Application of Linux Audio in Hearing Aid Research

Giso Grimm1 \quad Tobias Herzke2 \quad Volker Hohmann2

1Universität Oldenburg, Oldenburg, Germany

2HörTech gGmbH, Oldenburg, Germany

Linux Audio Conference, April 17th, 2009.
Introduction and Overview

Hearing Aids
Algorithms for Digital Hearing Aids
Evaluation of Hearing Aids

A Linux-based Hearing Aid

RT performance
CPU and battery performance
Delay Constraints

Conclusions
Hearing Aids

Analogue hearing aids

- Limited capabilities:
- Frequency shaping and amplification
- Dynamic compression
- Static notch filters for feedback cancellation
Hearing Aids

Analogue hearing aids

- Limited capabilities:
- Frequency shaping and amplification
- Dynamic compression
- Static notch filters for feedback cancellation

Digital hearing aids

- First hearing aid with Digital Signal Processing in 1996
- New algorithms with no analogue counterpart
- Wireless binaural link between ears
 - Parameter exchange
 - Coming soon: Low-delay low-power audio transmission
Limitations of hearing aids

Device
- Small battery capacity
- Low processing power

Acoustics
- Acoustic feedback
- Limited audio bandwidth (by tube between receiver and ear)

End user
- High expenses
- Unfulfilled expectations
Algorithms scalable to individual hearing loss

- Dynamic compression
- Frequency shaping
- Frequency compression

Signal enhancement

- Directional microphones
- Noise reduction

Artifact reduction

- Feedback cancellation
- Future: Non-linearity compensation, ...
Why dynamic compression?

ISO normal HTL

Normal hearing threshold
Why dynamic compression?

- Hearing impaired threshold
- Amplification and frequency shaping
Why dynamic compression?

- Normal uncomfortable level
Why dynamic compression?

- Hearing impaired uncomfortable level
- Dynamic compression
Directional microphones: SNR improvement

- Delay-and-sum: up to 3 dB SNR-improvement for on-axis sounds in diffuse noise
- Many more beamformers and direction-of-arrival estimators
Noise reduction and de-reverberation

- Single channel noise reduction
- Binaural noise reduction, de-reverberation
- Binaural coherence estimation: Interaural phase difference statistics
Artifact reduction: Feedback cancellation

- Adaptive feedback cancellation
- Estimation of feedback signal
- Subtraction from input

![Diagram of Hearing Aid System](image)
Artifact reduction: Feedback cancellation

- Adaptive feedback cancellation
- Estimation of feedback signal
- Subtraction from input
- Other solutions: Frequency shifting, phase modulation, binaural coherence
Evaluation of Hearing Aids

Expected benefit of hearing aids

- Improvement of speech intelligibility
- Reduction of listening effort in adverse listening conditions
- Increase of listening comfort
Evaluation of Hearing Aids

Expected benefit of hearing aids

- Improvement of speech intelligibility
- Reduction of listening effort in adverse listening conditions
- Increase of listening comfort

Evaluation is required!
Evaluation methods

'Objective’ methods

- SNR improvement (e.g., shadow filtering)
- Speech intelligibility index (f-weighted SNR)
- Quality prediction (usually similarity measures)

Subjective methods

- Speech recognition threshold in quiet and noise
- Quality rating, paired comparison ...
Test conditions

- ‘static’ situations:
 no spatial influence, pre-processed or real-time processing

- dynamic conditions:
 head movements or moving sources, real-time processing

- realistic devices, acoustic feedback:
 low-delay real-time processing

- Real-life conditions:
 wide dynamic range, portable low-delay real-time processing
Real-time systems

1995: PC with DSP board, assembler programming
Real-time systems

Real-time systems

2008: Portable PC, C++ (or Matlab) programming
A Linux Hearing Aid
A Linux Hearing Aid

for research, development and field testing
The 'Master Hearing Aid' software

- Platform for hearing aid algorithm development and evaluation
- Many audio backends: JACK, ALSA (Linux), ASIO (Windows), file, network, Matlab
- Extremely modular structure
- Hearing-aid (and hearing) related processing blocks
- Commercial product (closed source) by HoerTech gGmbH, Oldenburg
- Used in research projects and hearing aid industry
Licensing in competitive research

- Industrial/competitive context often requires closed-source development
- Industry decision makers fear the open source licensing of Linux
- It is possible to develop closed software on the Linux platform without infringing any licenses!
- Careful consideration of what components to use
- Knowledge of the relevant licenses, and compliance with their terms.
- Use of open source software in industrial context beneficial for both sides
Comparison of RT kernel versus non-RT kernel

Kernel version 2.6.X (2.6.23?), from Grimm et al. (2006)
RT performance and low-delay

Algorithm implementation in C/C++
RT performance and low-delay

Algorithm implementation in C/C++

Algorithm implementation in Matlab
CPU and battery performance

- Two portable systems
- Asus Eee PC 701:
 Intel Celeron @ 630 MHz
- Acer Aspire one:
 Intel Atom @ 1.6 GHz
- Reference Desktop system (Intel P4 @ 3GHz)
Comparison of CPU performance
Comparison of batteries

The graph compares the battery runtime for different algorithms (algo1, algo2, algo3, algo4) for two devices: Asus Eee PC 701 and Acer Aspire One. The runtime is measured in hours (2h00', 2h15', 2h30', 2h45', 3h00', 3h15', 3h30').

- Asus Eee PC 701:
 - algo1: 3h30'
 - algo2: 3h15'
 - algo3: 3h00'
 - algo4: 2h30'

- Acer Aspire One:
 - algo1: 3h00'
 - algo2: 2h30'
 - algo3: 2h15'
 - algo4: 2h00'
Delay Constraints

Three sources of delay in RT processing

- **Block processing delay:**
 Fragment size plus processing delay
 (i.e., two blocks if input and output is block aligned)

- **Hardware delay:**
 Anti-aliasing filter (AD and DA, typical 1.5 ms in total)
 Data transmission, driver layer (‘mystic’ delays)

- **Algorithmic delay:**
 Group delay of filters, overlap-add delay, ...
Why do we aim for lowest delay? ⇒ Feedback howling

- Feedback criterion: Roundtrip-gain is above 0 dB, and phase is multiple of 2π
Why do we aim for lowest delay? ⇒ Feedback howling

- Feedback criterion: Roundtrip-gain is above 0 dB, and phase is multiple of \(2\pi\)
Achievable delays

<table>
<thead>
<tr>
<th>Device</th>
<th>f_s/kHz</th>
<th>fragment size</th>
<th>τ_{sc}/ms</th>
<th>τ_t/ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echo Layla 3G</td>
<td>32</td>
<td>32</td>
<td>2.81</td>
<td>4.81</td>
</tr>
<tr>
<td></td>
<td>44.1</td>
<td>64</td>
<td>2.04</td>
<td>4.94</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>32</td>
<td>0.81</td>
<td>1.77</td>
</tr>
<tr>
<td>RME HDSP9652 + Behringer SRC2496</td>
<td>32</td>
<td>64</td>
<td>3.34</td>
<td>7.34</td>
</tr>
<tr>
<td></td>
<td>44.1</td>
<td>64</td>
<td>2.68</td>
<td>5.58</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>128</td>
<td>1.73</td>
<td>4.40</td>
</tr>
<tr>
<td>RME HDSP9652 + Behringer ADA8000</td>
<td>32</td>
<td>64</td>
<td>2.13</td>
<td>6.12</td>
</tr>
<tr>
<td></td>
<td>44.1</td>
<td>64</td>
<td>1.61</td>
<td>4.51</td>
</tr>
<tr>
<td>RME HDSP9632 + ADI8QS</td>
<td>44.1</td>
<td>64</td>
<td>1.52</td>
<td>4.42</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>128</td>
<td>1.03</td>
<td>3.7</td>
</tr>
<tr>
<td>OFFIS</td>
<td>16</td>
<td>16</td>
<td>6.81</td>
<td>9.81</td>
</tr>
<tr>
<td>USB SC-4/2</td>
<td>44.1</td>
<td>64</td>
<td>4.08</td>
<td>8.44</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>128</td>
<td>1.97</td>
<td>5.97</td>
</tr>
</tbody>
</table>
RT performance

<table>
<thead>
<tr>
<th>Device</th>
<th>f_s/kHz</th>
<th>fragment size</th>
<th>τ_{sc}/ms</th>
<th>τ_t/ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echo Layla 3G</td>
<td>32</td>
<td>32</td>
<td>2.81</td>
<td>4.81</td>
</tr>
<tr>
<td></td>
<td>44.1</td>
<td>64</td>
<td>2.04</td>
<td>4.94</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>32</td>
<td>0.81</td>
<td>1.77</td>
</tr>
<tr>
<td>RME HDSP9652 +</td>
<td>32</td>
<td>64</td>
<td>3.34</td>
<td>7.34</td>
</tr>
<tr>
<td>Behringer SRC2496</td>
<td>44.1</td>
<td>64</td>
<td>2.68</td>
<td>5.58</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>128</td>
<td>1.73</td>
<td>4.40</td>
</tr>
<tr>
<td>RME HDSP9652 +</td>
<td>32</td>
<td>64</td>
<td>2.13</td>
<td>6.12</td>
</tr>
<tr>
<td>Behringer ADA8000</td>
<td>44.1</td>
<td>64</td>
<td>1.61</td>
<td>4.51</td>
</tr>
<tr>
<td>RME HDSP9632 +</td>
<td>44.1</td>
<td>64</td>
<td>1.52</td>
<td>4.42</td>
</tr>
<tr>
<td>ADI8QS</td>
<td>96</td>
<td>128</td>
<td>1.03</td>
<td>3.7</td>
</tr>
<tr>
<td>OFFIS</td>
<td>16</td>
<td>16</td>
<td>6.81</td>
<td>9.81</td>
</tr>
<tr>
<td>USB SC-4/2</td>
<td>44.1</td>
<td>64</td>
<td>4.08</td>
<td>8.44</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>128</td>
<td>1.97</td>
<td>5.97</td>
</tr>
</tbody>
</table>
Device Performance Comparison

<table>
<thead>
<tr>
<th>Device</th>
<th>f_s/kHz</th>
<th>fragment size</th>
<th>τ_{sc}/ms</th>
<th>τ_t/ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echo Layla 3G</td>
<td>32</td>
<td>32</td>
<td>2.81</td>
<td>4.81</td>
</tr>
<tr>
<td></td>
<td>44.1</td>
<td>64</td>
<td>2.04</td>
<td>4.94</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>32</td>
<td>0.81</td>
<td>1.77</td>
</tr>
<tr>
<td>RME HDSP9652 + Behringer SRC2496</td>
<td>32</td>
<td>64</td>
<td>3.34</td>
<td>7.34</td>
</tr>
<tr>
<td></td>
<td>44.1</td>
<td>64</td>
<td>2.68</td>
<td>5.58</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>128</td>
<td>1.73</td>
<td>4.40</td>
</tr>
<tr>
<td>RME HDSP9652 + Behringer ADA8000</td>
<td>32</td>
<td>64</td>
<td>2.13</td>
<td>6.12</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>64</td>
<td>1.46</td>
<td>4.12</td>
</tr>
<tr>
<td>RME HDSP9632 + ADI8QS</td>
<td>44.1</td>
<td>64</td>
<td>1.52</td>
<td>4.42</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>128</td>
<td>1.03</td>
<td>3.7</td>
</tr>
<tr>
<td>OFFIS</td>
<td>16</td>
<td>16</td>
<td>6.81</td>
<td>9.81</td>
</tr>
<tr>
<td>USB SC-4/2</td>
<td>44.1</td>
<td>64</td>
<td>4.08</td>
<td>8.44</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>128</td>
<td>1.97</td>
<td>5.97</td>
</tr>
</tbody>
</table>
RT performance

<table>
<thead>
<tr>
<th>Device</th>
<th>f_s/kHz</th>
<th>fragment size</th>
<th>τ_{sc}/ms</th>
<th>τ_t/ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echo Layla 3G</td>
<td>32</td>
<td>32</td>
<td>2.81</td>
<td>4.81</td>
</tr>
<tr>
<td></td>
<td>44.1</td>
<td>64</td>
<td>2.04</td>
<td>4.94</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>32</td>
<td>0.81</td>
<td>1.77</td>
</tr>
<tr>
<td>RME HDSP9652 + Behringer SRC2496</td>
<td>32</td>
<td>64</td>
<td>3.34</td>
<td>7.34</td>
</tr>
<tr>
<td></td>
<td>44.1</td>
<td>64</td>
<td>2.68</td>
<td>5.58</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>128</td>
<td>1.73</td>
<td>4.40</td>
</tr>
<tr>
<td>RME HDSP9652 + Behringer ADA8000</td>
<td>32</td>
<td>64</td>
<td>2.13</td>
<td>6.12</td>
</tr>
<tr>
<td></td>
<td>44.1</td>
<td>64</td>
<td>1.61</td>
<td>4.51</td>
</tr>
<tr>
<td>RME HDSP9632 + ADI8QS</td>
<td>44.1</td>
<td>64</td>
<td>1.52</td>
<td>4.42</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>128</td>
<td>1.03</td>
<td>3.7</td>
</tr>
<tr>
<td>OFFIS</td>
<td>16</td>
<td>16</td>
<td>6.81</td>
<td>9.81</td>
</tr>
<tr>
<td>USB SC-4/2</td>
<td>44.1</td>
<td>64</td>
<td>4.08</td>
<td>8.44</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>128</td>
<td>1.97</td>
<td>5.97</td>
</tr>
</tbody>
</table>
Device Specifications

<table>
<thead>
<tr>
<th>Device</th>
<th>f_s/kHz</th>
<th>fragment size</th>
<th>τ_{sc}/ms</th>
<th>τ_t/ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echo Layla 3G</td>
<td>32</td>
<td>32</td>
<td>2.81</td>
<td>4.81</td>
</tr>
<tr>
<td></td>
<td>44.1</td>
<td>64</td>
<td>2.04</td>
<td>4.94</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>32</td>
<td>0.81</td>
<td>1.77</td>
</tr>
<tr>
<td>RME HDSP9652 + Behringer SRC2496</td>
<td>32</td>
<td>64</td>
<td>3.34</td>
<td>7.34</td>
</tr>
<tr>
<td></td>
<td>44.1</td>
<td>64</td>
<td>2.68</td>
<td>5.58</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>128</td>
<td>1.73</td>
<td>4.40</td>
</tr>
<tr>
<td>RME HDSP9652 + Behringer ADA8000</td>
<td>32</td>
<td>64</td>
<td>2.13</td>
<td>6.12</td>
</tr>
<tr>
<td></td>
<td>44.1</td>
<td>64</td>
<td>1.61</td>
<td>4.51</td>
</tr>
<tr>
<td>RME HDSP9632 + ADI8QS</td>
<td>44.1</td>
<td>64</td>
<td>1.52</td>
<td>4.42</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>128</td>
<td>1.03</td>
<td>3.7</td>
</tr>
<tr>
<td>OFFIS</td>
<td>16</td>
<td>16</td>
<td>6.81</td>
<td>9.81</td>
</tr>
<tr>
<td>USB SC-4/2</td>
<td>44.1</td>
<td>64</td>
<td>4.08</td>
<td>8.44</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>128</td>
<td>1.97</td>
<td>5.97</td>
</tr>
</tbody>
</table>
Demonstration now!
Conclusions

- Hearing aid research is a wide field and requires careful evaluation.
- Linux Audio provides a valuable environment for hearing aid research.
- Low delay processing is possible with Linux/ALSA/Jack (but mystic delays remain in the chain of soft- and hardware).
Thank you for your attention!