
<p r i n t new−system=”y e s”/>
<b a r l i n e l o c a t i o n =” l e f t ”>
<bar−s t y l e>heavy−l i g h t </bar−s t y l e>
<r e p e a t d i r e c t i o n =”f o r w a r d”/>

</b a r l i n e>
<note d e f a u l t−x=”122”>
<p i t c h>
<s tep>B</step>
<a l t e r >−1</a l t e r>
<octave>4</octave>

</p i t c h>
<d u r a t i o n >72</d u r a t i o n>
<v o i c e >1</v o i c e>
<type>q u a r t e r </type>
<dot/>
<stem

d e f a u l t−y=”−55.5”>down</stem>
< l y r i c d e f a u l t−y=”−82” number=”1”>
<s y l l a b i c >beg in</s y l l a b i c >
<t e x t>A</t e x t>

</l y r i c >
< l y r i c d e f a u l t−y=”−104”

number=”2”>
<s y l l a b i c >beg in</s y l l a b i c >
<t e x t>A</t e x t>

</l y r i c >
< l y r i c d e f a u l t−y=”−127”

number=”3”>
<s y l l a b i c >beg in</s y l l a b i c >
<t e x t>A</t e x t>

</l y r i c >
</note>
<note d e f a u l t−x=”326”>

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

MusicXML Specification by Recordare

Observations about MusicXML

Extremely verbose! (e.g. first page of Ave Maria has 8768 lines / 250kB
in XML)

Score is structured into parts (here: vocal voice + Piano) ⇒ typically
separate staves

Each part structured into measures, each measure contains notes, rests,
markup, etc.

Advantages

Standardized exchange format

Support by many applications

Good support

Problems

Large size / verbosity

Specification sometimes unclear /
ambiguous

No free reference implementation,
no test cases

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

MusicXML Specification by Recordare

Observations about MusicXML

Extremely verbose! (e.g. first page of Ave Maria has 8768 lines / 250kB
in XML)

Score is structured into parts (here: vocal voice + Piano) ⇒ typically
separate staves

Each part structured into measures, each measure contains notes, rests,
markup, etc.

Advantages

Standardized exchange format

Support by many applications

Good support

Problems

Large size / verbosity

Specification sometimes unclear /
ambiguous

No free reference implementation,
no test cases

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Overview

1 What is MusicXML?

2 A MusicXML 2.0 Test Suite
Why a Test Suite?
Structure of the Test Suite
Some Examples of Unit Tests
Sample Renderings of the Test Cases
Availability

3 MusicXML 2.0: Semantic Ambiguities

4 Sub-Optimal XML Design

5 Missing Features

6 Issues in the conversion from MusicXML to LilyPond

7 Conclusion and Acknowledgements

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Why a Test Suite?

Why a Test Suite

No free reference implementation available (advice: Use the proprietary
Dolet plugin for Finale)

Only comments in the specification

Only some complex sample files available at MusicXML homepage,
showing off what MusicXML is able to do

No set of basic unit test files available

Aim of this Unit Test Suite

Full coverage including all possible elements and all combination not
possible

⇒ Create representative test cases to catch as many common
combinations as possible

Small test cases, where a bug in one feature does not influence other cases

Cover also some less used musical notation elements (but no
cross-influences with other elements)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Why a Test Suite?

Why a Test Suite

No free reference implementation available (advice: Use the proprietary
Dolet plugin for Finale)

Only comments in the specification

Only some complex sample files available at MusicXML homepage,
showing off what MusicXML is able to do

No set of basic unit test files available

Aim of this Unit Test Suite

Full coverage including all possible elements and all combination not
possible

⇒ Create representative test cases to catch as many common
combinations as possible

Small test cases, where a bug in one feature does not influence other cases

Cover also some less used musical notation elements (but no
cross-influences with other elements)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Why a Test Suite?

Why a Test Suite

No free reference implementation available (advice: Use the proprietary
Dolet plugin for Finale)

Only comments in the specification

Only some complex sample files available at MusicXML homepage,
showing off what MusicXML is able to do

No set of basic unit test files available

Aim of this Unit Test Suite

Full coverage including all possible elements and all combination not
possible

⇒ Create representative test cases to catch as many common
combinations as possible

Small test cases, where a bug in one feature does not influence other cases

Cover also some less used musical notation elements (but no
cross-influences with other elements)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Why a Test Suite?

Why a Test Suite

No free reference implementation available (advice: Use the proprietary
Dolet plugin for Finale)

Only comments in the specification

Only some complex sample files available at MusicXML homepage,
showing off what MusicXML is able to do

No set of basic unit test files available

Aim of this Unit Test Suite

Full coverage including all possible elements and all combination not
possible

⇒ Create representative test cases to catch as many common
combinations as possible

Small test cases, where a bug in one feature does not influence other cases

Cover also some less used musical notation elements (but no
cross-influences with other elements)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Why a Test Suite?

Why a Test Suite

No free reference implementation available (advice: Use the proprietary
Dolet plugin for Finale)

Only comments in the specification

Only some complex sample files available at MusicXML homepage,
showing off what MusicXML is able to do

No set of basic unit test files available

Aim of this Unit Test Suite

Full coverage including all possible elements and all combination not
possible

⇒ Create representative test cases to catch as many common
combinations as possible

Small test cases, where a bug in one feature does not influence other cases

Cover also some less used musical notation elements (but no
cross-influences with other elements)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Why a Test Suite?

Why a Test Suite

No free reference implementation available (advice: Use the proprietary
Dolet plugin for Finale)

Only comments in the specification

Only some complex sample files available at MusicXML homepage,
showing off what MusicXML is able to do

No set of basic unit test files available

Aim of this Unit Test Suite

Full coverage including all possible elements and all combination not
possible

⇒ Create representative test cases to catch as many common
combinations as possible

Small test cases, where a bug in one feature does not influence other cases

Cover also some less used musical notation elements (but no
cross-influences with other elements)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Why a Test Suite?

Why a Test Suite

No free reference implementation available (advice: Use the proprietary
Dolet plugin for Finale)

Only comments in the specification

Only some complex sample files available at MusicXML homepage,
showing off what MusicXML is able to do

No set of basic unit test files available

Aim of this Unit Test Suite

Full coverage including all possible elements and all combination not
possible

⇒ Create representative test cases to catch as many common
combinations as possible

Small test cases, where a bug in one feature does not influence other cases

Cover also some less used musical notation elements (but no
cross-influences with other elements)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Why a Test Suite?

Why a Test Suite

No free reference implementation available (advice: Use the proprietary
Dolet plugin for Finale)

Only comments in the specification

Only some complex sample files available at MusicXML homepage,
showing off what MusicXML is able to do

No set of basic unit test files available

Aim of this Unit Test Suite

Full coverage including all possible elements and all combination not
possible

⇒ Create representative test cases to catch as many common
combinations as possible

Small test cases, where a bug in one feature does not influence other cases

Cover also some less used musical notation elements (but no
cross-influences with other elements)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Why a Test Suite?

Why a Test Suite

No free reference implementation available (advice: Use the proprietary
Dolet plugin for Finale)

Only comments in the specification

Only some complex sample files available at MusicXML homepage,
showing off what MusicXML is able to do

No set of basic unit test files available

Aim of this Unit Test Suite

Full coverage including all possible elements and all combination not
possible

⇒ Create representative test cases to catch as many common
combinations as possible

Small test cases, where a bug in one feature does not influence other cases

Cover also some less used musical notation elements (but no
cross-influences with other elements)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Structure of the Test Suite

Structure of the Test Suite

12 large feature categories (separate aspects of MusicXML, e.g. basic
musical notation, staff attributes, note-related elements, page layout, etc.)

Each category split into more specific aspects

Each such aspect gets several different, non-overlapping test cases

Structured by file name!

More than 120 small unit test cases

Current files: http://www.kainhofer.com/musicxml/

File naming scheme

AREAletter-AreaDescription-TestcaseDescription.xml

where AREA is a number between 00 and 99, identifying the large feature area,
letter is a running letter to enumerate the test cases within a category, and the
other file name parts are human understandable descriptions.

E.g. 01b-Pitches-Intervals.xml, 21e-Chords-PickupMeasures.xml,
46e-PickupMeasure-SecondVoiceStartsLater.xml

http://www.kainhofer.com/musicxml/

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Structure of the Test Suite

Structure of the Test Suite

12 large feature categories (separate aspects of MusicXML, e.g. basic
musical notation, staff attributes, note-related elements, page layout, etc.)

Each category split into more specific aspects

Each such aspect gets several different, non-overlapping test cases

Structured by file name!

More than 120 small unit test cases

Current files: http://www.kainhofer.com/musicxml/

File naming scheme

AREAletter-AreaDescription-TestcaseDescription.xml

where AREA is a number between 00 and 99, identifying the large feature area,
letter is a running letter to enumerate the test cases within a category, and the
other file name parts are human understandable descriptions.

E.g. 01b-Pitches-Intervals.xml, 21e-Chords-PickupMeasures.xml,
46e-PickupMeasure-SecondVoiceStartsLater.xml

http://www.kainhofer.com/musicxml/

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Structure of the Test Suite

Structure of the Test Suite

12 large feature categories (separate aspects of MusicXML, e.g. basic
musical notation, staff attributes, note-related elements, page layout, etc.)

Each category split into more specific aspects

Each such aspect gets several different, non-overlapping test cases

Structured by file name!

More than 120 small unit test cases

Current files: http://www.kainhofer.com/musicxml/

File naming scheme

AREAletter-AreaDescription-TestcaseDescription.xml

where AREA is a number between 00 and 99, identifying the large feature area,
letter is a running letter to enumerate the test cases within a category, and the
other file name parts are human understandable descriptions.

E.g. 01b-Pitches-Intervals.xml, 21e-Chords-PickupMeasures.xml,
46e-PickupMeasure-SecondVoiceStartsLater.xml

http://www.kainhofer.com/musicxml/

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Structure of the Test Suite

Structure of the Test Suite

12 large feature categories (separate aspects of MusicXML, e.g. basic
musical notation, staff attributes, note-related elements, page layout, etc.)

Each category split into more specific aspects

Each such aspect gets several different, non-overlapping test cases

Structured by file name!

More than 120 small unit test cases

Current files: http://www.kainhofer.com/musicxml/

File naming scheme

AREAletter-AreaDescription-TestcaseDescription.xml

where AREA is a number between 00 and 99, identifying the large feature area,
letter is a running letter to enumerate the test cases within a category, and the
other file name parts are human understandable descriptions.

E.g. 01b-Pitches-Intervals.xml, 21e-Chords-PickupMeasures.xml,
46e-PickupMeasure-SecondVoiceStartsLater.xml

http://www.kainhofer.com/musicxml/

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Structure of the Test Suite

Structure of the Test Suite

12 large feature categories (separate aspects of MusicXML, e.g. basic
musical notation, staff attributes, note-related elements, page layout, etc.)

Each category split into more specific aspects

Each such aspect gets several different, non-overlapping test cases

Structured by file name!

More than 120 small unit test cases

Current files: http://www.kainhofer.com/musicxml/

File naming scheme

AREAletter-AreaDescription-TestcaseDescription.xml

where AREA is a number between 00 and 99, identifying the large feature area,
letter is a running letter to enumerate the test cases within a category, and the
other file name parts are human understandable descriptions.

E.g. 01b-Pitches-Intervals.xml, 21e-Chords-PickupMeasures.xml,
46e-PickupMeasure-SecondVoiceStartsLater.xml

http://www.kainhofer.com/musicxml/

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Structure of the Test Suite

Structure of the Test Suite

12 large feature categories (separate aspects of MusicXML, e.g. basic
musical notation, staff attributes, note-related elements, page layout, etc.)

Each category split into more specific aspects

Each such aspect gets several different, non-overlapping test cases

Structured by file name!

More than 120 small unit test cases

Current files: http://www.kainhofer.com/musicxml/

File naming scheme

AREAletter-AreaDescription-TestcaseDescription.xml

where AREA is a number between 00 and 99, identifying the large feature area,
letter is a running letter to enumerate the test cases within a category, and the
other file name parts are human understandable descriptions.

E.g. 01b-Pitches-Intervals.xml, 21e-Chords-PickupMeasures.xml,
46e-PickupMeasure-SecondVoiceStartsLater.xml

http://www.kainhofer.com/musicxml/

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Structure of the Test Suite

Structure of the Test Suite

12 large feature categories (separate aspects of MusicXML, e.g. basic
musical notation, staff attributes, note-related elements, page layout, etc.)

Each category split into more specific aspects

Each such aspect gets several different, non-overlapping test cases

Structured by file name!

More than 120 small unit test cases

Current files: http://www.kainhofer.com/musicxml/

File naming scheme

AREAletter-AreaDescription-TestcaseDescription.xml

where AREA is a number between 00 and 99, identifying the large feature area,
letter is a running letter to enumerate the test cases within a category, and the
other file name parts are human understandable descriptions.

E.g. 01b-Pitches-Intervals.xml, 21e-Chords-PickupMeasures.xml,
46e-PickupMeasure-SecondVoiceStartsLater.xml

http://www.kainhofer.com/musicxml/

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Structure of the Test Suite

Structure of the Test Suite

12 large feature categories (separate aspects of MusicXML, e.g. basic
musical notation, staff attributes, note-related elements, page layout, etc.)

Each category split into more specific aspects

Each such aspect gets several different, non-overlapping test cases

Structured by file name!

More than 120 small unit test cases

Current files: http://www.kainhofer.com/musicxml/

File naming scheme

AREAletter-AreaDescription-TestcaseDescription.xml

where AREA is a number between 00 and 99, identifying the large feature area,
letter is a running letter to enumerate the test cases within a category, and the
other file name parts are human understandable descriptions.

E.g. 01b-Pitches-Intervals.xml, 21e-Chords-PickupMeasures.xml,
46e-PickupMeasure-SecondVoiceStartsLater.xml

http://www.kainhofer.com/musicxml/

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Structure of the Test Suite

Feature area categories

01-09 ... Basics
01 Pitches
02 Rests
03 Rhythm
10-19 ... Staff attributes
11 Time signatures
12 Clefs
13 Key signatures
14 Staff details
20-29 ... Note-related elements
21 Chorded notes
22 Note settings, heads, etc.
23 Triplets, Tuplets
24 Grace notes
30-39 ... Dynamics, artic., spanners
31 Dynamics and other single symbols
32 Notations and Articulations
33 Spanners
40-44 ... Parts
41 Multiple parts (staves)
42 Multiple voices per staff
43 One part on multiple staves

45-49 ... Measures and repeats
45 Repeats
46 Barlines, Measures
50-54 ... Page-related issues
51 Header information
52 Page layout
55-59 ... Exact positioning
60-69 ... Vocal music
61 Lyrics
70-75 ... Instrument-specific
71 Guitar notation
72 Transposing instruments
73 Percussion
74 Figured bass
75 Other instrumental notation
80-89 ... MIDI and sound
90-99 ... Other aspects
90 Compressed MusicXML files
99 Compat. with broken MusicXML

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Structure of the Test Suite

Testing multiple possible element uses vs. separation of separate item

Example: Parenthesized noteheads (<notehead parentheses=.../>)

Parenthesized normal noteheads

Parenthesized non-standard noteheads

Parenthesized noteheads inside a chord

Parenthesized chords (all noteheads)

Parenthesized rests (default position)

Parenthesized rests (explicit position)

The test case 22d-Parenthesized-Noteheads.xml for parenthesized
noteheads tests all these cases in one file, but each of the settings on separate
notes:

46� O ��O ���O � ��� O �O �O ����O ��O �

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Some Examples of Unit Tests

Example 1: Two tied notes (33b-Spanners-Tie.xml)

<?xml v e r s i o n =”1.0” e n c o d i n g=”ISO−8859−1”
s t a n d a l o n e=”no”?>

<!DOCTYPE s c o r e−p a r t w i s e PUBLIC
”−//R e c o r d a r e //DTD MusicXML 0 . 6 b
P a r t w i s e //EN”

” h t t p : / /www. musicxml . org / d t d s / p a r t w i s e . dtd”>
<s c o r e−p a r t w i s e>
<i d e n t i f i c a t i o n >
<m i s c e l l a n e o u s>
<m i s c e l l a n e o u s−f i e l d name=” d e s c r i p t i o n”>Two

s i m p l e t i e d whole
notes</m i s c e l l a n e o u s−f i e l d >

</m i s c e l l a n e o u s>
</i d e n t i f i c a t i o n >
<part−l i s t >
<s c o r e−p a r t i d =”P1”/>

</part−l i s t >
<p a r t i d =”P1”>
<measure number=”1”>
<a t t r i b u t e s>
<d i v i s i o n s >1</d i v i s i o n s >
<key><f i f t h s >0</f i f t h s ></key>
<t ime>
<beats>4</beats>
<beat−type>4</beat−type>

</time>
<s t a v e s >1</s t a v e s>
<c l e f number=”1”>
<s i g n>G</s i g n>
<l i n e >2</l i n e>

</c l e f>
</a t t r i b u t e s>

<note>
<p i t c h>
<s tep>F</step>
<octave>4</octave>

</p i t c h>
<d u r a t i o n >4</d u r a t i o n>
<t i e t y p e=” s t a r t ”/>
<v o i c e >1</v o i c e>
<type>whole</type>
<n o t a t i o n s><t i e d t y p e=” s t a r t”/></n o t a t i o n s>

</note>
</measure>
<measure number=”2”>
<note>
<p i t c h>
<s tep>F</step>
<octave>4</octave>

</p i t c h>
<d u r a t i o n >4</d u r a t i o n>
<t i e t y p e=”s t o p”/>
<v o i c e >1</v o i c e>
<type>whole</type>
<n o t a t i o n s><t i e d t y p e=”s t o p”/></n o t a t i o n s>

</note>
</measure>

</part>
</s c o r e−p a r t w i s e>

Ú 44 � �

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Some Examples of Unit Tests

Example 2: Key signatures with microtones (33b-Spanners-Tie.xml)

[...]

<measure number=”1”>
<a t t r i b u t e s>

<d i v i s i o n s >1</d i v i s i o n s >
<key>

<key−s tep>4</key−s tep>
<key−a l t e r >−1.5</key−a l t e r>
<key−s tep>6</key−s tep>
<key−a l t e r >−0.5</key−a l t e r>
<key−s tep>0</key−s tep>
<key−a l t e r >0</key−a l t e r>
<key−s tep>1</key−s tep>
<key−a l t e r >0.5</key−a l t e r>
<key−s tep>3</key−s tep>
<key−a l t e r >1.5</key−a l t e r>

</key>
<t ime>

<beats>2</beats>
<beat−type>4</beat−type>

</time>
<c l e f>

<s i g n>G</s i g n>
<l i n e >2</l i n e>

</c l e f>
</a t t r i b u t e s>
<note>

<p i t c h>

[...]

42��� ��� �
Very exotic case!

All possible alterations are
checked!

Observe bad XML design (see
later!)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Sample Renderings of the Test Cases

Connection to LilyPond

Originally: Some test files for musicxml2ly (Converter from MusicXML to
LilyPond; http://www.lilypond.org/)

Still resides inside LilyPond source code repository

Automated sample renderings can be done of MusicXML test case (No
reference renderings!):

musicxml2ly is just one particular implementation with one particular
interpretation of ambiguities!
musicxml2ly does not support every aspect perfectly
The MusicXML specification leaves many things open (⇒ left to each
importing application!)

Future plan: Include sample renderings from other applications, too.
(Need to extend lilypond-book for this!)

http://www.lilypond.org/

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Sample Renderings of the Test Cases

Connection to LilyPond

Originally: Some test files for musicxml2ly (Converter from MusicXML to
LilyPond; http://www.lilypond.org/)

Still resides inside LilyPond source code repository

Automated sample renderings can be done of MusicXML test case (No
reference renderings!):

musicxml2ly is just one particular implementation with one particular
interpretation of ambiguities!
musicxml2ly does not support every aspect perfectly
The MusicXML specification leaves many things open (⇒ left to each
importing application!)

Future plan: Include sample renderings from other applications, too.
(Need to extend lilypond-book for this!)

http://www.lilypond.org/

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Sample Renderings of the Test Cases

Connection to LilyPond

Originally: Some test files for musicxml2ly (Converter from MusicXML to
LilyPond; http://www.lilypond.org/)

Still resides inside LilyPond source code repository

Automated sample renderings can be done of MusicXML test case (No
reference renderings!):

musicxml2ly is just one particular implementation with one particular
interpretation of ambiguities!
musicxml2ly does not support every aspect perfectly
The MusicXML specification leaves many things open (⇒ left to each
importing application!)

Future plan: Include sample renderings from other applications, too.
(Need to extend lilypond-book for this!)

http://www.lilypond.org/

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Sample Renderings of the Test Cases

Connection to LilyPond

Originally: Some test files for musicxml2ly (Converter from MusicXML to
LilyPond; http://www.lilypond.org/)

Still resides inside LilyPond source code repository

Automated sample renderings can be done of MusicXML test case (No
reference renderings!):

musicxml2ly is just one particular implementation with one particular
interpretation of ambiguities!
musicxml2ly does not support every aspect perfectly
The MusicXML specification leaves many things open (⇒ left to each
importing application!)

Future plan: Include sample renderings from other applications, too.
(Need to extend lilypond-book for this!)

http://www.lilypond.org/

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Sample Renderings of the Test Cases

Connection to LilyPond

Originally: Some test files for musicxml2ly (Converter from MusicXML to
LilyPond; http://www.lilypond.org/)

Still resides inside LilyPond source code repository

Automated sample renderings can be done of MusicXML test case (No
reference renderings!):

musicxml2ly is just one particular implementation with one particular
interpretation of ambiguities!
musicxml2ly does not support every aspect perfectly
The MusicXML specification leaves many things open (⇒ left to each
importing application!)

Future plan: Include sample renderings from other applications, too.
(Need to extend lilypond-book for this!)

http://www.lilypond.org/

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Sample Renderings of the Test Cases

Connection to LilyPond

Originally: Some test files for musicxml2ly (Converter from MusicXML to
LilyPond; http://www.lilypond.org/)

Still resides inside LilyPond source code repository

Automated sample renderings can be done of MusicXML test case (No
reference renderings!):

musicxml2ly is just one particular implementation with one particular
interpretation of ambiguities!
musicxml2ly does not support every aspect perfectly
The MusicXML specification leaves many things open (⇒ left to each
importing application!)

Future plan: Include sample renderings from other applications, too.
(Need to extend lilypond-book for this!)

http://www.lilypond.org/

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Sample Renderings of the Test Cases

Connection to LilyPond

Originally: Some test files for musicxml2ly (Converter from MusicXML to
LilyPond; http://www.lilypond.org/)

Still resides inside LilyPond source code repository

Automated sample renderings can be done of MusicXML test case (No
reference renderings!):

musicxml2ly is just one particular implementation with one particular
interpretation of ambiguities!
musicxml2ly does not support every aspect perfectly
The MusicXML specification leaves many things open (⇒ left to each
importing application!)

Future plan: Include sample renderings from other applications, too.
(Need to extend lilypond-book for this!)

http://www.lilypond.org/

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Sample Renderings of the Test Cases

Sample Renderings of the Test Cases

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Availability

Availability and Download of the Test Suite

Availability of the Test Suite

Web page: http://kainhofer.com/musicxml/ (Download, sample
renderings)

Git repository: http://git.sv.gnu.org/gitweb/?p=lilypond.git

(GNU)

License of the Test Suite

MIT License (Basically BSD license): Can be used for any purpose, as
long as the copyright notice (or LICENSE file) is left intact!

http://kainhofer.com/musicxml/
http://git.sv.gnu.org/gitweb/?p=lilypond.git

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Availability

Availability and Download of the Test Suite

Availability of the Test Suite

Web page: http://kainhofer.com/musicxml/ (Download, sample
renderings)

Git repository: http://git.sv.gnu.org/gitweb/?p=lilypond.git

(GNU)

License of the Test Suite

MIT License (Basically BSD license): Can be used for any purpose, as
long as the copyright notice (or LICENSE file) is left intact!

http://kainhofer.com/musicxml/
http://git.sv.gnu.org/gitweb/?p=lilypond.git

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Overview

1 What is MusicXML?

2 A MusicXML 2.0 Test Suite

3 MusicXML 2.0: Semantic Ambiguities
Semantic Ambiguities
Only Syntax Definition
Voice-Based
Attributes
Chords
Lyrics
Others

4 Sub-Optimal XML Design

5 Missing Features

6 Issues in the conversion from MusicXML to LilyPond

7 Conclusion and Acknowledgements

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Semantic Ambiguities

Semantic Ambiguities

MusicXML is a syntax definition

Music notation is very complex, has many inherend semantic restrictions.
These cannot be properly expressed in a XML specification (via DTD or
XSD)
Some MusicXML import plugins: Very strict about syntax, but happily
accept non-sensical musical content

MusicXML tries to provide features of different GUI applications!

Many unclear issues in the spec; discussion (if anyone asks) on a
mailinglist without public archives; no definitive documentation for future
implementors

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Semantic Ambiguities

Semantic Ambiguities

MusicXML is a syntax definition

Music notation is very complex, has many inherend semantic restrictions.
These cannot be properly expressed in a XML specification (via DTD or
XSD)
Some MusicXML import plugins: Very strict about syntax, but happily
accept non-sensical musical content

MusicXML tries to provide features of different GUI applications!

Many unclear issues in the spec; discussion (if anyone asks) on a
mailinglist without public archives; no definitive documentation for future
implementors

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Semantic Ambiguities

Semantic Ambiguities

MusicXML is a syntax definition

Music notation is very complex, has many inherend semantic restrictions.
These cannot be properly expressed in a XML specification (via DTD or
XSD)
Some MusicXML import plugins: Very strict about syntax, but happily
accept non-sensical musical content

MusicXML tries to provide features of different GUI applications!

Many unclear issues in the spec; discussion (if anyone asks) on a
mailinglist without public archives; no definitive documentation for future
implementors

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Semantic Ambiguities

Semantic Ambiguities

MusicXML is a syntax definition

Music notation is very complex, has many inherend semantic restrictions.
These cannot be properly expressed in a XML specification (via DTD or
XSD)
Some MusicXML import plugins: Very strict about syntax, but happily
accept non-sensical musical content

MusicXML tries to provide features of different GUI applications!

Many unclear issues in the spec; discussion (if anyone asks) on a
mailinglist without public archives; no definitive documentation for future
implementors

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Only Syntax Definition

a) MusicXML is a syntax definition, no semantic

Music has many semantic restrictions for the contents to make sense

Cannot be expressed in restrictions to the DTD / XSD

Examples of additional semantic restrictions

Spanners in MusicXML (e.g. slurs <slur number="1" type="start"/>

... <slur number="1" type="stop"/>) can be arbitrarily overlapping

Impossible to specify that each spanner must be closed properly

Crescendo / Decrescendo cannot be overlapping in the same voiceWWW�� WWW WW
Can overlap for different voices (e.g. Flute 1 & 2 shown in one staff)

WWWW WWWWWWW�� WWWWW

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Only Syntax Definition

a) MusicXML is a syntax definition, no semantic

Music has many semantic restrictions for the contents to make sense

Cannot be expressed in restrictions to the DTD / XSD

Examples of additional semantic restrictions

Spanners in MusicXML (e.g. slurs <slur number="1" type="start"/>

... <slur number="1" type="stop"/>) can be arbitrarily overlapping

Impossible to specify that each spanner must be closed properly

Crescendo / Decrescendo cannot be overlapping in the same voiceWWW�� WWW WW
Can overlap for different voices (e.g. Flute 1 & 2 shown in one staff)

WWWW WWWWWWW�� WWWWW

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Voice-Based

b) Voice-Basedness of MusicXML

MusicXML allows different voices on a staff, but does not enforce concept
of voices (many notes at the same time allowed)

MusicXML provides <voice>1</voice> element to specify belonging to a
particular voice

No clear definition what a voice in MusicXML means!

<voice> is OPTIONAL, many applications leave it out
Side-question: What does a missing <voice> mean? voice 1? different from
voice 1?
It is up to the importing application!
Each application will handle it differently
Advantage of a proper specification lost

⇒ No information which notes belong to together to form a melody line

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Voice-Based

b) Voice-Basedness of MusicXML

MusicXML allows different voices on a staff, but does not enforce concept
of voices (many notes at the same time allowed)

MusicXML provides <voice>1</voice> element to specify belonging to a
particular voice

No clear definition what a voice in MusicXML means!

<voice> is OPTIONAL, many applications leave it out
Side-question: What does a missing <voice> mean? voice 1? different from
voice 1?
It is up to the importing application!
Each application will handle it differently
Advantage of a proper specification lost

⇒ No information which notes belong to together to form a melody line

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Voice-Based

b) Voice-Basedness of MusicXML

MusicXML allows different voices on a staff, but does not enforce concept
of voices (many notes at the same time allowed)

MusicXML provides <voice>1</voice> element to specify belonging to a
particular voice

No clear definition what a voice in MusicXML means!

<voice> is OPTIONAL, many applications leave it out
Side-question: What does a missing <voice> mean? voice 1? different from
voice 1?
It is up to the importing application!
Each application will handle it differently
Advantage of a proper specification lost

⇒ No information which notes belong to together to form a melody line

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Voice-Based

Importing applications will need to split up the notes in a part according to their
needs ⇒ Even if <voice> given, it might not be used (overlapping notes...)

(From: Piano reduction of Mahler’s 8. Symphony)

Which notes belong together? Good luck, if you don’t have any voice
attributes in the MusicXML file!

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Attributes

c) Staff and Measure Attributes

Key, Clef, Time signature, etc. given in <attributes> blocks for a part

What does presence of <attributes> indicate? The visual display?

Some applications create <attributes> block for every measure, others
only when a change happens

Case 1: Presence indicates display – breaks for apps writing attributes for
every measure
Case 2: Presence does not force display – up to each application, imported
MusicXML file might look different; No way to force a “cautionary” clef or
key change!

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Attributes

c) Staff and Measure Attributes

Key, Clef, Time signature, etc. given in <attributes> blocks for a part

What does presence of <attributes> indicate? The visual display?

Some applications create <attributes> block for every measure, others
only when a change happens

Case 1: Presence indicates display – breaks for apps writing attributes for
every measure
Case 2: Presence does not force display – up to each application, imported
MusicXML file might look different; No way to force a “cautionary” clef or
key change!

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Attributes

c) Staff and Measure Attributes

Key, Clef, Time signature, etc. given in <attributes> blocks for a part

What does presence of <attributes> indicate? The visual display?

Some applications create <attributes> block for every measure, others
only when a change happens

Case 1: Presence indicates display – breaks for apps writing attributes for
every measure
Case 2: Presence does not force display – up to each application, imported
MusicXML file might look different; No way to force a “cautionary” clef or
key change!

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Attributes

c) Staff and Measure Attributes

Key, Clef, Time signature, etc. given in <attributes> blocks for a part

What does presence of <attributes> indicate? The visual display?

Some applications create <attributes> block for every measure, others
only when a change happens

Case 1: Presence indicates display – breaks for apps writing attributes for
every measure
Case 2: Presence does not force display – up to each application, imported
MusicXML file might look different; No way to force a “cautionary” clef or
key change!

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Chords

d) Chords in MusicXML

<note>
<p i t c h>
<s tep>F</step>
<octave>4</octave>

</p i t c h>
<d u r a t i o n >960</d u r a t i o n>
<v o i c e >1</v o i c e>
<type>q u a r t e r </type>

</note>
<note>
<chord/>
<p i t c h>
<s tep>A</step>
<octave>4</octave>

</p i t c h>
<d u r a t i o n >960</d u r a t i o n>
<v o i c e >1</v o i c e>
<type>q u a r t e r </type>

</note>
<note>
<chord/>
<p i t c h>
<s tep>C</step>
<octave>5</octave>

</p i t c h>
<d u r a t i o n >960</d u r a t i o n>
<v o i c e >1</v o i c e>
<type>q u a r t e r </type>

</note>

DDD� 44 DDD DDD DD

Chords are subsequent notes, 2nd has <chord/>
element

Note with <chord/> must be after a note without
<chord/>!
Can NOT be expressed (easily) in a DTD!
Introduced in PVG profile of Open Score Format
(OSF) in XSD

<forward.../> or <backward.../> elements
before chorded note are allowed in spec... ⇒
Nonsense!

What does it mean if different notes of a chord
belong to different voices? How shall notation
programs handle that?

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Chords

d) Chords in MusicXML

<note>
<p i t c h>
<s tep>F</step>
<octave>4</octave>

</p i t c h>
<d u r a t i o n >960</d u r a t i o n>
<v o i c e >1</v o i c e>
<type>q u a r t e r </type>

</note>
<note>
<chord/>
<p i t c h>
<s tep>A</step>
<octave>4</octave>

</p i t c h>
<d u r a t i o n >960</d u r a t i o n>
<v o i c e >1</v o i c e>
<type>q u a r t e r </type>

</note>
<note>
<chord/>
<p i t c h>
<s tep>C</step>
<octave>5</octave>

</p i t c h>
<d u r a t i o n >960</d u r a t i o n>
<v o i c e >1</v o i c e>
<type>q u a r t e r </type>

</note>

DDD� 44 DDD DDD DD

Chords are subsequent notes, 2nd has <chord/>
element

Note with <chord/> must be after a note without
<chord/>!
Can NOT be expressed (easily) in a DTD!
Introduced in PVG profile of Open Score Format
(OSF) in XSD

<forward.../> or <backward.../> elements
before chorded note are allowed in spec... ⇒
Nonsense!

What does it mean if different notes of a chord
belong to different voices? How shall notation
programs handle that?

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Chords

d) Chords in MusicXML

<note>
<p i t c h>
<s tep>F</step>
<octave>4</octave>

</p i t c h>
<d u r a t i o n >960</d u r a t i o n>
<v o i c e >1</v o i c e>
<type>q u a r t e r </type>

</note>
<note>
<chord/>
<p i t c h>
<s tep>A</step>
<octave>4</octave>

</p i t c h>
<d u r a t i o n >960</d u r a t i o n>
<v o i c e >1</v o i c e>
<type>q u a r t e r </type>

</note>
<note>
<chord/>
<p i t c h>
<s tep>C</step>
<octave>5</octave>

</p i t c h>
<d u r a t i o n >960</d u r a t i o n>
<v o i c e >1</v o i c e>
<type>q u a r t e r </type>

</note>

DDD� 44 DDD DDD DD

Chords are subsequent notes, 2nd has <chord/>
element

Note with <chord/> must be after a note without
<chord/>!
Can NOT be expressed (easily) in a DTD!
Introduced in PVG profile of Open Score Format
(OSF) in XSD

<forward.../> or <backward.../> elements
before chorded note are allowed in spec... ⇒
Nonsense!

What does it mean if different notes of a chord
belong to different voices? How shall notation
programs handle that?

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Chords

d) Chords in MusicXML

<note>
<p i t c h>
<s tep>F</step>
<octave>4</octave>

</p i t c h>
<d u r a t i o n >960</d u r a t i o n>
<v o i c e >1</v o i c e>
<type>q u a r t e r </type>

</note>
<note>
<chord/>
<p i t c h>
<s tep>A</step>
<octave>4</octave>

</p i t c h>
<d u r a t i o n >960</d u r a t i o n>
<v o i c e >1</v o i c e>
<type>q u a r t e r </type>

</note>
<note>
<chord/>
<p i t c h>
<s tep>C</step>
<octave>5</octave>

</p i t c h>
<d u r a t i o n >960</d u r a t i o n>
<v o i c e >1</v o i c e>
<type>q u a r t e r </type>

</note>

DDD� 44 DDD DDD DD

Chords are subsequent notes, 2nd has <chord/>
element

Note with <chord/> must be after a note without
<chord/>!
Can NOT be expressed (easily) in a DTD!
Introduced in PVG profile of Open Score Format
(OSF) in XSD

<forward.../> or <backward.../> elements
before chorded note are allowed in spec... ⇒
Nonsense!

What does it mean if different notes of a chord
belong to different voices? How shall notation
programs handle that?

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Lyrics

e) Lyrics in MusicXML

<note>
<p i t c h>
<s tep>G</step>
<octave>4</octave>

</p i t c h>
<d u r a t i o n >1</d u r a t i o n>
<v o i c e >1</v o i c e>
<type>q u a r t e r </type>
< l y r i c number=”1” name=”V e r s e”>
<s y l l a b i c >beg in</s y l l a b i c >
<t e x t>Verse1A</t e x t>

</l y r i c >
< l y r i c number=”1” name=”Chorus”>
<s y l l a b i c >beg in</s y l l a b i c >
<t e x t>Chorus1A</t e x t>

</l y r i c >
< l y r i c number=”1” name=”Chorus”>
<s y l l a b i c >beg in</s y l l a b i c >
<t e x t>AnotherChorus1A</t e x t>

</l y r i c >
< l y r i c number=”2” name=”Chorus”>
<s y l l a b i c >beg in</s y l l a b i c >
<t e x t>Chorus1A</t e x t>

</l y r i c >
</note>
<note>

W
Chorus1A

� 46 W
2B

Verse1A
Chorus1A

Lyrics in MusicXML are <lyric>

sub-elements of <note>

Different stanzas can be identified by
number and name attribute!

No clear definition how to determine which
syllables belong together (if no name or
number or both are given)

Up to importing applications

Vertical position of syllables is more
important than values of name or number
elements ⇒ Separation of musical content
and visual display broken!

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Others

f) Figured Bass, Harp Pedals etc.

<f i g u r e d−b a s s p a r e n t h e s e s =”y e s”>
<f i g u r e><f i g u r e−number>3</f i g u r e−number></

f i g u r e>
<d u r a t i o n >4</d u r a t i o n>

</f i g u r e d−bass>
<note>

<p i t c h><s tep>G</step><octave>4</octave></p i t c h
>

<d u r a t i o n >4</d u r a t i o n>
<v o i c e >1</v o i c e>
<type>e i g h t h </type>

</note>
<f i g u r e d−bass>

<f i g u r e><p r e f i x>f l a t </p r e f i x><f i g u r e−number
>3</f i g u r e−number></f i g u r e>

<f i g u r e><p r e f i x>n a t u r a l </p r e f i x><f i g u r e−number
>5</f i g u r e−number></f i g u r e>

<d u r a t i o n >6</d u r a t i o n>
</f i g u r e d−bass>
<note>

<p i t c h><s tep>G</step><octave>4</octave></p i t c h
>

<d u r a t i o n >6</d u r a t i o n>
<v o i c e >1</v o i c e>
<type>e i g h t h </type>
<dot/>

</note>
</measure>

%5
ã�� � �3

� ��3

Bass figures are always assigned to
“first regular note that follows”

In XML order? i.e. if
<backward.../> follows before
next note ⇒ different time
In time order? Hard to
determine the next following
note!
Problem is that restriction
(<note> has to follow
immediately) is not mentioned /
defined in specification!!!

slash of the <suffix> child
element does not distinguish
forward/backward slashes (same
meaning, different display, up to
importing applications)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Others

f) Figured Bass, Harp Pedals etc.

<harp−p e d a l s>
<peda l−tu n in g>

<peda l−s tep>D</peda l−s tep>
<peda l−a l t e r >0</peda l−a l t e r>

</peda l−tu n in g>
<peda l−tu n in g>

<peda l−s tep>C</peda l−s tep>
<peda l−a l t e r >−1</peda l−a l t e r>

</peda l−tu n in g>
<peda l−tu n in g>

<peda l−s tep>B</peda l−s tep>
<peda l−a l t e r >−1</peda l−a l t e r>

</peda l−tu n in g>
<peda l−tu n in g>

<peda l−s tep>E</peda l−s tep>
<peda l−a l t e r >0</peda l−a l t e r>

</peda l−tu n in g>
<peda l−tu n in g>

<peda l−s tep>F</peda l−s tep>
<peda l−a l t e r >0</peda l−a l t e r>

</peda l−tu n in g>
<peda l−tu n in g>

<peda l−s tep>G</peda l−s tep>
<peda l−a l t e r >1</peda l−a l t e r>

</peda l−tu n in g>
<peda l−tu n in g>

<peda l−s tep>A</peda l−s tep>
<peda l−a l t e r >−1</peda l−a l t e r>

</peda l−tu n in g>
</harp−p e d a l s>

Ç� �

Harp pedals: pedal states
recommmended in order D, C, B,
E, F, G and A pedal.

What if different order is used in
MusicXML? Shall XML order be
used or always the default order?

No way to customize where the
vertical separator will be displayed.

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Overview

1 What is MusicXML?

2 A MusicXML 2.0 Test Suite

3 MusicXML 2.0: Semantic Ambiguities

4 Sub-Optimal XML Design
Strict Element-Order
XML Element Naming
Metronome Markings
Enumerated Data Types

5 Missing Features

6 Issues in the conversion from MusicXML to LilyPond

7 Conclusion and Acknowledgements

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Sub-Optimal XML Design Issues

Not everything in the MusicXML specification is consistent!

Backward compatibility in future versions ⇒ Can not be changed any more

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Sub-Optimal XML Design Issues

Not everything in the MusicXML specification is consistent!

Backward compatibility in future versions ⇒ Can not be changed any more

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Strict Element-Order

a) Strict Order of Elements

DTD definition of the <note> element

<!ELEMENT note

(((grace, %full-note;, (tie, tie?)?) |

(cue, %full-note;, duration) |

(%full-note;, duration, (tie, tie?)?)),

instrument?, %editorial-voice;, type?, dot*,

accidental?, time-modification?, stem?, notehead?,

staff?, beam*, notations*, lyric*)>

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Strict Element-Order

a) Strict Order of Elements

DTD definition of the <note> element

<!ELEMENT note

(((grace, %full-note;, (tie, tie?)?) |

(cue, %full-note;, duration) |

(%full-note;, duration, (tie, tie?)?)),

instrument?, %editorial-voice;, type?, dot*,

accidental?, time-modification?, stem?, notehead?,

staff?, beam*, notations*, lyric*)>

Forces a fixed order of the children!

Counter-intuitive order: duration (time length), then voice, then type
(visual display)!

Historically: Need restriction that some elements can only be there once
⇒ Cannot be done (easily) in a DTD without fixing element order!

Now: Would be possible in XSD, but for backward-compatibility fixed
order is kept in the XSD, too

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Strict Element-Order

a) Strict Order of Elements

DTD definition of the <note> element

<!ELEMENT note

(((grace, %full-note;, (tie, tie?)?) |

(cue, %full-note;, duration) |

(%full-note;, duration, (tie, tie?)?)),

instrument?, %editorial-voice;, type?, dot*,

accidental?, time-modification?, stem?, notehead?,

staff?, beam*, notations*, lyric*)>

Forces a fixed order of the children!

Counter-intuitive order: duration (time length), then voice, then type
(visual display)!

Historically: Need restriction that some elements can only be there once
⇒ Cannot be done (easily) in a DTD without fixing element order!

Now: Would be possible in XSD, but for backward-compatibility fixed
order is kept in the XSD, too

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Strict Element-Order

a) Strict Order of Elements

DTD definition of the <note> element

<!ELEMENT note

(((grace, %full-note;, (tie, tie?)?) |

(cue, %full-note;, duration) |

(%full-note;, duration, (tie, tie?)?)),

instrument?, %editorial-voice;, type?, dot*,

accidental?, time-modification?, stem?, notehead?,

staff?, beam*, notations*, lyric*)>

Forces a fixed order of the children!

Counter-intuitive order: duration (time length), then voice, then type
(visual display)!

Historically: Need restriction that some elements can only be there once
⇒ Cannot be done (easily) in a DTD without fixing element order!

Now: Would be possible in XSD, but for backward-compatibility fixed
order is kept in the XSD, too

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Strict Element-Order

a) Strict Order of Elements

DTD definition of the <note> element

<!ELEMENT note

(((grace, %full-note;, (tie, tie?)?) |

(cue, %full-note;, duration) |

(%full-note;, duration, (tie, tie?)?)),

instrument?, %editorial-voice;, type?, dot*,

accidental?, time-modification?, stem?, notehead?,

staff?, beam*, notations*, lyric*)>

Forces a fixed order of the children!

Counter-intuitive order: duration (time length), then voice, then type
(visual display)!

Historically: Need restriction that some elements can only be there once
⇒ Cannot be done (easily) in a DTD without fixing element order!

Now: Would be possible in XSD, but for backward-compatibility fixed
order is kept in the XSD, too

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Strict Element-Order

a) Strict Order of Elements

DTD definition of the <note> element

<!ELEMENT note

(((grace, %full-note;, (tie, tie?)?) |

(cue, %full-note;, duration) |

(%full-note;, duration, (tie, tie?)?)),

instrument?, %editorial-voice;, type?, dot*,

accidental?, time-modification?, stem?, notehead?,

staff?, beam*, notations*, lyric*)>

Which of the following snippets is correct?

Incorrect

<note>

<pitch>

<step>G</step>

<alter>1</alter>

<octave>2</octave>

</pitch>

<accidental>sharp</accidental>

<duration>1</duration>

<type>quarter</type>

<voice>1</voice>

</note>

Correct

<note>

<pitch>

<step>G</step>

<alter>1</alter>

<octave>2</octave>

</pitch>

<duration>1</duration>

<voice>1</voice>

<type>quarter</type>

<accidental>sharp</accidental>

</note>

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Strict Element-Order

a) Strict Order of Elements

DTD definition of the <note> element

<!ELEMENT note

(((grace, %full-note;, (tie, tie?)?) |

(cue, %full-note;, duration) |

(%full-note;, duration, (tie, tie?)?)),

instrument?, %editorial-voice;, type?, dot*,

accidental?, time-modification?, stem?, notehead?,

staff?, beam*, notations*, lyric*)>

Which of the following snippets is correct?

Incorrect
<note>

<pitch>

<step>G</step>

<alter>1</alter>

<octave>2</octave>

</pitch>

<accidental>sharp</accidental>

<duration>1</duration>

<type>quarter</type>

<voice>1</voice>

</note>

Correct
<note>

<pitch>

<step>G</step>

<alter>1</alter>

<octave>2</octave>

</pitch>

<duration>1</duration>

<voice>1</voice>

<type>quarter</type>

<accidental>sharp</accidental>

</note>

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Strict Element-Order

a) Strict Order of Elements

DTD definition of the <note> element

<!ELEMENT note

(((grace, %full-note;, (tie, tie?)?) |

(cue, %full-note;, duration) |

(%full-note;, duration, (tie, tie?)?)),

instrument?, %editorial-voice;, type?, dot*,

accidental?, time-modification?, stem?, notehead?,

staff?, beam*, notations*, lyric*)>

Which of the following snippets is correct?

Incorrect
<note>

<pitch>

<step>G</step>

<alter>1</alter>

<octave>2</octave>

</pitch>

<accidental>sharp</accidental>

<duration>1</duration>

<type>quarter</type>

<voice>1</voice>

</note>

Correct
<note>

<pitch>

<step>G</step>

<alter>1</alter>

<octave>2</octave>

</pitch>

<duration>1</duration>

<voice>1</voice>

<type>quarter</type>

<accidental>sharp</accidental>

</note>

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

XML Element Naming

b) Element Naming for Pitch Information

Normal note pitch

<note>

<pitch>

<step>E</step>

<alter>-1</alter>

<octave>2</octave>

</pitch>

<duration>1</duration>

<accidental>flat</accidental>

</note>

Root pitch of chord

<harmony>

<root>

<root-step>E</root-step>

<root-alter>-1</root-alter>

</root>

<kind>major</kind>

</harmony>

Tuning of Tab staves

<attributes>

<staff-details>

<staff-lines>6</staff-lines>

<staff-tuning line="1">

<tuning-step>E</tuning-step>

<tuning-alter>-1</tuning-alter>

<tuning-octave>3</tuning-octave>

</staff-tuning>

[...]

</staff-details>

</attributes>

All provide alteration / octave information for containing element!

Why not use the same element and take context into account?

Normal note pitch

<note>

<pitch>

<step>E</step>

<alter>-1</alter>

<octave>2</octave>

</pitch>

<duration>1</duration>

<accidental>flat</accidental>

</note>

Root pitch of chord

<harmony>

<root>

<step>E</step>

<alter>-1</alter>

</root>

<kind>major</kind>

</harmony>

Tuning of Tab staves

<attributes>

<staff-details>

<staff-lines>6</staff-lines>

<staff-tuning line="1">

<step>E</step>

<alter>-1</alter>

<octave>3</octave>

</staff-tuning>

[...]

</staff-details>

</attributes>

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

XML Element Naming

b) Element Naming for Pitch Information

Normal note pitch

<note>

<pitch>

<step>E</step>

<alter>-1</alter>

<octave>2</octave>

</pitch>

<duration>1</duration>

<accidental>flat</accidental>

</note>

Root pitch of chord

<harmony>

<root>

<root-step>E</root-step>

<root-alter>-1</root-alter>

</root>

<kind>major</kind>

</harmony>

Tuning of Tab staves

<attributes>

<staff-details>

<staff-lines>6</staff-lines>

<staff-tuning line="1">

<tuning-step>E</tuning-step>

<tuning-alter>-1</tuning-alter>

<tuning-octave>3</tuning-octave>

</staff-tuning>

[...]

</staff-details>

</attributes>

All provide alteration / octave information for containing element!

Why not use the same element and take context into account?

Normal note pitch

<note>

<pitch>

<step>E</step>

<alter>-1</alter>

<octave>2</octave>

</pitch>

<duration>1</duration>

<accidental>flat</accidental>

</note>

Root pitch of chord

<harmony>

<root>

<step>E</step>

<alter>-1</alter>

</root>

<kind>major</kind>

</harmony>

Tuning of Tab staves

<attributes>

<staff-details>

<staff-lines>6</staff-lines>

<staff-tuning line="1">

<step>E</step>

<alter>-1</alter>

<octave>3</octave>

</staff-tuning>

[...]

</staff-details>

</attributes>

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

XML Element Naming

b) Element Naming for Pitch Information

Normal note pitch

<note>

<pitch>

<step>E</step>

<alter>-1</alter>

<octave>2</octave>

</pitch>

<duration>1</duration>

<accidental>flat</accidental>

</note>

Root pitch of chord

<harmony>

<root>

<root-step>E</root-step>

<root-alter>-1</root-alter>

</root>

<kind>major</kind>

</harmony>

Tuning of Tab staves

<attributes>

<staff-details>

<staff-lines>6</staff-lines>

<staff-tuning line="1">

<tuning-step>E</tuning-step>

<tuning-alter>-1</tuning-alter>

<tuning-octave>3</tuning-octave>

</staff-tuning>

[...]

</staff-details>

</attributes>

All provide alteration / octave information for containing element!

Why not use the same element and take context into account?

Normal note pitch

<note>

<pitch>

<step>E</step>

<alter>-1</alter>

<octave>2</octave>

</pitch>

<duration>1</duration>

<accidental>flat</accidental>

</note>

Root pitch of chord

<harmony>

<root>

<step>E</step>

<alter>-1</alter>

</root>

<kind>major</kind>

</harmony>

Tuning of Tab staves

<attributes>

<staff-details>

<staff-lines>6</staff-lines>

<staff-tuning line="1">

<step>E</step>

<alter>-1</alter>

<octave>3</octave>

</staff-tuning>

[...]

</staff-details>

</attributes>

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

XML Element Naming

b) Element Naming for Pitch Information

Normal note pitch

<note>

<pitch>

<step>E</step>

<alter>-1</alter>

<octave>2</octave>

</pitch>

<duration>1</duration>

<accidental>flat</accidental>

</note>

Root pitch of chord

<harmony>

<root>

<root-step>E</root-step>

<root-alter>-1</root-alter>

</root>

<kind>major</kind>

</harmony>

Tuning of Tab staves

<attributes>

<staff-details>

<staff-lines>6</staff-lines>

<staff-tuning line="1">

<tuning-step>E</tuning-step>

<tuning-alter>-1</tuning-alter>

<tuning-octave>3</tuning-octave>

</staff-tuning>

[...]

</staff-details>

</attributes>

All provide alteration / octave information for containing element!

Why not use the same element and take context into account?

Normal note pitch

<note>

<pitch>

<step>E</step>

<alter>-1</alter>

<octave>2</octave>

</pitch>

<duration>1</duration>

<accidental>flat</accidental>

</note>

Root pitch of chord

<harmony>

<root>

<step>E</step>

<alter>-1</alter>

</root>

<kind>major</kind>

</harmony>

Tuning of Tab staves

<attributes>

<staff-details>

<staff-lines>6</staff-lines>

<staff-tuning line="1">

<step>E</step>

<alter>-1</alter>

<octave>3</octave>

</staff-tuning>

[...]

</staff-details>

</attributes>

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Metronome Markings

c) Metronome Markings and Non-Standard Key Signatures

Contrast the over-correctness for <*-step> and <*-alter> (ignoring context,
new name for basically same functionality) to Metronome marks and
Non-Standard Key Signature definitions:

DTD for Metronome marks

<!ELEMENT metronome (

beat-unit, beat-unit-dot*,

(...|

(beat-unit, beat-unit-dot*))

)>

<metronome>

<beat-unit>quarter</beat-unit>

<beat-unit-dot/>

<beat-unit-dot/>

<beat-unit>half</beat-unit>

<beat-unit-dot/>

</metronome>

Tempo changes ”old
value = new value”

Optional dots

second unit can not be
obtained directly!

DTD for Non-std. keys

<!ELEMENT key (

((cancel?, fifths, mode?) |

((key-step, key-alter)*)),

key-octave*

)>

<key>

<key-step>0</key-step>

<key-alter>-2</key-alter>

<key-step>4</key-step>

<key-alter>2</key-alter>

<key-octave

number="1">2</key-octave>

<key-octave

number="2">4</key-octave>

</key>

Used to define accidentals
for non-standard key
signatures

Step and alteration
alternate

Optional octave
identifiers follow later!!!

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Metronome Markings

c) Metronome Markings and Non-Standard Key Signatures

Contrast the over-correctness for <*-step> and <*-alter> (ignoring context,
new name for basically same functionality) to Metronome marks and
Non-Standard Key Signature definitions:

DTD for Metronome marks

<!ELEMENT metronome (

beat-unit, beat-unit-dot*,

(...|

(beat-unit, beat-unit-dot*))

)>

<metronome>

<beat-unit>quarter</beat-unit>

<beat-unit-dot/>

<beat-unit-dot/>

<beat-unit>half</beat-unit>

<beat-unit-dot/>

</metronome>

Tempo changes ”old
value = new value”

Optional dots

second unit can not be
obtained directly!

DTD for Non-std. keys

<!ELEMENT key (

((cancel?, fifths, mode?) |

((key-step, key-alter)*)),

key-octave*

)>

<key>

<key-step>0</key-step>

<key-alter>-2</key-alter>

<key-step>4</key-step>

<key-alter>2</key-alter>

<key-octave

number="1">2</key-octave>

<key-octave

number="2">4</key-octave>

</key>

Used to define accidentals
for non-standard key
signatures

Step and alteration
alternate

Optional octave
identifiers follow later!!!

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Metronome Markings

c) Metronome Markings and Non-Standard Key Signatures

Contrast the over-correctness for <*-step> and <*-alter> (ignoring context,
new name for basically same functionality) to Metronome marks and
Non-Standard Key Signature definitions:

DTD for Metronome marks

<!ELEMENT metronome (

beat-unit, beat-unit-dot*,

(...|

(beat-unit, beat-unit-dot*))

)>

<metronome>

<beat-unit>quarter</beat-unit>

<beat-unit-dot/>

<beat-unit-dot/>

<beat-unit>half</beat-unit>

<beat-unit-dot/>

</metronome>

Tempo changes ”old
value = new value”

Optional dots

second unit can not be
obtained directly!

DTD for Non-std. keys

<!ELEMENT key (

((cancel?, fifths, mode?) |

((key-step, key-alter)*)),

key-octave*

)>

<key>

<key-step>0</key-step>

<key-alter>-2</key-alter>

<key-step>4</key-step>

<key-alter>2</key-alter>

<key-octave

number="1">2</key-octave>

<key-octave

number="2">4</key-octave>

</key>

Used to define accidentals
for non-standard key
signatures

Step and alteration
alternate

Optional octave
identifiers follow later!!!

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Enumerated Data Types

d) Data Types in DTD / XSD (Enumerations and Integers)

DTD: Mostly #PCDATA for all attributes
Possible values for enumerations described in comments
Inaccessible to syntax checkers!
Meaning/Handling of other values undefined

XSD: Enumerations
All possible values listed
Available to syntax checkers
MusicXML cannot be extended (new values cannot be added)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Enumerated Data Types

d) Data Types in DTD / XSD (Enumerations and Integers)

DTD: Mostly #PCDATA for all attributes
Possible values for enumerations described in comments
Inaccessible to syntax checkers!
Meaning/Handling of other values undefined

XSD: Enumerations
All possible values listed
Available to syntax checkers
MusicXML cannot be extended (new values cannot be added)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Overview

1 What is MusicXML?

2 A MusicXML 2.0 Test Suite

3 MusicXML 2.0: Semantic Ambiguities

4 Sub-Optimal XML Design

5 Missing Features
Credit Elements: Header markup and purpose of credits
System separators and cadenzas

6 Issues in the conversion from MusicXML to LilyPond

7 Conclusion and Acknowledgements

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Credit Elements: Header markup and purpose of credits

Missing Features in MusicXML: Headers and Credit elements

Document-wide headers/footers
<credit page=".."> only allows page number (1 by default,
xsd:positiveInteger in XSD)
Document-wide headers the same for all / all even / all odd pages
Suggestion: Allow ”all”, ”even” and ”odd” for the page attribute:

Suggestion for document-wide headers / footers

<credit page="even">

<credit-words default-x="955"

default-y="20">Even

footer</credit-words>

</credit>

Purpose of credit elements
All header, title, author labels are credit elements
credit stores only position on page, but not what information it displays
Impossible to extract metadata information about page layout (e.g. the
arranger is placed on the upper left of the score)
Suggestion: Add an enumerated type attribute to <credit> element

Suggestion for information about credit element

<credit type="title">

<credit-words

default-x="624" default-y="1387"

justify="right">Score

title</credit-words>

</credit>

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Credit Elements: Header markup and purpose of credits

Missing Features in MusicXML: Headers and Credit elements

Document-wide headers/footers
<credit page=".."> only allows page number (1 by default,
xsd:positiveInteger in XSD)
Document-wide headers the same for all / all even / all odd pages
Suggestion: Allow ”all”, ”even” and ”odd” for the page attribute:

Suggestion for document-wide headers / footers

<credit page="even">

<credit-words default-x="955"

default-y="20">Even

footer</credit-words>

</credit>

Purpose of credit elements
All header, title, author labels are credit elements
credit stores only position on page, but not what information it displays
Impossible to extract metadata information about page layout (e.g. the
arranger is placed on the upper left of the score)
Suggestion: Add an enumerated type attribute to <credit> element

Suggestion for information about credit element

<credit type="title">

<credit-words

default-x="624" default-y="1387"

justify="right">Score

title</credit-words>

</credit>

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Credit Elements: Header markup and purpose of credits

Missing Features in MusicXML: Headers and Credit elements

Document-wide headers/footers
<credit page=".."> only allows page number (1 by default,
xsd:positiveInteger in XSD)
Document-wide headers the same for all / all even / all odd pages
Suggestion: Allow ”all”, ”even” and ”odd” for the page attribute:

Suggestion for document-wide headers / footers

<credit page="even">

<credit-words default-x="955"

default-y="20">Even

footer</credit-words>

</credit>

Purpose of credit elements
All header, title, author labels are credit elements
credit stores only position on page, but not what information it displays
Impossible to extract metadata information about page layout (e.g. the
arranger is placed on the upper left of the score)
Suggestion: Add an enumerated type attribute to <credit> element

Suggestion for information about credit element

<credit type="title">

<credit-words

default-x="624" default-y="1387"

justify="right">Score

title</credit-words>

</credit>

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Credit Elements: Header markup and purpose of credits

Missing Features in MusicXML: Headers and Credit elements

Document-wide headers/footers
<credit page=".."> only allows page number (1 by default,
xsd:positiveInteger in XSD)
Document-wide headers the same for all / all even / all odd pages
Suggestion: Allow ”all”, ”even” and ”odd” for the page attribute:

Suggestion for document-wide headers / footers

<credit page="even">

<credit-words default-x="955"

default-y="20">Even

footer</credit-words>

</credit>

Purpose of credit elements
All header, title, author labels are credit elements
credit stores only position on page, but not what information it displays
Impossible to extract metadata information about page layout (e.g. the
arranger is placed on the upper left of the score)
Suggestion: Add an enumerated type attribute to <credit> element

Suggestion for information about credit element

<credit type="title">

<credit-words

default-x="624" default-y="1387"

justify="right">Score

title</credit-words>

</credit>

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

System separators and cadenzas

Missing Features: System separators and Cadenzas

System separator
Systems in full scores separates by two slashes, currently not possible in
MusicXML

d� �
� �

Suggestion for system delimiter (in global defaults)

<defaults>
<system-layout>
<system-separator>double-slash</system-separator>

</system-layout>
</defaults>

Cadenzas
No way to properly encode a cadenza and detect it as a cadenza
A measure can have arbitrary number of beats (irrespective of time
signature!)
No way to mark the beginning of the cadenza
No way to distinguish a real cadenza from an incorrect measure
Problems with applications trying to check a MusicXML for (musical)
correctness

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

System separators and cadenzas

Missing Features: System separators and Cadenzas

System separator
Systems in full scores separates by two slashes, currently not possible in
MusicXML

d� �
� �

Suggestion for system delimiter (in global defaults)

<defaults>
<system-layout>
<system-separator>double-slash</system-separator>

</system-layout>
</defaults>

Cadenzas
No way to properly encode a cadenza and detect it as a cadenza
A measure can have arbitrary number of beats (irrespective of time
signature!)
No way to mark the beginning of the cadenza
No way to distinguish a real cadenza from an incorrect measure
Problems with applications trying to check a MusicXML for (musical)
correctness

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Overview

1 What is MusicXML?

2 A MusicXML 2.0 Test Suite

3 MusicXML 2.0: Semantic Ambiguities

4 Sub-Optimal XML Design

5 Missing Features

6 Issues in the conversion from MusicXML to LilyPond
Staff-Assigned Items
Voice-Based vs. Measure-Based
Page Layout and Metadata
Musical Content vs. Graphical Representation
Workarounds in Some GUI Applications

7 Conclusion and Acknowledgements

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Staff-Assigned Items

Staff-Assigned Items

MusicXML: ”Directions” like dynamics assigned to staff position or note

LilyPond: Everything assigned to note (possibly invisible spacer note ”s”)

⇒ All staff-assigned items need to be assigned to appropriate note in LilyPond

Which note? The nearest note? What if there is no near note?

Horizontal offsets to/from the note?

Special case: Staves with multiple voices/instruments

WpWmfW
��� WWWWWWWWp �

fWWW
First ”p” applies to both voices (two notes present)

”f” only to first voice (only first voice present)

”mf” only to second

last ”p” applies only to first voice (even though both voices present!)

To generate instrumental parts, you want the dynamics assigned to correct
voice (in many cases to both voices!)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Staff-Assigned Items

Staff-Assigned Items

MusicXML: ”Directions” like dynamics assigned to staff position or note

LilyPond: Everything assigned to note (possibly invisible spacer note ”s”)

⇒ All staff-assigned items need to be assigned to appropriate note in LilyPond

Which note? The nearest note? What if there is no near note?

Horizontal offsets to/from the note?

Special case: Staves with multiple voices/instruments

WpWmfW
��� WWWWWWWWp �

fWWW
First ”p” applies to both voices (two notes present)

”f” only to first voice (only first voice present)

”mf” only to second

last ”p” applies only to first voice (even though both voices present!)

To generate instrumental parts, you want the dynamics assigned to correct
voice (in many cases to both voices!)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Staff-Assigned Items

Staff-Assigned Items

MusicXML: ”Directions” like dynamics assigned to staff position or note

LilyPond: Everything assigned to note (possibly invisible spacer note ”s”)

⇒ All staff-assigned items need to be assigned to appropriate note in LilyPond

Which note? The nearest note? What if there is no near note?

Horizontal offsets to/from the note?

Special case: Staves with multiple voices/instruments

WpWmfW
��� WWWWWWWWp �

fWWW
First ”p” applies to both voices (two notes present)

”f” only to first voice (only first voice present)

”mf” only to second

last ”p” applies only to first voice (even though both voices present!)

To generate instrumental parts, you want the dynamics assigned to correct
voice (in many cases to both voices!)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Staff-Assigned Items

Staff-Assigned Items

MusicXML: ”Directions” like dynamics assigned to staff position or note

LilyPond: Everything assigned to note (possibly invisible spacer note ”s”)

⇒ All staff-assigned items need to be assigned to appropriate note in LilyPond

Which note? The nearest note? What if there is no near note?

Horizontal offsets to/from the note?

Special case: Staves with multiple voices/instruments

WpWmfW
��� WWWWWWWWp �

fWWW
First ”p” applies to both voices (two notes present)

”f” only to first voice (only first voice present)

”mf” only to second

last ”p” applies only to first voice (even though both voices present!)

To generate instrumental parts, you want the dynamics assigned to correct
voice (in many cases to both voices!)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Staff-Assigned Items

Staff-Assigned Items

MusicXML: ”Directions” like dynamics assigned to staff position or note

LilyPond: Everything assigned to note (possibly invisible spacer note ”s”)

⇒ All staff-assigned items need to be assigned to appropriate note in LilyPond

Which note? The nearest note? What if there is no near note?

Horizontal offsets to/from the note?

Special case: Staves with multiple voices/instruments

WpWmfW
��� WWWWWWWWp �

fWWW
First ”p” applies to both voices (two notes present)

”f” only to first voice (only first voice present)

”mf” only to second

last ”p” applies only to first voice (even though both voices present!)

To generate instrumental parts, you want the dynamics assigned to correct
voice (in many cases to both voices!)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Staff-Assigned Items

Staff-Assigned Items

MusicXML: ”Directions” like dynamics assigned to staff position or note

LilyPond: Everything assigned to note (possibly invisible spacer note ”s”)

⇒ All staff-assigned items need to be assigned to appropriate note in LilyPond

Which note? The nearest note? What if there is no near note?

Horizontal offsets to/from the note?

Special case: Staves with multiple voices/instruments

WpWmfW
��� WWWWWWWWp �

fWWW
First ”p” applies to both voices (two notes present)

”f” only to first voice (only first voice present)

”mf” only to second

last ”p” applies only to first voice (even though both voices present!)

To generate instrumental parts, you want the dynamics assigned to correct
voice (in many cases to both voices!)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Voice-Based vs. Measure-Based

Measure Length: Voice-Based vs. Measure-Based

Different handling of measure lengths

MusicXML: Measures explicitly defined in .xml file, can contain arbitrary
number of beats

LilyPond: Music expressions for each voice separately; only (optional) bar
line checks, but no explicit concept of measures; Bar can only contain
beats according to time signature

In LilyPond, voices are independently split into measures according to time
signature, later voices are synchronized. ⇒ each voice must have same number
of beats!

Overlapping notes (with or without explicit voice)

MusicXML: Several notes can overlap, wether they belong to different
voices or to the same

LilyPond: Each voice can only have one active note/chord at a time

⇒ Need to split up overlapping notes into different voices in LilyPond (hard to
get right!)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Voice-Based vs. Measure-Based

Measure Length: Voice-Based vs. Measure-Based

Different handling of measure lengths

MusicXML: Measures explicitly defined in .xml file, can contain arbitrary
number of beats

LilyPond: Music expressions for each voice separately; only (optional) bar
line checks, but no explicit concept of measures; Bar can only contain
beats according to time signature

In LilyPond, voices are independently split into measures according to time
signature, later voices are synchronized. ⇒ each voice must have same number
of beats!

Overlapping notes (with or without explicit voice)

MusicXML: Several notes can overlap, wether they belong to different
voices or to the same

LilyPond: Each voice can only have one active note/chord at a time

⇒ Need to split up overlapping notes into different voices in LilyPond (hard to
get right!)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Page Layout and Metadata

Page Layout and Metadata

Handling of Metadata and of Title, Author, Header, ... data

MusicXML:
Metadata stored in <identification> tag (never displayed),
Title, author, header, etc. printed via score-wide <credit> tags – No
attribute for type of information shown!

LilyPond:
Only metadata explicitly entered (header block containing title, author, etc.)
Title, author, header, etc. automatically generated from metadata

To produce the same layout as MusicXML: need to extract metadata
information from the <credit> elements – Not Possible!!!

Different coordinate systems

MusicXML places headers and other credit markup at absolute coordinates on
page, not possible in lilypond (only relative coordinates!)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Page Layout and Metadata

Page Layout and Metadata

Handling of Metadata and of Title, Author, Header, ... data

MusicXML:
Metadata stored in <identification> tag (never displayed),
Title, author, header, etc. printed via score-wide <credit> tags – No
attribute for type of information shown!

LilyPond:
Only metadata explicitly entered (header block containing title, author, etc.)
Title, author, header, etc. automatically generated from metadata

To produce the same layout as MusicXML: need to extract metadata
information from the <credit> elements – Not Possible!!!

Different coordinate systems

MusicXML places headers and other credit markup at absolute coordinates on
page, not possible in lilypond (only relative coordinates!)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Page Layout and Metadata

Page Layout and Metadata

Handling of Metadata and of Title, Author, Header, ... data

MusicXML:
Metadata stored in <identification> tag (never displayed),
Title, author, header, etc. printed via score-wide <credit> tags – No
attribute for type of information shown!

LilyPond:
Only metadata explicitly entered (header block containing title, author, etc.)
Title, author, header, etc. automatically generated from metadata

To produce the same layout as MusicXML: need to extract metadata
information from the <credit> elements – Not Possible!!!

Different coordinate systems

MusicXML places headers and other credit markup at absolute coordinates on
page, not possible in lilypond (only relative coordinates!)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Page Layout and Metadata

Page Layout and Metadata

Handling of Metadata and of Title, Author, Header, ... data

MusicXML:
Metadata stored in <identification> tag (never displayed),
Title, author, header, etc. printed via score-wide <credit> tags – No
attribute for type of information shown!

LilyPond:
Only metadata explicitly entered (header block containing title, author, etc.)
Title, author, header, etc. automatically generated from metadata

To produce the same layout as MusicXML: need to extract metadata
information from the <credit> elements – Not Possible!!!

Different coordinate systems

MusicXML places headers and other credit markup at absolute coordinates on
page, not possible in lilypond (only relative coordinates!)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Page Layout and Metadata

Page Layout and Metadata

Handling of Metadata and of Title, Author, Header, ... data

MusicXML:
Metadata stored in <identification> tag (never displayed),
Title, author, header, etc. printed via score-wide <credit> tags – No
attribute for type of information shown!

LilyPond:
Only metadata explicitly entered (header block containing title, author, etc.)
Title, author, header, etc. automatically generated from metadata

To produce the same layout as MusicXML: need to extract metadata
information from the <credit> elements – Not Possible!!!

Different coordinate systems

MusicXML places headers and other credit markup at absolute coordinates on
page, not possible in lilypond (only relative coordinates!)

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Musical Content vs. Graphical Representation

Musical Content vs. Graphical Representation

LilyPond is a WYSIWYM application: You enter the music content, it
formats it according to best-practices from centuries of music engraving
(can be tweaked).

MusicXML also mostly describes the musical content; adds layout
information in extra sub-elements and attributes

Some elements are tied to a horizontal position on the staff, e.g. dynamics:

Ú � �p f
�

The position of the ”f” in the music context can only be deduced from the
graphical layout!

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Workarounds in Some GUI Applications

Workarounds in Some GUI Applications

Chant example provided by Recordare as MusicXML sample file

<direction placement="below">

<direction-type>

<words relative-y="69">|</words>

</direction-type>

<offset>-1</offset>

</direction>

Divisio minima (short tick through the top-most staffline) faked by ”|”
text markup, appropriately shifted!!!!

Can never be correctly imported!

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Overview

1 What is MusicXML?

2 A MusicXML 2.0 Test Suite

3 MusicXML 2.0: Semantic Ambiguities

4 Sub-Optimal XML Design

5 Missing Features

6 Issues in the conversion from MusicXML to LilyPond

7 Conclusion and Acknowledgements
Conclusion

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Conclusion

Conclusion

Finally a MusicXML test suite is freely available:

Homepage of the test suite

http://kainhofer.com/musicxml/

Sample renderings available (created via musicxml2ly and LilyPond)

MusicXML is a good industry standard for music notation exchange

Several minor issues; discussed here for future implementors to know some
problems / pitfalls

Future versions of MusicXML will probably solve many of the mentioned
problems

Acknowledgements

LilyPond developers and community!

MusicXML mailing list (in particular Michael Good, author of the
MusicXML specification)

http://kainhofer.com/musicxml/

MusicXML Test Suite Ambiguities XML Design Missing Features Conversion to LilyPond Conclusion

Conclusion

Conclusion

Finally a MusicXML test suite is freely available:

Homepage of the test suite

http://kainhofer.com/musicxml/

Sample renderings available (created via musicxml2ly and LilyPond)

MusicXML is a good industry standard for music notation exchange

Several minor issues; discussed here for future implementors to know some
problems / pitfalls

Future versions of MusicXML will probably solve many of the mentioned
problems

Acknowledgements

LilyPond developers and community!

MusicXML mailing list (in particular Michael Good, author of the
MusicXML specification)

http://kainhofer.com/musicxml/

	What is MusicXML?
	MusicXML Specification by Recordare

	A MusicXML 2.0 Test Suite
	Why a Test Suite?
	Structure of the Test Suite
	Some Examples of Unit Tests
	Sample Renderings of the Test Cases
	Availability

	MusicXML 2.0: Semantic Ambiguities
	Semantic Ambiguities
	Only Syntax Definition
	Voice-Based
	Attributes
	Chords
	Lyrics
	Others

	Sub-Optimal XML Design
	Strict Element-Order
	XML Element Naming
	Metronome Markings
	Enumerated Data Types

	Missing Features
	Credit Elements: Header markup and purpose of credits
	System separators and cadenzas

	Issues in the conversion from MusicXML to LilyPond
	Staff-Assigned Items
	Voice-Based vs. Measure-Based
	Page Layout and Metadata
	Musical Content vs. Graphical Representation
	 Workarounds in Some GUI Applications

	Conclusion and Acknowledgements
	Conclusion

