Shake, Rattle and Roll:

An attempt to create a "spatially correct" Ambisonic mixdown of a multi-miked organ concert

Jörn Nettingsmeier
freelance audio and event engineer
netttings@stackingdwarves.net
Oh yeah, slides.
When was my talk again?
Shit.
What?
What?
- Olivier Messian, “Livre du Saint Sacrement”
What?
- Olivier Messian, “Livre du Saint Sacrement”

Where?
What?
- Olivier Messian, “Livre du Saint Sacrement”

Where?
- On the three Klais organs of Cologne Cathedral
What?
- Olivier Messian, “Livre du Saint Sacrement”

Where?
- On the three Klais organs of Cologne Cathedral

When?
What?
- Olivier Messian, “Livre du Saint Sacrement”

Where?
- On the three Klais organs of Cologne Cathedral

When?
- July 2009
So what?
So what?

- The world's first

Wavefield Synthesis Live Transmission

from Cologne Cathedral to TU Berlin.
=> microphone concept targeted at virtual sources
=> microphone concept targeted at virtual sources
=> organs spatially separated with lots of height and ambience
=> microphone concept targeted at virtual sources
=> organs spatially separated with lots of height and ambience
=> hey, wouldn't this be a great showcase for Ambisonics?
Can we create a “spatially correct” ambisonic mixdown of a multi-miked organ concert?
Querhausorgel
Schwalbennestorgel
Tuba stops (one of 2 divisions)
<table>
<thead>
<tr>
<th>Source</th>
<th>Microphone</th>
<th>Polar pattern</th>
<th>θ</th>
<th>d</th>
<th>h</th>
<th>ϵ</th>
<th>Δs_{Mic}</th>
<th>Δt_{Mic}</th>
<th>z</th>
<th>$\Delta t_{\text{Mixdown}}$</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 horiz.</td>
<td>Sennheiser MKH 800</td>
<td>Fig8</td>
<td>0</td>
<td>30.6</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0.0000</td>
<td>38.28</td>
<td>0.1126</td>
<td>location not used</td>
</tr>
<tr>
<td>H2 vert.</td>
<td>Sennheiser MKH 800</td>
<td>Fig8</td>
<td>0</td>
<td>34.7</td>
<td>23</td>
<td>90</td>
<td>0</td>
<td>0.0000</td>
<td>41.63</td>
<td>0.1224</td>
<td>"</td>
</tr>
<tr>
<td>H3 horiz.</td>
<td>Sennheiser MKH 800</td>
<td>Fig8</td>
<td>0</td>
<td>38</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0.0000</td>
<td>44.42</td>
<td>0.1306</td>
<td>"</td>
</tr>
<tr>
<td>H4 vert.</td>
<td>Sennheiser MKH 800</td>
<td>Fig8</td>
<td>0</td>
<td>37.3</td>
<td>23</td>
<td>90</td>
<td>0</td>
<td>0.0000</td>
<td>43.82</td>
<td>0.1289</td>
<td>"</td>
</tr>
<tr>
<td>H5 horiz.</td>
<td>Sennheiser MKH 800</td>
<td>Fig8</td>
<td>180</td>
<td>36.6</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0.0000</td>
<td>36.24</td>
<td>0.1066</td>
<td>"</td>
</tr>
<tr>
<td>H6 vert.</td>
<td>Sennheiser MKH 800</td>
<td>Fig8</td>
<td>0</td>
<td>32.7</td>
<td>23</td>
<td>90</td>
<td>0</td>
<td>0.0000</td>
<td>39.98</td>
<td>0.1176</td>
<td>"</td>
</tr>
<tr>
<td>H7 horiz.</td>
<td>Sennheiser MKH 800</td>
<td>Fig8</td>
<td>180</td>
<td>28</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0.0000</td>
<td>36.42</td>
<td>0.1066</td>
<td>"</td>
</tr>
<tr>
<td>H8 vert.</td>
<td>Sennheiser MKH 800</td>
<td>Fig8</td>
<td>0</td>
<td>28.7</td>
<td>23</td>
<td>90</td>
<td>0</td>
<td>0.0000</td>
<td>36.78</td>
<td>0.1082</td>
<td>"</td>
</tr>
<tr>
<td>Q1 L/R</td>
<td>2x Schoeps MK 5</td>
<td>Omni</td>
<td>-13</td>
<td>30</td>
<td>12</td>
<td>21.8</td>
<td>5</td>
<td>0.0147</td>
<td>32.31</td>
<td>0.0803</td>
<td>Pair angle 1°</td>
</tr>
<tr>
<td>Q2 L/R</td>
<td>2x Schoeps MK 5</td>
<td>Omni</td>
<td>-24</td>
<td>27.9</td>
<td>13</td>
<td>24.98</td>
<td>4</td>
<td>0.0118</td>
<td>30.78</td>
<td>0.0788</td>
<td>Pair angle 5°</td>
</tr>
<tr>
<td>Q3 M/S</td>
<td>Schoeps MK 5 / MK 8</td>
<td>Omni / Fig8</td>
<td>-34</td>
<td>20</td>
<td>6</td>
<td>16.7</td>
<td>3</td>
<td>0.0088</td>
<td>20.88</td>
<td>0.0526</td>
<td>S at -124°, no elev., -10dB</td>
</tr>
<tr>
<td>Q4</td>
<td>Schoeps MK 5</td>
<td>Omni</td>
<td>-28</td>
<td>32.6</td>
<td>12</td>
<td>20.21</td>
<td>3</td>
<td>0.0088</td>
<td>34.74</td>
<td>0.0933</td>
<td>Pair angle 2°</td>
</tr>
<tr>
<td>S L/R</td>
<td>2x Schoeps MK 21</td>
<td>Sub-Cardioid</td>
<td>62</td>
<td>30</td>
<td>27</td>
<td>41.99</td>
<td>11.3</td>
<td>0.0332</td>
<td>40.36</td>
<td>0.0855</td>
<td>Pair angle 2°</td>
</tr>
<tr>
<td>F1</td>
<td>Schoeps CCM41</td>
<td>Hyper-Cardioid</td>
<td>76</td>
<td>61.3</td>
<td>21</td>
<td>18.91</td>
<td>28.7</td>
<td>0.0844</td>
<td>64.8</td>
<td>0.1062</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>Schoeps CCM41</td>
<td>Hyper-Cardioid</td>
<td>88</td>
<td>59.3</td>
<td>21</td>
<td>19.5</td>
<td>28.7</td>
<td>0.0844</td>
<td>62.91</td>
<td>0.1006</td>
<td></td>
</tr>
<tr>
<td>Announcer</td>
<td>Sennheiser MD 421</td>
<td>Cardioid</td>
<td>0</td>
<td>10</td>
<td>2</td>
<td>11.31</td>
<td>0.15</td>
<td>0.0004</td>
<td>10.2</td>
<td>0.0296</td>
<td></td>
</tr>
</tbody>
</table>

θ: Azimuth angle, 0° is due north, positive is counter-clockwise (measured)

d: Distance on the floor between virtual listening spot and source (measured)

h: Height of source above listening spot (estimated)

ϵ: Elevation angle, 0° is on horizontal plane, 90° is zenith ($\tan(h/d)$)

Δs_{Mic}: Distance from microphone to source (estimated)

Δt_{Mic}: Delay of sound due to microphone distance from source ($\Delta s_{\text{Mic}} / 340 \text{ m/s}$)

z: Total distance from listening spot to source ($\sqrt{d^2+h^2}$)

$\Delta t_{\text{Mixdown}}$: Additional delay required during mixdown ($z / 340 \text{ m/s} - \Delta t_{\text{Mic}}$)
Panning considerations

=> azimuth + elevation: easy (just pan it!)
Panning considerations

=> azimuth + elevation: easy (just pan it!)
=> distance: not so easy.
Panning considerations

=> azimuth + elevation: easy (just pan it!)
=> distance: not so easy.
 * level reduction (~ 1/r^2 energy loss)
Panning considerations

=> azimuth + elevation: easy (just pan it!)
=> distance: not so easy.
 * level reduction (~ 1/r² energy loss)
 * high frequency damping
Panning considerations

=> azimuth + elevation: easy (just pan it!)
=> distance: not so easy.
 * level reduction (~ 1/r² energy loss)
 * high frequency damping
 * wave front curvature (proximity effect)
Panning considerations

=> azimuth + elevation: easy (just pan it!)
=> distance: not so easy.
 * level reduction (~ 1/r² energy loss)
 * high frequency damping
 * wave front curvature (proximity effect)
 * dry/reverb ratio
Panning considerations

=> azimuth + elevation: easy (just pan it!)
=> distance: not so easy.
 * level reduction (~ 1/r² energy loss)
 * high frequency damping
 * wave front curvature (proximity effect)
 * dry/reverb ratio
 * early reflections
Panning considerations

=> azimuth + elevation: easy (just pan it!)
=> distance: not so easy. friggin hard!
 * level reduction (~ 1/r² energy loss)
 * high frequency damping
 * wave front curvature (proximity effect)
 * dry/reverb ratio
 * early reflections
Problems

=> “false walls”
Problems

=> “false walls”

=> wrong early reflections
Problems

=> “false walls”

=> wrong early reflections

=> missing correct reflections
Conclusion

It's fun.
Conclusion

It's fun.
It's enjoyable.
Conclusion

It's fun.
It's enjoyable.
It's nowhere near realistic and conceptually flawed.
Conclusion

It's fun.
It's enjoyable.
It's nowhere near realistic and conceptually flawed.
It leaves lots of space for Tonmeister creativity.
Conclusion

It's fun.
It's enjoyable.
It's nowhere near realistic and conceptually flawed.
It leaves lots of space for Tonmeister creativity.

So: Ambisonics is a viable production format for panned mono sources (i.e. everything on the market)
IMHO.
Thank you for your attention!

Any questions?