
Cabbage, a new GUI framework for Csound

Rory Walsh
Dundalk Institute of Technology

Dundalk, Co.Louth
Ireland.

rorywalsh@ear.ie

Abstract

Csound is one of the most extensive and powerful
audio programming languages available to
electroacoustic composers today. With the release
of the Csound Host API more and more developers
are harnessing the power of Csound in their own
applications. This has lead to a welcome increase
in the number of Csound front-ends and
customised host applications. This paper will
describe Cabbage, a new framework for the
development of cross-platform standalone Csound
software. This text will explore the implementation
of said framework and conclude with examples of
the framework in use.

Keywords

Computer Music, Musical Signal Processing,
Audio programming languages, Interface Design

1 Introduction
Cabbage is a new framework for the

development of standalone Csound[1]
applications. The framework provides Csound
programmers with no low-level programming
experience with a simple albeit powerful toolkit
for the development of standalone cross-platform
audio software. The main goal of this project is to
provide composers and musicians with a means of
easily building and distributing high-end audio
applications. The toolkit was developed in C++[2]
using both the Csound API[3] and the wxWidgets
GUI library[4].

1.1 The Csound Host API
An API (application programming interface) is

an interface provided by a computer system,
library or application, which provides users with a
way of accessing functions and routines particular
to a control program. Essentially APIs provide
developers with a means of harnessing an existing

applications functionality within a host
application.

The Csound API can be used to start any number
of Csound instances through a series of different
calling functions. The API also provides
mechanisms for two way communication with an
instance of Csound through the use of a 'named
software bus'. In short, the Csound API makes it
possible to harness all the power of Csound in
ones own application. Although written in C there
are a number of different interfaces available to
programmers who prefer to use other languages
such as Java, Python, Tcl, etc.

Building applications that harness the power of
Csound is a relatively simple process. In order to
implement the most basic Csound API application
users must:

• Create an instance of Csound
• Initialise the instance of Csound
• Compile Csound
• Perform the score
• Destroy Csound

A minimal example in C is presented below1:

#include <stdio.h>
#include "csound.h"

int main(int argc, char* argv[])
{
/*Create an instance of Csound*/
CSOUND*csound=csoundCreate(0);
/*Initialise the library*/
csoundInitialize(&argc, &argv, 0);
/*Compile Csound*/
int result=
csoundCompile(csound,argc,argv);

if(!result)
{
while(csoundPerformKsmps(csound)==0);
}

/*Finally destroy Csound*/

1In order to build this code users will need the csound
header files and the csound library.

csoundDestroy(csound);

return result;
}

The real power of the host API is in the way an
instance of Csound can communicate with the host
application through the use of the channel software
bus. Using one of the 'software bus' opcodes in
conjuntion with one of the channel API functions
provides users with a powerful interface for
communication between Csound and a host
applications.

1.2 wxWidgets
wxWidgets is a cross-platform library used for

the development of Graphical User Interface
(GUI) applications. Apart from being a GUI toolkit
wxWidgets also provides great tools for I/O
streams, drag and drop, multithreading, image
loading and saving, HTML viewing and printing,
and much more. A full overview of wxWidgets is
beyond the scope of this paper but it is still worth
while looking at the basic steps involved in
building a simple wxWidgets application.

Every wxWidgets program defines an
application class derived from wxApp. This
derived class handles the running of the
application. Each wxWidgets application will also
need an OnInit() function that's called when
wxWidgets is ready to start running an application.
This OnInit() function is similar to the main()
function in C. While the main application is
derived from the wxApp class, the main GUI
window is created by deriving a class from
wxFrame. wxFrame is the main GUI window that
users see when their application launches. It
usually contains a menu bar as well as other GUI
widgets which users interact with. Below is an
example of a very minimal wxWidgets application.

#include "wx/wx.h"

class myFrame : public wxFrame
{
public:
myFrame(const wxString& title, const
wxPoint& pos, const wxSize& size,
long style = wxDEFAULT_FRAME_STYLE);
};

myFrame::myFrame(const wxString& title,
const wxPoint& pos,
const wxSize& size, long style) :
wxFrame(NULL, -1, title, pos, size,
style)
{
}

class myApp : public wxApp
{
public:
 virtual bool OnInit();
};

IMPLEMENT_APP(myApp)

bool xxxApp::OnInit()
{
myFrame *frame = new myFrame("Hello
World", wxPoint(50, 50), wxSize(450,
340));

frame->Show(TRUE);
return TRUE;
}

1.3 GUIs and Csound
Providing Csound users with tools to develop

GUI instruments is not a unique concept. Since
Csound 4.23 it has been possible to develop GUI
instruments using Csound FLTK opcodes. While
the FLTK opcodes do provide users with a means
of developing graphical user interfaces their
implementation in Csound is not without it's
problems, in particular when it comes to using
them in multi-threaded applications[5].

2 The Cabbage GUI framework
Cabbage is being developed to help users realise

their own cross-platform standalone audio
software which combines the processing power of
Csound with the GUI possibilities of wxWidgets.
It is forseen that users will employ the framework
to create task specific applications such as
computer music instruments for works of
electroacoustic music, research tools for audio
programming and pedagogical tools for teaching
computer music and digital signal processing
techniques.

2.1 Technical aspects

As previously mentioned the toolkit was
developed in C++. It use both the Csound and
CsoundPerformanceThread classes which are part
of the 'interfaces' library; an auxiliary library for
Csound which provides interfaces for several
different programming languages.

The toolkit can be split into two parts, the
application framework and the pseudo-compiler.
The application framework is a generic binary file
that dynamically creates GUI forms, controls and
menus depending on the specific instructions
provided in the associated Csound file. The
pseudo-compiler which runs from the command

line bundles everything together by making a copy
of the generic binary file and appending the
contents of a Csound file to the end of said binary.
The advantage of embedding the Csound code into
the binary executable is that users need only
distribute the executable.

3 Cabbage GUI Syntax
The syntax used to create GUI controls is quite

straightforward and should be provided within
special Cabbage tags, i.e., <Cabbage> and
</Cabbage> at the top of a unified Csound file.
Each line of Cabbage specific code should relate
to one GUI control only and the syntax is non
case-sensitive.

3.1 GUI Controls

Each and every Cabbage control has 4 common
parameters; their position on screen and their size.
Apart from position and channel all other
parameters are optional and if left out the default
values will be assigned. Parameters can appear in
any order. Below is a list of the different GUI
controls currently available in Cabbage.

form caption("title"), position(Top,
Left), size(Width, Height)

Form creates the main application window. Top,
Left, Width and Height are all integer values. The
default values for size are 400x600. Forms do not
communicate with an instance of Csound, only
child widgets and menus contained within a form
can communicate with an instance of Csound,
therefore no channel identifier is needed.

scrollbar channel(“chanName”),
position(Top, Left), size(Width, Height),
min(float), max(float), value(float),
kind(“horizontal”/”vertical”)

Scrollbar creates a scrollbar/slider that can be used
to send data to Csound on the channel specified
through the “chanName” string. Min and Max
will determine the slider range while value
initialises the slider to a particular value. “kind”
specifies whether the slider will appear
horizontally or vertically. “kind” is set to
horizontal by default.

button channel(“chanName”)
position(Top, Left), size(Width,
Height),OnOffCaptio(“OnCaption”,“OffCapti
on”)

Button creates a button on screen that can be used
to turn instruments on or off. It can also be used to
turn parts of certain instruments on and off. The
“chanel” string identifies the channel on which
the host will communicate with an instance of
Csound. “OnCaption” and “OffCaption” determine
the strings that will appear on the button as users
toggles between two states, i.e., 0 or 1. By default
these captions are set to “On” and “Off” but the
user can specifiy any strings they wish.

checkbox channel(“chanName”),
position(Top, Left), size(Width, Height),
value(val), caption(“Caption”)

Checkbox creates a checkbox which functions like a
button only the associated caption will not change
when the user checks it. As with all controls capable
of sending data to an instance of Csound the
“chanName” string is the channel on which the
control will communicate with Csound. The value
attribute defaults to 0 while the caption is set by
defalt to the same name as the channel.

combobox channel(“chanName”),
position(Top, Left), size(Width, Height),
value(val), items(“item1”, “item2”, ...)

Combobox creates a drop-down list of items
which end-users can choose from. Once the user
selects an item, the index of their selection will be
sent to Csound on a channel named by the string
“chanName”. The default value is 0 and three
items named “item1”, “item2” and “item3” fill the
list by default.

textctrl caption(“Caption”),
position(Top, Left), size(Width, Height),
beveltype(“bevelType”), colour(“colour”),
fontColour(“fontColour”)

TextCtrl creates a static text control. This control
does not communicate with Csound, hence one
need not provide a channel name. “bevelType” can
be set to “lower”, “raised” or “none” while back
and font colour specify the colour for the
background and foreground text2.

groupbox caption(“Caption”),
position(Top, Left), size(Width, Height),
colour(“Colour”)

Groupbox creates a container for other GUI
controls. It does not communicate with Csound but

2Font and background colours must be given as
wxWidgets colours which are defined in the
wxColourDatabase class. More information can be
found in the wxWidgets documentation.

is useful when it comes to organising different
widgets.

3.2 Cabbage Menu controls

Cabbage also provides users with a means of
constructing their own user-defined menus which
can be used to send information to an instance of
Csound. Cabbage menu controls can also be used
to do the following:

● Start and stop a Csound performance.
● Open the Csound console so users can see

the messages being output by Csound
● Set CsOptions before an application starts

processing
● Exit an application

The basic syntax for every menu is as follows:

menu channel("chanName"), value(int),
(...)
Following this users specify the commands they
wish to appear on the menu. The value that is sent
on the associated channel will be the index of the
item that the user selects. The commands are as
follows:

RunCsound(“StartCaption”,”StopCaption”)

Adding this to a menu will create a file command
that will start or stop an instance of Csound when
it is pressed.

StdOut("Caption")
StdOut will add a new menu command which
when clicked will cause the Csound console to
appear. This is invaluable when debugging
applications

Exit("Caption")
Exit will create a menu command that will stop a
performance, destroy an instance of Csound and
close the GUI application.

CsSetup("Caption")
CsSetup will provide end-users with a menu
command that displays a text box where they can
edit their instruments CsOptions before a
performance. This is generally used to select
certain audio devices and can also be used to pass
strings to Csound.

TopItem("Caption")
TopItem places a user defined command at the top
of the menu bar.

Item("Caption")

The Item command places a command on the
menu bar. The following code shows an example
which creates two menus. The first one creates a
system-type menu that will start/stop an instance
of Csound, let the user view the Csound output
console and let the user exit the application. The
second menu can be used to send data to Csound,
in this case frequencies.
<Cabbage>
form caption("Example"), \
position(303, 137), size(10, 10)
menu channel("menu_0"), value(0), \
TopItem("File"), \
RunCsound("Start_Csound”,“Stop_Csound"),\
StdOut("View_Console"), Exit("Close"), \
DropDownItem("tester)
menu channel("menu_1"), value(4), \
TopItem("Freq"), \
DropDownItem("100Hz"), \
DropDownItem("200Hz”), \
DropDownItem("300Hz”), \
DropDownItem("400Hz"), \
DropDownItem("500Hz")
</Cabbage>
The menu can be used to interact with Csound
using the chnget opcode. For example:

(...)
kfreqChoice chnget “menu_1”
if(kfreq==0) then
aout oscil 10000, 100, 1
elseif(kfreq==1) then
aout oscil 10000, 200, 1
(...)

4 Putting it all together
In order for different Cabbage widgets to

communicate with an instance of Csound one must
make use of the previously mentioned channel
opcodes. While the chnget and chnset
opcodes are the easiest to implement chnexport
allows users to set up global channels for both
input and output. The syntax for chnexport is
defined in the Csound manual as:

gkval chnexport Sname, imode[, itype,
idflt, imin, imax]

Sname is the channel name. This should match the
“chanName” of the Cabbage control the user
wishes to communicate with. imode specifies

whether the user wishes to set up a channel for
output or input, or both. idflt specifies the default
value for the channel. itype specifies the channel
subtype. This defaults to 0 in which case idflt,
imin, and imax are ignored. It can also be set to
integer values only, linear or exponential.
chnexport generally appears outside instrument
definitions. Below is a simple example that uses a
slider to change the frequency of an oscillator.

<Cabbage>
form captopn("Freq App"), \
position(10, 10), size(219, 90)
menu channel("menu_0"), value(0), \
TopItem("File"), \
RunCsound("Start”,“Stop"), \
StdOut("View_Console"), Exit("Close")
scrollbar channel("freq"), \
position(8, 12), value(0), max(1000), \
min(0)
</Cabbage>
<CsoundSynthesizer>
<CsOptions>
-odevaudio -b10 -idevaudio
</CsOptions>
<CsInstruments>
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
/* retrieve data from channel “freq”.
Mode is set to 1 to indicate that the
channel is used for input */
gkscrollbar_0 chnexport "freq", 1

instr 1
/* use the data from channel “freq” to
change frequency of oscillator */
a1 oscil 10000, gkscrollbar_0, 1
out a1
endin

</CsInstruments>
<CsScore>
f1 0 1024 10 1
i1 0 100
</CsScore>
</CsoundSynthesizer>

In order to build the standalone application users
must run the Cabbage compiler from the command
line as follows:

>cabbage freqApp.csd SampleApp

To illustrate how data can be sent from an instance
of Csound to a host application automation can be
added to the instrument presented above. We can
instruct our Csound instrument to send data to the
scrollbar on the channel named “freq” as in the
example below.

<CsInstruments>
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

/* Mode is set to 3 to indicate that the
channel is used for both input and output
*/
gkscrollbar_0 chnexport "freq", 3

instr 1
kauto linseg 0, 2, 1000, 2, 100
gkscrollbar_0 = kauto
a1 oscil 10000, gkscrollbar_0, 1
out a1
endin

</CsInstruments>

Sending data from an instance of Csound to the
host application is useful when users want their
sliders to mimic real faders such as those found on
a MIDI controller. The following instrument will
cause our on-screen sliders to move in sympathy
with a MIDI fader.

(...)
<CsInstruments>
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

gkscrollbar_0 chnexport "freq", 3

instr 1
kMsldr ctrl7 7, 1, 0, 1000
gkscrollbar_0 = kMsldr
a1 oscil 10000, gkscrollbar_0, 1
out a1
endin

</CsInstruments>

5 Examples
Presented below are two complete examples.

The first one is a simple subtractive synthesiser.
The user can choose between an additive set of
harmonically related cosine partials or band-
limited noise as the input source. The sliders are
used to filter frequencies from particular frequency
bands.

<Cabbage>
form caption("Subtractive Synth") \
position(10, 10) size(250, 287)
menu channel("menu_0") value(0), \
TopItem("File"), \
RunCsound("Start”, “Csound"), \
StdOut("View_Console"), \
Exit("Close")
groupbox caption("Resonant Frequencies")\
, position(62, 12), size(220, 164), \
scrollbar channel("scrollbar_1"), \
position(85, 23), size(160, 17), min(0),\
max(500), value(200)
textctrl channel("panel_1"), \
position(87, 184), size(40, 16) \
value("0")
scrollbar channel("scrollbar_2"), \
position(110, 23), size(160, 17), \
min(500), max(1000), value(800)
textctrl channel("panel_2"), \
position(110, 184), size(40, 16), \
value("0")
scrollbar channel("scrollbar_3"), \
position(137, 23), size(160, 17), \
min(1000), max(1500), value(1300)
textctrl channel("panel_3"), \
position(137, 183), size(44, 16), \
value("0")
scrollbar channel("scrollbar_4"),
position(165, 23), size(160, 17), \
min(1500), max(2000), value(1800)
textctrl channel("panel_4"),
position(166, 184), size(44, 16), \
value("0")
scrollbar channel("scrollbar_5"), \
position(193, 23), size(160, 17), \
min(2000), max(2500), value(2000)
textctrl channel("panel_5)", \
position(194, 184), size(44, 16), \
value("0")
combobox channel("combobox_12"), \
position(24, 36), size(60, 21), \
value(0), items("Buzz", “Noise")
groupbox caption("Select Input"), \
position(8, 12), size(116, 48)
</Cabbage>
<CsOptions>

-odevaudio -b10
</CsOptions>
<CsoundSynthesizer>
<CsInstruments>
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

gkscrollbar_1 chnexport "scrollbar_1", 1
gkscrollbar_1 chnexport "panel_1", 2
gkscrollbar_2 chnexport "scrollbar_2", 1
gkscrollbar_2 chnexport "panel_2", 2
gkscrollbar_3 chnexport "scrollbar_3", 1
gkscrollbar_3 chnexport "panel_3", 2
gkscrollbar_4 chnexport "scrollbar_4", 1
gkscrollbar_4 chnexport "panel_4", 2
gkscrollbar_5 chnexport "scrollbar_5", 1
gkscrollbar_5 chnexport "panel_5", 2
gkSrc chnexport "combobox_12", 1

instr 1
if(gkSrc==0) then
abuz buzz 10000, 0, 1000, 1;
elseif(gkSrc==1) then
abuz randi 10000, 10000;
endif

iq1 = 300
iq2 = 300

; filterbank 1
afl1 reson abuz, gkscrollbar_1,
gkscrollbar_1/iq1
afl2 reson afl1, gkscrollbar_2,
gkscrollbar_2/iq1
afl3 reson afl2, gkscrollbar_3,
gkscrollbar_3/iq1
afl4 reson afl3, gkscrollbar_4,
gkscrollbar_4/iq1
afl5 reson afl4, gkscrollbar_5,
gkscrollbar_5/iq1

; filterbank 2
af21 reson abuz, 1700, 1700/iq2
af22 reson af21, 2000, 2000/iq2
af23 reson af22, 2800, 2800/iq2
af24 reson af23, 4000, 4000/iq2
af25 reson af24, 5900, 5000/iq2

amix = afl1+afl2+afl3+afl4+afl5
aout balance amix, abuz
out aout
endin
</CsInstruments>
<CsScore>
f1 0 4096 10 1
i1 0 300
</CsScore>
</CsoundSynthesizer>

The second exmple creates a real-time frequency
shifter which makes use of several phase vocoder
streaming (PVS) opcodes[6]. The frequency is set
randomly and users can specify the frequency
range and the rate at which random numbers are
generated. Users can also select the type of

random number generation they wish to use in
order to control frequencies.

<Cabbage>
form captin("PVS Freq Shifter"),
position(10, 10), size(284, 219)
menu channel("menu_0"), value(0), \
TopItem("File"), \
RunCsound("Start|Stop"), \
CsSetup("Settings"), \
StdOut("View_Console"), Exit("Close")
groupbox caption("Rand Type"),
position(8, 12),\ size(80, 52)
combobox channel("randType"), \
position(28, 24), size(60, 21), \
value(1), items("randh", "randi")
groupbox caption("Frequency Range"), \
position(60, 12), size(252, 44)
scrollbar channel("freqRange"), \
position(78, 18), size(172, 17), \
min(0), max(300)
textctrl channel("panel_4"), \
position(78, 196), size(60, 16), \
value("0"), beveltype("lowered"),
groupbox caption("Rand Frequency"), \
position(252, 48), size(106, 12)
scrollbar channel("randFreq"),
position(126, 19), size(172, 17), \
min(0), max(100)
textctrl channel("panel_7"), \
position(126, 196), size(60, 16), \
value("0"), beveltype("lowered")
</Cabbage>
<CsoundSynthesizer>
<CsOptions>
-odevaudio -b10 -idevaudio
</CsOptions>
<CsInstruments>
gkRandType chnexport "randType", 1
gkFreqRange chnexport "freqRange", 1
gkFreqRange chnexport "panel_4", 2
gkRandFreq chnexport "randFreq", 1
gkRandFreq chnexport "panel_7", 2

sr = 44100
kr = 44100
ksmps = 1
nchnls = 2

instr 1
asig1 inch 1;
gkRange = gkFreqRange/100

if (gkRandType==1) then
krand randh gkFreqRange/100, gkRandFreq
elseif(gkRandFreq==2) then
krand randi gkFreqRange/100, gkRandFreq
endif

fim pvsanal asig1,1024,256,1024,0
pvoc analysis
fsig pvscale fim, krand, 2
apvs pvsynth fsig
pvoc synthesis
acomb1 comb apvs, 1, 0.2
acomb2 comb apvs, 1, 0.15

outs acomb1, acomb2

endin

</CsInstruments>
<CsScore>
f1 0 1024 10 1
i1 1 200
</CsScore>
</CsoundSynthesizer>

6 Conclusion
The current version of Cabbage works quite well

but there is still plenty of development to be
carried out before the first public release. Work
has begun on developing an interface whereby
users can easily add new components to the
toolkit. A component for viewing spectral data is
also currently being developed.

 Another idea being investigated is providing
users with a simple mechanism for routing audio
between Cabbage applications so that each
application can become part of a bigger modular
system. Improvements also need to be made to the
build system. Currently Cabbage can be built using
a GNU makefile but other build systems are being
investigated. A simple 'drag and drop' interface for
designing Cabbage applications is also being
considered.

7 Acknowledgements
I would like to thank all the developers on the

Csound mailing lists for their support and advice.
In particular I would like to thank Victor
Lazzarini, Matt Ingalls, Michael Goggins, and
Istvan Varga for their work on the Csound Host
API, without which this project would not have
been possible. Finally I wish to thank Dundalk
Institute of Technology, Ireland, for their
continued support of my research.

References
[1] Barry Vercoe et Al. 2005. The Csound

Reference Manual.
http://www.csounds.com/manual/html/index.html

[2] Bjarne Stroustrop. 1991. The C++
Programming Language, second edition.
Addison-Wesley, New York.

[3] John ffitch. 2004. On The Design of
Csound5. Proceedings of the 3rd Linux Audio
Developers Conference. ZKM, Karlsruhe,
Germany.

[4] wxWidgets homepage: www.wxWidgets.org
[5] Csound mailing list archive, May 02, 2006:

http://www.nabble.com/Standalone-FLTK-exe
%27s-from-Cabbage-tf1537330.html#a4189937

[6] Victor Lazzarini, Joseph Timoney and
Thomas Lysaght. 2006. Streaming Frequency-
Domain DAFX in Csound 5. Proc. of the 9th Int.
Conf. on Digital Audio Effects (DAFX) 2006,
Montreal, Canada. pp.275-278.

http://www.wxWidgets.org/
http://www.nabble.com/Standalone-FLTK-exe's-from-Cabbage-tf1537330.html#a4189937
http://www.nabble.com/Standalone-FLTK-exe's-from-Cabbage-tf1537330.html#a4189937

	1Introduction
	1.1The Csound Host API
	1.2wxWidgets
	1.3GUIs and Csound

	2The Cabbage GUI framework
	2.1Technical aspects

	3Cabbage GUI Syntax
	3.1GUI Controls
	3.2Cabbage Menu controls

	4Putting it all together
	5Examples
	6Conclusion
	7Acknowledgements

