
Signal Processing in the Pure Programming Language

Albert Gräf
Dept. of Computer Music, Institute of Musicology

Johannes Gutenberg University
55099 Mainz, Germany
Dr.Graef@t-online.de

Abstract

This paper introduces the author’s new functional
programming language Pure and discusses its use
as a scripting language in signal processing applica-
tions. Pure has a JIT compiler based on the LLVM
compiler framework which makes execution reason-
ably fast and interfacing to C very easy. A built-in
GSL matrix type makes it possible to handle nu-
meric signals in an efficient way, and a Pure plugin
for Miller Puckette’s Pd provides the necessary in-
frastructure for realtime signal processing. The pa-
per gives a brief overview of the language and the
Pd interface, and presents some examples.

Keywords

Functional programming, Pd, signal processing,
term rewriting.

1 Introduction

Programming signal processing in imperative
programming languages is difficult and error-
prone. Functional programming (FP) has long
been identified as a viable alternative. Sig-
nals are just functions of time after all, and
FP allows us to formulate the “patching” of
signal processing components very conveniently
through higher-order functions. Another impor-
tant benefit of this approach is that purely func-
tional programs have simpler semantics and can
thus serve as formal and platform-independent
specifications of signal processors, which is an
important prerequisite for building a portable li-
brary of standard signal processing components.

So, if FP offers such striking advantages, then
why don’t we all use it? One major obstacle is
that, to make those specifications executable,
typically quite a bit of glue code is needed, and
most FP languages make it annoyingly difficult
to interface to the “imperative world” out there.
Static typing, which is enforced by most modern
FP languages, raises yet another barrier, since
ad hoc message protocols cannot be represented
conveniently in such frameworks, even if they
support parametric polymorphism.

The Pure language attempts to overcome
these problems. Pure is loosely based on the au-
thor’s Q language [1], but it is a much improved
design with a completely new implementation
offering JIT (just in time) compilation to na-
tive code using the LLVM compiler framework
(http://llvm.org). Like Q, Pure is based on
term rewriting which makes it a powerful tool
for developing algebraic models. Such models
play an important role in recent approaches to
formalize signal processing systems [2; 4]. In
addition, Pure offers the following features:

• Since Pure is dynamically typed, interfacing
to interpreted realtime environments such
as Pd and SuperCollider is much more con-
venient than in statically typed languages.

• Pure has a built-in Octave-like matrix type,
which can be used to represent numeric sig-
nal data in an efficient way and is compat-
ible with the GNU Scientific Library.

• As a JIT-compiled language, Pure is suit-
able for applications where many inter-
preted languages fall short, but it also of-
fers a convenient interactive environment
just like a “real” interpreter.1

• You can call any C function directly in
Pure, so the glue code necessary to inter-
face to the environment can often be writ-
ten in Pure itself.

• A plugin for Miller Puckette’s Pd gives ac-
cess to a graphical environment for testing
realtime signal processing applications.

1Taking the Alioth “recursive” benchmark as an
example (http://shootout.alioth.debian.org), Pure
comes out somewhere between MZScheme 4.1.3 (which
is about 6 times faster) and Python 2.5 (which is about
6 times slower). This still leaves much room for im-
provements, but note that MZScheme is a very fast and
mature interpreter. To put these into perspective, Q is
about 26 times slower than Pure on this benchmark.



The paper gives a brief overview of Pure and
its Pd interface, and we also discuss two sim-
ple examples for actor-style audio and stream-
based message processing. Finally, we point out
some open problems and directions for further
research.

Note: The Pure interpreter is free software dis-
tributed under the GPL V3. Please visit the Pure
website at: http://pure-lang.googlecode.com

2 Pure in a Nutshell

Like its predecessor Q, Pure is based on term
rewriting, so its data objects are terms (ex-
pressions) which are rewritten according to the
symbolic equations supplied by the program-
mer. Terms can be atomic objects like num-
bers, strings and symbols, from which com-
pound terms are formed using function appli-
cation. Application is written simply as juxta-
position: f x, where f is the function and x the
argument. Application associates to the left,
i.e., f x y = (f x) y, and thus a function of two
arguments is actually a function of the first ar-
gument which yields another function operating
on the second argument. This style of writing
function applications is also called currying, and
can be found in many modern FP languages.

Definitions take the form of equations which
are always applied from left to right. For in-
stance, here is a definition of the well-known
factorial function:
fact n = if n>0 then n*fact(n-1) else 1;

Pure also provides guarded equations, so the
above example can also be written as follows:
fact n = n*fact(n-1) if n>0;

= 1 otherwise;

You can either put such definitions into a
script which is then loaded in the interpreter,
or just start up the interpreter and type the
definitions at its command prompt ‘>’:
> fact n = if n>0 then n*fact(n-1) else 1;
> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628800]

The second input line above applies our func-
tion to the list of integers between 1 and 10,
which returns the list of the first ten facto-
rial values. Expressions are generally evaluated
from left to right, innermost expressions first,
until a normal form is reached which cannot
be simplified any further by applying equations;
the resulting term is then the value of the orig-
inal expression, which is what gets printed by
the interpreter.

New operators can be defined just as eas-
ily. For instance, the following code defines a
left-associative infix operator ‘over’ which com-
putes the binomial coefficient

(n
k

)
:

> infixl 5 over;
> n over k = fact n div (fact k*fact (n-k));
> 10 over 5;
252

The predefined operators like ‘*’ and ‘div’ are
in fact not special; they are all defined in Pure’s
prelude, which is just an ordinary Pure script
that gets loaded by the interpreter at startup.
(The compiler does provides some special sup-
port for these and other arithmetic and logical
operations so that they can be translated to ef-
ficient native code when they are applied to the
appropriate arguments. But this is just an op-
timization in the generated code and does not
affect the semantics of these operations.)

Operators are really just ordinary functions in
disguise. By enclosing an operator in parenthe-
ses, you can turn it into an ordinary prefix func-
tion; e.g., n over k is the same as (over) n k.
Moreover, functions are first-class and can thus
be passed around just like any other values. For
instance, here is how we can compute the 10th
row of the Pascal triangle:
> map ((over) 10) (0..10);
[1,10,45,120,210,252,210,120,45,10,1]

Note the partial application of ‘over’ to 10,
which yields a function mapping over’s second
operand k to 10 over k. An alternative way
to derive such little anonymous functions is the
lambda abstraction:
> map (\k -> 10 over k) (0..10);
[1,10,45,120,210,252,210,120,45,10,1]

Using so-called list comprehensions, this can
also be written as follows:
> [10 over k | k = 0..10];
[1,10,45,120,210,252,210,120,45,10,1]

Matrices work pretty much like lists, but are
written in curly braces instead of brackets. Dif-
ferent rows are separated with semicolons:
> {1+2,2+3,4+5}; // a row vector
{3,5,9}
> {1,2+3,4;5,6,7}; // a 2x3 matrix
{1,5,4;5,6,7}

As indicated, vectors are represented as
single-row matrices. Matrix comprehensions are
provided, too. For instance, here is how we can
employ the rand function from the C library to
generate some white noise:



> extern int rand();
> randf = rand/0x7fffffff;
> noise n = {2*randf-1 | i = 1..n};

The prelude provides an extensive collection
of generic list and matrix operations, such as
indexing, slicing, mapping, accumulating, etc.
Additional matrix operations are supplied by
the gsl module. Integer and floating point
matrices are internally represented in a format
which allows data pointers to be passed directly
between Pure and C. This makes it possible to
handle copious amounts of numeric data in an
efficient way, which is an important requisite for
signal processing applications.

So far we have only dealt with numbers and
simple aggregates of these. But Pure also makes
it easy to handle symbolic data. To these ends,
function symbols without any defining equa-
tions can be used as data constructors. For in-
stance, lists are in fact represented using the bi-
nary infix symbol ‘:’, which does not have any
defining equations and thus acts as a construc-
tor symbol. The term x:xs denotes a list with
head element x and tail xs. Thus, [1,2,3] is
just syntactic sugar for 1:2:3:[], where [] is
the empty list. To dissect such structures, func-
tion definitions may involve pattern matching
on the arguments. E.g., a function to add up
all values in a list can be defined as follows:

> sum (x:xs) = x+sum xs; sum [] = 0;
> sum (1..10);
55

Custom data structures can be dealt with just
as easily. For instance, suppose that we repre-
sent note events as terms of the form note n v,
where note is the constructor symbol signifying
a note event, and n and v are integers denot-
ing the note number and velocity, respectively.
Then we can define an operation to transpose
a note event (i.e., shift the note number by a
given number of semitones) simply as follows:

> trans k (note n v) = note (n+k) v;
> trans 5 (note 60 64);
note 65 64

Note that this definition only applies to terms
of the form note n v. Pure has no problem
dealing with such partial definitions; if there
is no equation for a given combination of ar-
guments, the subject term is in normal form,
i.e., it evaluates to itself. For instance, with the
above definition of trans you’ll get:

> trans 5 60;
trans 5 60

New equations can be added at any time, to
deal with cases that have not been covered be-
fore. For instance, we can make trans work
on stand-alone note numbers as follows (the
‘::int’ tag in this equation is a special kind
of pattern which restricts the argument n to be
an integer):

> trans k n::int = n+k;
> trans 5 60;
65

What this means is that functions are always
polymorphic in Pure, i.e., they may apply to as
many different types of arguments as you like.
Like Lisp and Prolog, Pure is essentially a type-
less language; all data belongs to the same uni-
verse of terms, and the equations alone deter-
mine which functions can be applied to which
arguments.

We mention in passing that Pure’s symbolic
rewriting capabilities actually go beyond what
can be found in most FP languages, since Pure
does not distinguish between “defined” and
“constructor” function symbols, and thus any
kind of function (or operator) symbol is permit-
ted inside patterns. For instance, suppose that
we want lists to automatically stay sorted and
eliminate duplicates. In Pure we can do this by
simply adding the following equations:

> x:y:xs = y:x:xs if x>y;
> = x:xs if x==y;
> [13,7,9,7,1]+[1,9,7,5];
[1,5,7,9,13]

Thus Pure lets you deal with algebraic sim-
plification rules and constructor equations in
a direct fashion. Therefore we consider Pure
not just a functional, but also an algebraic pro-
gramming language, akin to languages such as
Maude, OBJ and OPAL, although it is geared
more to practical applications than these.

For the sake of expressivity, Pure actually
extends the basic term rewriting machinery
sketched out above in many ways. In particu-
lar, expressions and equations can be annotated
with nested local function (with) and variable
definitions (when). For instance, here is an im-
plementation of the Fibonacci function which
employs a local helper function to compute the
Fibonacci numbers in pairs:

fib n = a when a,b = fibs n end with
fibs n = 0,1 if n<=0;

= b,a+b when a,b = fibs (n-1) end;
end;



Pure also has exception handling, macros,
modules and namespaces, and thus offers all the
necessary means to structure programs both in
the small and in the large. We cannot cover
these facilities in this paper, so please refer to
the Pure manual for details.

3 Pure and Pd

We will use Miller Puckette’s Pd as the basic
signal processing machinery, so that we do not
have to worry about the technical intricacies of
realtime processing and multimedia protocols.
A pd-pure plugin is available on the Pure web-
site, which lets us implement Pd control ob-
jects in Pure. To enable this plugin in your Pd
patches, you need to tell Pd to load the plugin
at startup, which can be done either with Pd’s
-lib option, or by adding pure to Pd’s startup
options. (The latter setting can be saved so that
the plugin is always loaded when you run Pd.)
pd-pure is actually a Pd loader which looks

for the definitions of Pd control objects in cor-
responding Pure scripts. For instance, if you
create an object named foo in Pd, it will try
to find a Pure script foo.pure in the directory
of the patch; if found, it will load the script
and evaluate the foo function (presumably de-
fined in foo.pure) to obtain the object function
which implements the Pd control object. In the
simplest case, the object function can just be
foo itself, and pd-pure equips the object with
a single inlet and a single outlet. Pd messages
are passed from the inlet as parameters to the
object function, and function results are sent to
the outlet. (It is also possible to create objects
with any number of inlets and outlets, see the
pd-pure documentation for details.)

Pd messages are translated to corresponding
Pure expressions and vice versa in a straight-
forward fashion. Special support is provided
for converting between the natural Pd and Pure
representations of floating point numbers, sym-
bols and lists. The following table summarizes
the available conversions.

Message Pd Pure
symbol bar bar
float float 1.23 1.23
list list 1 2 3 [1.0,2.0,3.0]
other bar a 2 3 bar a 2.0 3.0

For instance, the following object accepts Pd
float messages and adds the first parameter
x (which is assumed to be supplied at object
creation time) to each received value:

add x y = x+y;

After placing this code in a file add.pure, you
can invoke the function from Pd as shown in
Fig. 1.

Figure 1: A simple Pure object.

4 Actors versus Stream Processing

Pd objects implement a dataflow paradigm
known as actor -style processing. Each actor re-
alizes a simple signal processing task, and com-
plex systems are built by connecting the individ-
ual actors so that data flows from one actor to
another. This approach is very intuitive, espe-
cially when implemented in a graphical system
like Pd. However, specifying complex iterative
and recursive signal processes can be quite dif-
ficult in this model.

Also, actors typically encapsulate local state
to accomplish their task (e.g., think of counters
which have to keep track of the current value).
Such actors are no functions in the mathemat-
ical sense any more, because the output of an
actor not only depends on its inputs but also on
its internal state. This makes formal reasoning
about such systems difficult (ever tried to figure
out what a complex Pd or Max patch actually
does?).

While Pure is capable of implementing state-
ful actors, there is an alternative approach
which fits the functional programming model
much better. The basic idea is to view the entire
sequence of actions performed by an actor as a
function which maps a stream of input messages
to another stream of output messages. This
stream processing approach can be traced back
to early functional dataflow languages such as
Lucid (Wadge, 1976). A related method, which
is due to the Yale Haskell group, has become
known under the catchy term functional reac-
tive programming (http://www.haskell.org/
frp).

In FP terminology, a stream is a “lazy” list
whose tail is left unevaluated until it is actu-
ally needed. This is essential for our purposes,
because the elements of the input stream are
not known in advance; they only become avail-
able in realtime during execution. In Pure such



lazy data structures are constructed with the
‘&’ postfix operator, which changes the order of
evaluation. It does this by turning its operand
into a thunk (also called a future in FP par-
lance), a kind of parameterless function whose
evaluation is deferred until the corresponding
value is needed. For instance, a Pd counter ob-
ject can be implemented in a completely state-
less way as follows:

counter = process (1..inf) with
process (n:ns) (bang:next) =
n : process ns next &;

end;

Note that 1..inf is the infinite stream of all
positive integers. In this example, the process
function responds to each bang message by pro-
ducing the next counter value. The rest of the
computation (the “future”) is then handled by
the thunked recursive invocation of process in
the tail of the output stream.

Finally, we need to consider how to interface
a stream processing function like the one above
to Pd’s actor-based model. The problem is that
the Pd object is expected to take single Pd mes-
sages as input and produce single messages as
output, not streams of such messages. Thus we
need a kind of “adapter” function which keeps
track of incoming messages, feeds them as a
stream to the stream processing function, polls
the output stream for results and sends the pro-
duced messages through the object’s outlet.

This is a bit tricky to do right now, because
Pure does not yet support multithreaded pro-
gramming. A possible solution, which uses ex-
ceptions to implement the polling of the input
stream in a transparent, non-blocking way, is
given by the actor function in Fig. 2. This
function takes a stream processing function and
returns an equivalent actor function ready to
be used in Pd and similar environments. For
brevity, we just list this here without further ex-
planation; a commented version of this routine
can be found in the accompanying materials.2

5 Audio Processing Example

Let us first have a look at a simple actor-style
example illustrating how we can read chunks
of audio data from a soundfile and pass that
data to Pd so that it can be played back in
realtime. This example also demonstrates how

2A tarball with the examples discussed in this paper
can be found at http://pure-lang.googlecode.com/
svn/docs/pure-lac09.html.

easily we can interface to existing C libraries in
Pure, without writing a single line of C code.

Reading the soundfile is accomplished using
Erik de Castro Lopo’s well-known libsndfile
library (see Fig. 3). The using clause at line
1 instructs the interpreter to “dlopen” libsnd-
file.so, the remaining extern lines are C pro-
totypes telling the interpreter about the C rou-
tines that we need. After these declarations the
Pure interpreter knows how to call these func-
tions.

The sf_load routine at line 7 is a little wrap-
per function around sf_open which provides
some temporary storage for the info parame-
ter required by sf_open. It also installs a final-
izer (“sentry” in Pure parlance) on the resulting
file pointer, so that it gets closed automatically
when the file object is no longer needed.

The wavefile object itself is defined at line
14. It responds to the message reset by rewind-
ing the soundfile using the sf_seek function,
and to the message bang by producing the next
chunk of audio data. pd-pure does not sup-
port audio objects written in Pure right now,
but it does provide some special C routines to
transfer audio data between Pure vectors and
Pd arrays. Here we read the audio data with
the sf_read_double function into a Pure vec-
tor and then transfer the data to a Pd array us-
ing pd_setbuffer. Finally, we check the result
of sf_read_double, and output a bang mes-
sage if we got some new data, to indicate that
the data is ready to be processed by the hosting
Pd patch. Note that the other branches just re-
turn an empty tuple () indicating a “non-value”
which does not cause any output.

The patch shown in Fig. 4 demonstrates the
use of the wavefile object in Pd. The pd play
subpatch (not shown in the figure) contains the
necessary logic to supply the wavefile object
with a steady stream of bang messages if the
toggle control is activated. Switching the toggle
off causes a reset message to be emitted, which
resets the file pointer to the beginning of the
file. The patch uses Pd’s tabplay~ object to
play back the data, which takes bang’s from the
wavefile object to trigger the playback of each
chunk of audio data as it becomes available.

6 Reactive Animation Example

Our second example is a little “bouncing ball”
animation which uses Pd’s OpenGL interface
Gem to realize the graphics. The animation has
some interactive elements to change the posi-



nullary nodata;
actor f = process with
process () = digest [];
process msg = digest [] when put q (get q+[msg]) end;
digest msgs = catch (check msgs) (retrieve msgs);
retrieve msgs = case get r of
y:ys = digest (y:msgs) when put s (); put r ys end;
ys = if null msgs then throw (bad_list_value ys) else return msgs;

end;
check msgs nodata = return msgs;
check _ x = throw x otherwise;
return msgs = [x | x = reverse msgs; x~==()];

end
when s = ref (inputs&); r = ref (f (get s)&) end
with inputs = case get q of

x:xs = x:inputs& when put q xs end;
_ = throw nodata;

end;
end when q = ref [] end;

Figure 2: Interfacing between actor-style and stream-based processing.

1 using "lib:libsndfile";
2 extern SNDFILE* sf_open(char *path, int mode, SF_INFO *sfinfo);
3 extern int sf_close(SNDFILE *sndfile);
4 extern long sf_seek(SNDFILE *sndfile, long frames, int whence);
5 extern long sf_read_double(SNDFILE *sndfile, void *ptr, long items);
6

7 sf_load name::string = sentry sf_close (sf_open name 0x10 (imatrix 10));
8

9 extern int pd_getbuffersize(char *name);
10 extern void pd_setbuffer(char *name, expr* x);
11

12 nullary bang reset;
13

14 wavefile fname aname = process with
15 // Rewind to the beginning of the file.
16 process reset = () when sf_seek fp 0 0; end;
17 // Read the next chunk of audio. Output bang if ok.
18 process bang = if ok res then bang else () when
19 n = nsamples; wave = dmatrix n;
20 res = sf_read_double fp wave n;
21 pd_setbuffer aname wave;
22 end;
23 nsamples = pd_getbuffersize aname;
24 ok res = bigintp res && res>0;
25 end when
26 fp::pointer = sf_load fname;
27 end;

Figure 3: Reading soundfiles.

tion, velocity and acceleration of the ball while
the animation is running. In contrast to the pre-
vious example, we are going to implement this
one in a purely functional way using the stream
processing approach sketched out in Section 4.

Using classical mechanics, the motion of an

accelerated object in two dimensions can be de-
fined as a stream processing function as follows:

motion (x,y) (vx,vy) (ax,ay) (step dt:next)
= [x,y,vx,vy] :
motion (x1,y1) (vx1,vy1) (ax,ay) next &



Figure 4: The waveplay patch.

when
vx = if abs x > 3 then -vx else vx;
vy = if y < -3 then -vy else vy;
x1 = x+dt*vx+dt*dt*ax/2;
y1 = y+dt*vy+dt*dt*ay/2;
vx1 = vx+dt*ax; vy1 = vy+dt*ay;

end;

The pairs (x,y), (vx,vy) and (ax,ay) give
the current position, velocity and acceleration
in the x and y directions, respectively, and the
last argument of motion is the stream of incom-
ing messages. We assume that we will receive
a message of the form step dt to produce the
current x and y coordinates and velocities of
the ball. The dt value indicates the time be-
tween step messages, which is used to update
position and velocity for the next step message.
In addition, the first two definitions in the when
clause take care of the collision detection, which
ensures that the ball gets reflected by “walls” at
x = −3 and x = 3 and the “floor” at y = −3. As
required, the result of the function is a stream,
which has the response (a list with the current
position and velocities) in front, followed by the
rest of the stream, a thunked recursive invoca-
tion of motion with the updated parameters.

It is now an easy matter to add more equa-
tions which deal with messages to change the
position, velocity and acceleration of the mov-
ing object. As an example, the following equa-
tion shows how to update the position of the
ball and reset the vertical velocity in response
to a mouse event.

motion _ (vx,vy) (ax,ay) (mouse x y:next)
= () : motion (x,y) (vx,0) (ax,ay) next &;

We have omitted the remaining (trivial) equa-
tions for brevity, but you can find the full source
code in the accompanying materials.

To see our stream processing function in ac-
tion, we can simply feed it an endless stream of
step messages and grab some of the results:

> in = repeat (step 0.1);
> motion (-3,3) (0.5,0) (0,-3) in!!(0..2);
[[-3,3,0.5,0],[-2.95,2.985,0.5,-0.3],
[-2.9,2.94,0.5,-0.6]]

Using the actor function from Section 4, the
function ball realizing the bouncing ball object
can now be implemented as follows:

ball = actor
(motion (-3,-3) (0.5,0) (0,-3));

Fig. 5 shows a Pd patch for rendering the an-
imation. You can also find this patch in the
accompanying materials for your perusal, along
with a second Pd patch which adds some sound
effects to the animation.

7 Conclusion

Pure’s algebraic programming style probably
appeals most to mathematically inclined pro-
grammers. Nevertheless, we tried to strike a
balance between mathematical purity and prac-
ticality which will hopefully make Pure use-
ful also for non-mathematicians. In particular,
Pure’s dynamic typing, the seamless integra-
tion with C and the interpreter-like environment



Figure 5: Animation patch.

makes it usable as a “compiled scripting lan-
guage” for many purposes. This requires some
compromises (Pure isn’t really all that pure),
but the author subscribes to the philosophy that
a bird in the hand is worth two in the bushes.

In the signal processing realm, Pure seems
especially suited for asynchronous, event-based
processing of the kind found in graphical user
interfaces, animations, games, computer music
and robotics. But we also plan to improve the
support for plain audio processing, by provid-
ing an interface to Yann Orlarey’s Faust lan-
guage [4], and extending the existing Pd inter-
face so that audio processing objects can be im-
plemented in a direct fashion.

It goes without saying that realtime signal
processing is one area which can benefit tremen-
dously from parallel processing, especially as
multiprocessor systems are finally becoming
ubiquitous. This is one feature which Pure still
lacks right now. We are currently investigating
different approaches ranging from simple data
parallelism to full multiprocessing models. Pure
already has lazy futures à la Alice ML, so con-
current futures would be one suitable model [3].
Parallelization of array comprehensions is an-
other promising avenue.

Another important direction for future re-
search is the development of a high-level func-
tional framework for specifying asynchronous
signal processes. This is an area of active re-
search, and the jury is still out on what ap-

proach works best. Reactive systems are used
in a wide variety of different applications, each
with their own peculiarities. We think that
Pure will prove to be a useful tool to study these
applications and experiment with different al-
gebraic models, which might lead to interesting
new solutions.

Acknowledgements
Thanks are due to Claude Heiland-Allen for his
explanations of the Pd loader interface, and to
Yann Orlarey and the anonymous referees for
helpful comments.

References

[1] A. Gräf. Q: A functional programming lan-
guage for multimedia applications. In Pro-
ceedings of the 3rd International Linux Au-
dio Conference, pages 21–28, Karlsruhe,
2005. ZKM.

[2] P. Hudak. An algebraic theory of polymor-
phic temporal media. Technical Report RR-
1259, Yale University, Dept. of Computer
Science, 2003.

[3] J. Niehren, J. Schwinghammer, and
G. Smolka. A concurrent lambda calculus
with futures. Theoretical Computer Science,
364(3):338–356, Nov. 2006.

[4] Y. Orlarey, D. Fober, and S. Letz. Syntac-
tical and semantical aspects of Faust. Soft
Computing, 8(9):623–632, 2004.


