
L I N U X
A U D I O
C O N F E R E N C E
B E R L I N

5
w w w . l a c . t u - b e r l i n . d e
TU-Berlin 22.-25.03.07

Lectures/Demos/Workshops
Concerts/LinuxSoundnight

P R O C E E D I N g S

Published by:
Technische Universität Berlin, Germany
March 2007
All copyrights remain with the authors
www.lac.tu-berlin.de

Credits:
Cover design and logos: Alexander Grüner
Layout: Marije Baalman
Typesetting: LaTeX

Thanks to:
Vincent Verfaille for creating and sharing the DAFX’06 “How to make your own Proceedings” examples.

Printed in Berlin by TU Haus-Druckerei — March 2007

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-iv

Preface

The International Linux Audio Conference 2007, the fifth of its kind, is taking place at the Technis-
che Universität Berlin.
We are very glad to have been given the opportunity to organise this event, and we hope to have
been able to put together an interesting conference program, both for developers and users, thanks
to many submissions of our participants, as well as the support from our cooperation partners.
The DAAD - Berliner Künstlerprogramm has supported us by printing the flyers and inviting some
of the composers. The Cervantes Institute has given us support for involving composers from Latin
America and Spain. Tesla has been a generous host for two concert evenings. Furthermore, Maerz-

Musik and the C-Base have given us a place for the lounge and club concerts.
The Seminar für Medienwissenschaften of the Humboldt Universität zu Berlin have contributed their
Signallabor, a computer pool with 6 Linux audio workstations and a multichannel setup, in which
the Hands On Demos are being held.
Ableton has given us financial support to close the budget.
As in the past two years, all submitted papers have undergone a review process. Each paper was
reviewed by at least two independent experts, whose feedback helped the authors improve their
paper before the final version that you will find in the proceedings. This year, we also printed in the
proceedings the abstracts of the tutorials, workshops and demos, as well as the program texts of the
concerts, to create a complete documentation of the conference.
Thanks to everyone who has participated in bringing this Linux Audio Conference to life - authors,
presenters, composers, sound artists, reviewers, helpers and anyone we may have forgotten - and we
wish everyone a pleasant and enjoyable stay at the TU and in Berlin.

Marije Baalman, Folkmar Hein, Stefan Kersten and Simon Schampijer
Organisation Team LAC2007

Berlin, March 2007

LAC07-iv

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-v

LAC 2007 Organisation Team
Main orga:
Marije Baalman (TU)
Folkmar Hein (TU)
Stefan Kersten
Simon Schampijer (TU)

Assistance:
Miguel Álvarez-Fernández
Dimitar Anastasov (TU)
Philippus Baalman (Universiteit Twente)
Oswald Berthold (HU)
Martin Carlé (HU)
Jef Chippewa (CEC)
Christian Dietz (TU)
Fabian Gawlik (TU)
Florian Goltz (TU)
Doris Graße (TU)
Alexander Grüner
Eckehard Güther (TU)
Matthias Herder (TU)
Andreas Lehmann (TU)
Sebastian Roos (TU)
Sascha Spors (TU/T-Labs)
Torben Hohn (TU)
Wilm Thoben (TU)
Jan Weil (TU)
Stefan Weinzierl (TU)

Tesla/DAAD:
Ingrid Beirer (DAAD)
Carsten Seiffart (Tesla)

Streaming:
Jörn Nettingsmeier
Eric Dantan Rzewnicki

Campusradio:
Andreas Rotter
Robert Damrau

LAC07-v

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-vi

Partners

Ableton

Fachgebiet Audiokommunikation, Institut für Sprache und Kommunikation, Technische Universität Berlin

Berliner Künstlerprogramm des DAAD

C-Base

Seminar für Medienwissenschaft, Humboldt-Universität zu Berlin

Instituto Cervantes Berlin

MaerzMusik

Studio für elektroakustische Musik (SeaM), Musikhochschule Weimar

Tesla

LAC07-vi

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-vii

Review Committee

Fons Adriaensen Laboratorio di Acustica ed Elettroacustica, Parma, Italy

Marije Baalman Audiokommunikation, TU Berlin, sound artist

Frank Barknecht GOTO10 (goto10.org)

Ivica Ico Bukvic D.M.A., Composition, Music Technology, CCTAD, and CHCI, Virginia Tech,
Dept. of Music

Götz Dipper ZKM | Institute for Music and Acoustics, Karlsruhe

Dr. Albert Gräf Dept. of Music Informatics, Institute of Musicology, Johannes Gutenberg Univer-
sity Mainz, Germany

Steve Harris Garlik Limited, www.garlik.com

Takashi Iwai SuSe, ALSA development

Daniel James 64studio, www.64studio.com

Victor Lazzarini Music Technology Laboratory, Music Department, National University of Ire-
land, Maynooth

Fernando Lopez-Lezcano Sysadmin/Lecturer/Composer, CCRMA, Stanford University

Stefan Kersten Sound artist and freelance programmer

Jörn Nettingsmeier freelance audio/video engineer

Frank Neumann Harman/Becker Automotive Systems and “Passionate Linux Audio user/kind-of
developer and evangelist”

Dave Phillips Linux audio documentation expert

Simon Schampijer Audiokommunikation, TU Berlin, OLPC

Sascha Spors Telekom T-Labs / TU Berlin

Jan Weil Nachrichtenübertragung, TU Berlin

LAC07-vii

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-viii

Music Jury

Miguel Álvarez-Fernández Composer and Sound Artist

Marije Baalman Audiokommunikation, TU Berlin

Folkmar Hein Audiokommunikation, TU Berlin

Stefan Kersten Sound artist and freelance programmer

Martin Supper Universität der Künste, Berlin

Simon Schampijer Audiokommunikation, TU Berlin

Wilm Thoben Audiokommunikation, TU Berlin

LAC07-viii

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-ix

Addresses

TU Main building
Straße des 17. Juni 135,
Berlin-Charlottenburg
U2 - Ernst Reuter Platz
S-Bahn - Tiergarten

C-Base
Rungestraße 20,
Berlin-Mitte
U8 - Jannowitzbrücke
S-Bahn - Jannowitzbrücke

Instituto Cervantes Berlin
Rosenstrasse 18-91,
Berlin-Mitte
U8 - Weinmeisterstraße
S-Bahn - Hackescher Markt

MaerzMusik
Haus der Berliner Festspiele,
Schaperstrasse 24,
Berlin-Wilmersdorf
U1 - Spichernstraße

Tesla
Klosterstraße 68-70,
Berlin-Mitte
U2 - Klosterstrasse
S-Bahn - Alexanderplatz, Jannowitzbrücke

LAC07-ix

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-x

LAC07-x

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-xi

Contents

Thursday - March 22 - Papers

1 Proposal for an XML format for Time, Positions and Parts of Audio Waveforms
Jens Gulden and Hanns Holger Rutz

13 Real-Time Multiple-Description Coding of Speech Signals
Jan Weil, Kai Clüver and Thomas Sikora

18 Musical Signal Scripting with PySndObj
Victor Lazzarini

24 Interfacing Pure Data with Faust
Albert Gräf

32 Getting Linux to produce Music fast and powerful
Hartmut Noack

37 Music Composition through Spectral Modeling Synthesis and Pure Data
Edgar Barroso and Alfonso Perez

Friday - March 23 - Papers

43 Qtractor - A Audio/MIDI multi-track sequencer
Rui Nuno Capela

49 JJack: Using the JACK Audio Connection Kit with Java
Jens Gulden

55 pnpd/nova, a new audio synthesis engine with a dataflow language
Tim Blechmann

60 Developing LADSPA Plugins with Csound
Rory Walsh and Victor Lazzarini

64 A Tetrahedral Microphone Processor for Ambisonic Recording
Fons Adriaensen

70 Audio Metering and Linux
Andrés Cabrera

Saturday - March 24 - Papers

76 Renewed architecture of the sWONDER software for Wave Field Synthesis on large scale systems
Marije Baalman, Torben Hohn, Simon Schampijer and Thilo Koch

84 Offener Schaltkreis, An interactive Sound Installation
Christoph Haag, Martin Rumori, Franziska Windisch, Ludwig Zeller

88 Visual prototyping of audio applications
David Garcia, Pau Arumi and Xavier Amatrinain

96 Model Driven Software Development with SuperCollider and the UML
Jens Gulden

Sunday - March 25 - Papers

104 pure-dyne
Aymeric Mansoux, Antonios Galanopoulos and Chun Lee

108 The One Laptop Per Child (OLPC) Audio Subsystem
Jaya Kumar

LAC07-xi

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-xii

113 Firewire Audio on Linux
Pieter Palmers

Further Papers

121 Beyond open source music software: extending open source philosophy to the music with CODES
Evandro Manara Milleto, Luciano Vargas Flores, Daniel Eugenio Kuck, Marcelo Soares Pimenta and
Jerome Rutily

Keynotes and panel discussion

128 Audio on Linux: crashing into the 80/20 limit
Paul Davis

128 Open Source as a Special Kind of Component-Based System Development
Steffen Evers

128 Panel Discussion - “if (Linux Audio), then {...}, else {...}”
moderated by Stefan Weinzierl

Tutorials

128 openSUSE JAD - Tutorials for installation and producing music
Michael Bohle and the JackLab Team

129 Integrating Documentation, End-User Support, and Developer Resources using *.linuxaudio.org
Ivica Ico Bukvic, Robin Gareus and Daniel James

Demos

129 Buzztard Music Production Environment
Stefan Kost and Thomas Wabner

129 blue: a music composition environment for Csound
Steven Yi

130 Firewire Audio on Linux
Pieter Palmers

130 Stereo, Multichannel and Binaural Sound Spatialization in Pure-Data
Georg Holzmann

130 A Software-based Mixing Desk for Acousmatic Sound Diffusion
André Bartetzki

Workshops

131 From resistors to samples: Developing open hardware instruments using Arduino, Pure Data and Process-
ing
Recursive Dog (Dolo Piqueras, Emanuele Mazza and Enrique Tomás)

131 Developing Shared Tools: a Researchers Integration Medium
Fábio Furlanete and Renato Fabbri

131 Livecoding with SuperCollider
Alberto De Campo and Powerbooks Unplugged

132 Python for Sound Manipulation
Renato Fabbri and Fábio Furlanete

132 Canorus - a music score editor
Reinhard Katzmann and Matevž Jekovec

132 Stochastic Composition with SuperCollider
Sergio Luque

LAC07-xii

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-xiii

Hands On Demos

133 Compiling Simulink Models as SuperCollider UnitGenerators
Martin Carlé and Sönke Hahn

133 Video Editing with the Open Movie Editor
Richard Spindler

133 Faust Hands On Demo
Yann Orlarey and Albert Gräf

Technical Tour

133 Technical tour of the T-Labs
Sascha Spors

Wave Field Synthesis compositions

134 East (from Atlas)
Christian Calon

134 Rituale
Hans Tutschku

135 Streams
Victor Lazzarini

135 Reale Existenz!
André Bartetzki

Installations

136 MODES OF INTERFERENCE / 3
Agostino Di Scipio

136 Command Control Communications
Hanns Holger Rutz and Cem Akkan

137 fijuu
Julian Oliver and Steven Pickles

Club Concert at C-Base

137 Live performance
Yue

137 Video Piece
Jim Hearon

138 Life coding over live coding
xxxxx

138 faltig
Frank Barknecht

138 Linux Cound Night - Plug ’n’ Chill

Concert at Cervantes

138 De la incertidumbre (2005)
Sergio Luque

139 Live audiovisual performance
Recursive Dog (Dolo Piqueras, Emanuele Mazza and Enrique Tomás)

LAC07-xiii

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-xiv

139 CYT / DUX / TAU
Edgar Barroso

Concert I at Tesla

140 Kitchen <-> Miniature(s)
Fernando Lopez-Lezcano

140 Schnitt // Stelle
Orm Finnendahl

141 Strahlung
Hanns Holger Rutz

141 North (from Atlas)
Christian Calon

Concert II at Tesla

141 Expression
André Bartetzki

141 Gebrochene Klanggestalten
Weiwei Lan

142 The Electronic Unicorn
Georg Holzmann

142 Odd
Edgar Barroso

143 Distance Liquide
Hans Tutschku

Sonic Arts Lounge at MaerzMusik

143 NTSC - NotTheSameColor
Dieb13 and Billy Roisz

143 rf (gophgonih) | Total Automation vs. Human Interaction
Farmersmanual

Unplugged Concert - Lichthof

143 Livecoding
Alberto De Campo and Powerbooks Unplugged

144 Open Hardware Jam
Recursive Dog

144 Live Code vs. Open Hardware

145 Index of Authors

LAC07-xiv

���������	����
���
�	�������������
��
���������������
���
��������
�	�����������	����

��
����
���

���������	
����
�������	���������������
���

�
������������
�������
����

����	
������� !
�����	

 �

�� ������!��"

"��	���#���
�
��������������������"
���

$#��%
����

���������&��#� '
�����	

�#����$�

(�	����� �)
��#�����	
��	
����!������
���������
�#�������������������	��	
����#���	���'��
#�������	�
���
� ��
	��� �� �)��)��
	� ���
���	
� � �� �)���������
���
�	
	����!
�)�����#������
�����*�
��)
��#��������
#������������������
������	����
������	��
�
��������
!�� � �))
��� � ���� � �))����!�
 � �� � ���
� � ���
 !��
	�
�
	����(�)�����������#�'��
 ��)�
�
��������'���	�
)����	
�#�������������������+�)��������	��
���������
��	�� �'��
#����� � �))�� � ������������ ��
��	��� � ���
��
�
�)�������� ���	�)����� ����������	���'��
#����
�����)�
�
����	��
���!��
���
�������	�##
�
�����	
���
���
,������)������#���'��
#���������	���	��������
���

(�)������)
 � ��)�
�
������� � ���� � �
���&
� � ��
#������������!�
�����������!�
�

%�&'����

(�	�������
��"���
�������������
��	���

()
�����$���

%
�	
����!
���)��)�����#�����	
�������
���������
�# ������ ����������� ��	 ��	
��� �# ���	���'��
#������
��
 ���	
� � �� � ���� � �))����!�
 � #�� � ���
� � +��	� ��#�
��������)�
�
����	����
 !��
	��
	���

"
����� � - � �������
� � ��
 � �

	 � #�� � � � �������
���
������
�!�
�����	��	� #�� � �������� �)�������� � ���
��	���'��
#�������	����+����)������#���
�����
�
#����'��� � �
����� � . � ��
� � �+
���
� � � � ����
)�����
��	
� � #����������� �'���� �)����	
� � ��
 �!���� � #���
��)�
�
����� ��� �*�
�	��� � #������ � /� � �
����� �0�
��������������� �*�
 !��
	���)�
�
���������#���
�
��	
� � �
�� � �����	��
	� � "
����� � 1 � ���'� � ��
)������)���� � ��)�
�
������� � ����� � ��
 � *�
�
#������ � '����
� � �� � "�)
�2����	
��.� � ��
 � ����
���
������ ��# �����	 ����
� ���))��� ��� � ��)�
�
��
	�!��
��
 � �
�� '���	 � ��	�� � #��
 �
	���� � 3��
�+���� � ���
���
�
	 �!� � �
����� �4� ��������� � �
������5 � �+
���
��
#����
�)�������	��
������6����
����!��
#�������	����
��������

��
 � �))
�	�, � �������� � �� � *�
 "��
���
	
#������� � '���� � #������&
� � ��
 �)��)��
	 � *�
�
�������
�

* �����	�����$����
�	����	�����

	������$�
��������'���	����

��
�����
 ��# �������
	�� �	��� ������� � ����
��
��
'������
��!�����������������
������	��
#
�������	���	����
)�������	�)����������#����
 !��
	��
	�������
�������
��
����� �
�
�� �)������� � �
	�� � #��
 � �� � ��
�
����������
	 � ���������� � !���+� � 3�
�� � �		��������
	��
����� � �# � ����������� � !���	
�� � ��
 � ����
�� � �#�
)��
����� � ��
� � �
���� � ��������� � �
��	��� � �� � ���

!��
	 ��
	���� � ��	 � ���� ���#��	� �� �'�	
� ����
 ��#�
)����!�����
��#�����������������#����������

$�'
�
�� � ����� � ��	�� �
�
� � #�� � ��	�� � 	��� � ���
����	��	��# � ���
��)
��!����� �#�� ����+��� �)���������
��	� �)
��#���� � �
����� � �� � ������!�
� ���
 � #�
�	 ��#�
)����!�
��))����������#��������������	��	��� ����
7�
�������
� � #��� � ��
����
 � ������� � ��������
� � ���
�����#���������	����
�������
����������	 ������
�����
!�
�+ !
������)�����	��
����

������))�������������
��,����8�����
����� � �� �)����!�� ���� �)�����
 �����
�
'�
��������������������������������	���#��
��
������
��
�����#��
�	��
�	�9����������
�!
��������� �����/�
�
��
�
��	:������������
����
���'�
����
�����
�)��	����
)�������)���
	�#������������#��
�

%�
� � ���)����� � '��� � ����	� � �� � ��
������
�
�����
 � ���
������
 �)�
�
� � ��	 � �������������� � ��
�
)��)
���
����������#���	���#��
����	���
����������#�
���
 �)�������� � !
���
� � ������ � ��
�
#��
� � �
'�
�))���������#�
�	��#�����
���������������	
	����������

�
��
��'��������	
��������
	����
����������������
�

+ ���������,�
$������������

+-(!�.������
��

%���
 � �
��� � ��+
 � ;���
; � ��	 � ;)�������; � �

��
��
���� � 	
#��
	 � �� � � �)������� � �
��
 � ����������
����	����
�����0<����
 �)��
��������������������
,��
;���
;���	�;)�������;����
����
�#��
�����	������)�
�
	��
��������#��
���������
����������#����
����	�

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-1

LAC07-1

)�������� � �� �������� �)�
�
� ���
� ���
�����
	� �� ����
�!�����
��
��
��/���
�	����
����������	
)
�	����
����
���
����	���
�������
�����
�������������������
�������
�� �
���� � ��
 � �
�)� � �# � � �)�
�
� � �� � � �'��
#���=��
���)�
 ���
��/�����������������������	
>���
�	�����
�)
��#�� ���	
� ��# � ���
����	�)�������� � �� ���������
)�
�
���������!
��
������
	������#������!�����
���
'����
���
����	�)�������������#���
,��)�
���
���!
���#�
������
���	��������)�
 #���
��#������
���������!���
�� � ��
�� � ���
� � ��	 �)�������� � �� � �
������
���
���
�	
)
�	
������
���	
��)��)��
	��
�
���)���
��
��
�
���������

�����
������
)���� ��
>���
�
�������������
�#����
�����	����� �)
��#������
�)�
��������#���
��
������
7

� ���� ��� � � �������� �)�
�
 ����� ���)�� � �
#
� � ���
����+� ���
��
���� � =1�-��=�� �����
�)
������� �� � ��
�
����
,���#�����������
�����������
#
�������!
��
�
����
�
�� � ����
 � �
���� � =���

�����	= !
��� � ����
'�
�����	�����'��
#����	���������!
����
�����
���!
� � �# � ���)�
 #���
�� � ���
 � ��� � ���� � !
�
��	
�����	����!
�����
�����
������)�����
�����=�'�
����	���#�)����(=��

�
��������� �� �������� �)�
�
� ���
 ���	
�����	����
���
�
���� � �
�����
 � �� � ���
� �)�������� � �
���� � =���
!
���.��#�
����
�
�	��#���
��
���	��
��
=������������
�� � �!�����
 �)�������� � 	
���
	 � !� � �����
 � ���

����
��������� ���������� �� ��)
��#�
	��
������
���
!���
#
�������������
���������������!��
	�'������
������##�
�������	
���
����
�	������
�!
�'

����
�
�'��)���������

�
	
��� �#���������)�
�
������!
��
���
	����
����
���
� � �� ��
�
��� �	�##
�
���'�����!�� ��	
��� ����
�����!
����)�
�
������
���
	����
�������
�����
�
�)
��#�������� �� � ������
>���
	� �� �����'�#�
,�!�
�
	
���������� � �# ��	
��� �
���� � ������ �)���� � �� � ��
����
�����
 � �
>�
��
� �)������ � ��
� � �� � ��
��
���������� ��	
��� �#����
� ��	
��������� ��#����
��
�	
��������
�����������
����
��#�

�����
���)�

+-* �����
����&

�� �
�!
	 � ��
 � �!��
 � �
>���
�
��� � ���� � ��
#������&
	���	
�������
)������
������	��		��������
�
�)
� � �
��� � ��
 � �����	��
	 � �� � ��	
� �
�
�
�����
��
�
�!�������	
� �
������
����#����'�7

��	����
��

��
�)���������
)�
�
���������#�������	������������
)�
�
��(�'��
#�����������	�����
	�����	����������
����
	������������
	�'�����������
���
�����
�)������
!
��)
��#�
	��������	�����
���������
����
��'�����
����	
#����������#�, �����
���	��
���������
	����
����	���������
������
�)� ��������
	�����	�����������
����!
��)
��#�
	�'�����	
���
����
���������������#����

��	��)�
�
 � �� � ��
 � '��
#���� � ?)��������� � ��
'��
#����������������
����	�������
#
���������3�
���
'��
#�����'��������)�������
#
�
��
����
,��������
�
�	���
��������#����'������������!
���# ������������
!
�	
���
	�

������
�

(��
������� ������ �#���;)���������� ���'��
#���;��
�����������
���
������
	�9���+
�:���������������
�����
�� ��
 � ��'��� � �)
��#�
	 � �
�����
 � �� � �����
��
	����
���#�
����
 ���	
��	����
� �#���)��
�� ����
����
��
 �'��
#������� � ��)������� � ��
 �!
������� ��# � ��
�

����
 � '��
#���� � '���� �
,)�
��
� � �� � �!�����
�
)����������(��
������������
#
�����������
���������
���'������������
�����
�������
�����
)���#������������
���
�
��������
������
���
����	���������
�����
)���#�
�������

�������

(��
������� � ����� � #�� � ;)��� � �# � � �'��
#���;� �(�
������ �� � 	
�����
	 � !� � � ������ ������� ��	 � �� �
�	
������� � 3�
�� � ����
 � ���� � �
#
�
��
� �
,����� � ��
�
�	
���������� ���
�)�������� ��)
��#�
	�!�� ��
 ������ �
����������	�
�	 �������������������
��
�����
������
�
)��
�� ����
��/����������
�������
����������
������
�
'������	
���#�
����
�����>�
���

(�����
�����
������
����)
��#�
	������'�����������
��)��
�� ����
���������
	�'�������������'����������
����
��'����������	��# ������
�� ����
� �'���������� ��� ���
����	��#������
������
��
���

<�##
�
�������
��������
���)�
��
 � ��) ���� � ����
 � '���� � �
)�
�
��� � � � '���
�
'��
#������ �����
	���
 ��	���
�������@� ��
�����
�
����
��
�
���
�����
��
	�
,)�������������
�	���
�
����
�����)������@7@ �
���������)�!
�'

��
����'��
#����
��	 � ��
 �����
� ����
 � �
)�
�
����� � ��� � �/��
�� �
�
���
'��
#��� � =�������������= � ��� � ��
 � ����
� ����
�
��������
	 �'��� � ���� � "

 � ��
 � �)
��#������� � �# � ��
�
������
�
�
�� � !
��' � �� � �
������0� *�

��)�
�
���������#���
���	
���

������

���
����������	������������)�
�
��(��	
���	
	�
!����
��
>���
�
��������������!
��)
��#�
	�
���
�����
���!
� � �# � !
���� � �� � ���)�
 #���
�� � �� � ���
 � ���
�
���	�����������
���	�������
�����
������
��
������#�
��
 � ����
�� �)��
�� ����
� � "��� � 	�##
�
�� �)����!�
�
	
����)�������#��������
����
	�������	�����

@��
��	
���#�������
� ����
���������	��
	�������
�)
�
����
)��������+������������)������#���
��
������
�����
�
��
��������/��������������������
���
�������	
����	�������
�
� � �
)���
	 � �� � #����
 ��
������ ��# � ��
 ���	
�� �
���� � !��
����'������������
������+
���
����
��#�����) ���������
�

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-2

LAC07-2

��
����
��##�
��!
�'

�����
�����
�!��
 	����
�
��	�� ��)
��#�
	 �	����
� �� ����� ��
)�
�
��
	�!�����
�������
��#������

������ 	����

(����!����������� ����
�#����'��������������!
�
	
���
	����
��������������)��
	��#������
����)����
��	��� ��)������ � ��##�, �'�����	
�
����
� � ��� � ��)
�
�!
���� � ���)�
 #���
�� � �
���	�� �
����� � ��
 � ��##�,�
����!

� ;�;��#���!
����
����
�
���������	
��
�����
���
� ;�;��#������)�
 #���
��
� ;�;��#����
���	�
� ;��;��#���������
���	�
� ������
�#������
�����
�����
�!
�'

��A�A���������#�

��
�)��
�� ����
����	�@�A��
�	��#���
�)��
��
����
��

B��
 � ���� � ��
 � ���
 ������ ��� � !
 �
,)�
��
	 � !��
	�##
�
���������	�����

�!�������

?�
 �)����!�
 �'�� � �� � ���� �)�������� � ��
 � #����
����������������)�
�
�����������
��������!���	����
'�
�
>�
��
��#���������)�
�
��#������
�����
���(�����

,��)�
���� � '��� �
����� � � � ���� � ����	 � #���� � !
�
	���	
	����������
���#��
��
���������
���!��	�
)�����

���� ���	� ���
� ��
� ����!��
	 � �� �� �	�##
�
�� ���	
���
"�������
 ���!��
	��
>�
��
��������
	�����������

(�����������������������)��
	��#������)�
������

�!���

(��
#
�
��
����������������!
���
	�����	
������������
��
��	������
��#����!����� ������ �����
���������	�
����	��
��������!����������
�����)����!�
�=����
�����=��
��������!����������������
,)�������
#
�
��
�������������
���#�������!�����	
��������	������)��������������	
	��
�����)�
 � ������
��
� � �# � ��
 � ���
 ������� ����	
 � ��
��������!
���
���
�������	
�
	���������)�
�	��������
����� ���� � �
#
�
��
 � ��
 � ��	 � ��
 � ���
 ������� � ����
����
��
��
� �
��� ����� �����	 � !
 � �
)
���!�
 � 8�
���)�!�
 ��� ���
�� � �� � ���� ������)�
 � �
)
������� � �#�
����� ������
��
������!
�	
����!
	�!���������
�����

 ���	��"	�����	�#�$��
���%

(���
������ 	��������C.D�����'������
���	
��
����
)������	����
�����
���������)�������	��)���
	�����
�����@� ���!�
�@� �������&
� � ��
 � �
��� � �����	��
	�
'������
���	
��

�����@7���
������ 	��������#���
���	
�

�����

���

������	
�

����
��

����	
��

�

��
����

������
	
���
��

��	�

�

����������
�����
�
����
������

��

����

���
��

�����

�������
�

������
��

�����
� ��
	�
�	 �

�����
������

������
���	
�

��������

�����
�

����

����������� �������

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-3

LAC07-3

�
�� <
����)����

�	����
� ��
�)���������
)�
�
���������#�
� � ����	 � �� � ������� �)�
�
��
3�
�� �'��
#���� �'�� � ���
��)����� � �
#
�
��
 � �� �
,������
��
�����
� ����
�

����� ������#���'��
#�����(�����
����
	
�����
	�!��������� ���������	�
���
�	 �������

�����
 �������� � �� � � � ����
� � (�'����
�)
��#�
	 � �
�����
 � �� � �����
��
�������

���� ���
 � �� � � � ����	 � �� ���������
)�
�
� �
���
� � �)
��#�
	 � ���
���!
� � �# � !
���� � �� � ���)�

#���
���������
�����
���	������
�
�����
 � �� � ��
 � �
���� � �# � ��
�
)��
�� ����
�

����� 	��� <
����)������#����
��<�##
�
���
���
 ����
� � ��� � 	
���
�
�	
������ �)����� � �� � ���
�
�!
����
 � ��
�
 � ��
 � �����)�
�
	�##
�
�� � '��� � �� � �)
��#��
���
��

!�� (��
#
�
��
����������
�
!������ 2��!��
	��
>�
��
��#���
��

��!�
�@7�"��������#������	��
	��
���

/ ��
��������
�����
��	��0�������

��
�����
)�������	
��	
�
��)
	������
�)�
������
�
�����������'���
	������!�����#����)
��#��������
���#�
*�

�
�
����'�������+
��)����*�
��������
�
��)�
�
��������#�����������������	���	����

/-(1��������2�����

3,��)�
�@� ���
� � �� � �����	������ � ��
���
' � �#�
��'���'��
#�����������
	������)�������	��
 ����
	����
����
��������'�������
����������)�������
�)���
	������
	�##
�
�����	
����	�'�����
)
��������

���	�
������

����������	
����������	���������	����

�������
��������� !!�����������	����������"��	����	�#��	��
!	����#�!!�

���������	�����������	��
�������$%�&&'()	���

��������� !!�����"�	����*�	��
�	������������
�����	�	������!!�
�����������������$+�,)'+'	���

��������� !!������	����*�	��
�	������������
�����	�	������!!�
���������	�����������-��	�.��������(/�'(,(+	���

��������� !!�
������������!�����	��!!�
���������	����������������
���
����%�((������%�&���

��������� !!������	"�������
������!!�
���������	�����������
�	�	��

�������������	��
��
��������������������.�
�������(/�)	����� !!	.�
����!���.�
!!�
��������������	��
��

�����������������
��������������������.�
���� !!���������.�
�	"�����!!�

��������������������������
�������������������������	�����	�/)�0,('��	�����	�
���������������������������

��������������������� !!�������������/)�0,('	����1	.�
����2!!�
���������������������.�
�
������������������

����������	�����

��������� !!�	������"��3����3�.���	�����������!���.�
��!!�
���������	���������������"���
����/)�0)	�����3�.��+�0/	���

��������� !!����3�.����"*�	��
�	������������
�����	�	������!!�
���������	����������������"0�����3�.��0%�$,	����

��������� !!�����!�����������
���!��	�������!!�
���������	����������������"$������/$$&,4���

��������� !!�
������������!�������!!�
���������	��������������������0�%���

�����������

����� !!��������	����
����"��3�	����	�����������
�����
��
�!!�
����������	��������	��3��
�������������	����!
����	��
����
�������������	����!
����-��	�.�����
�������������	����!
���������
��
�������/���
�������������	����!
����
�	�	���
�������������	����!
��������"���
�������������	����!
���������"0��
�������$���
�������������	����!
���������"$���
�������������	����!
����
�	�	���
�������������	����!
���������"0��
�������$���
�������������	����!
���������"(���
�������������	����!
���������
��
�������'���
�������������	����!
��������"���
�������������	����!
���������"0���
�������������	����!
���������"$���
�������������	����!
���������"(���
�������������	����!
����������
�������������	����!
���������"$���
�������������	����!
���������"0���
�������������	����!
���������"$���
�������������	����!
���������"(���
�������������	����!
����������
�����������	��

����	�
������

3,��)�
�@7�����
	�'��
#�������*�
�
�
)�
�
�������

�=�����+���������
,��)�
���
)�!����
)7
��
 ����	�
������
�
�
�� � �
)�
�
��� � �� � ���
��

�������
��������������
����
�	����
����/�������
�����
*�
 � �)
��#������� � #�� � ������� � �������
�����
���	�
�����������	�������#������
�#������������������
�
�
�

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-4

LAC07-4

��
�������	
�������
�
�
���	
����
����'��
#��
�
���!
����	
	�

��
 ��	�����
�
�
��� � ����	
 � ��
 �������
�
�
���
	
����!
�)����������'�������
�'��
#�������	���	
	��
B��
��������
�����
)�������	
���
>���
�������	�����

�
�
��������))
�������	
����
������
�����
���)��
��
����
��������
,)���������
#
�
��
���)��
�� ����
����
�
������
�
�
�� � ��)������� �)����	
� � � �����
� ����
��
�� ��	�����
�
�
��� � ��� � �� � '
�� � �))
�� � ����	
�
������
�
�
��� � �� � ��
 � ��
 � ����
� ����
 � �� � ��
���
)��
�� ����
�

/-* 30���$����&
��2���-�	�����&
��2

?�
��
�
���������#���
��������
�	
�����������!����
��))�����������
	�������#���
�*�
�	����
�����	�
����'�
����������
�'����!������8��
�	�!���������������
'�� � �
�
��� � 	
���������� � ��
 � ��))��
	 � �� � !
�

,)�
���!�
�
���
��!����
���
��#�����������������,�
��������#����������
	����������!����#��� ��&
������,�
���'�����
�
�����	
������
)������
)�
�
��
	�!������
�'��*�

�
�
����E
�
���������
��������� �����,�
����'� � �� � �)
��#�� � ���
 � ��	
� ����
)�� � ���
�����!��
���'���
���
�#��� ��&
������,���+
����
��#�
��
��
)����
�*�

�
�
���)
����	
� ����
)��-

(����)�
�
�������))�������������	
��	
���������
��))����
���
���#���
������,����������
������������
�
#��� ��&
	������,��#���
�*�
�#������������
�	
	����
!
 � ��
	 � �� � � � #��
 #����� � #�� � 	��� ������
 � �����
��
�����&������8�	
�
�����&����� � �# � �!�
��� � #��� � ���
�!�
�� ���
��
	 � ��#�'��

�������
�� � �� �
��� � ���
����
�
����#��� ��&
������,��

�����
�����#��
�	�!�������������#���
��)�������

,��)�
����+
���
��#���
��������� �����,�

/-+ 3��$�	&�
�����$��

���
������&��	'

��
�
���
�
,��)�
� ��# ���'���
� ���
 ����
� ��#�
����� ����������	�
�	 ������� ��# �������
�����	�!
�
�)
��#�
	�����*�
 �����!��
�7

�	�������������	����
����%�0	������(�&	���

�	�������������	�$���
����$�&5������0�%���

3,��)�
�-7��)
��#��������
 ����
�����������!��
�

-��
�	����������!
�'

������������ �����,���	���#���
��&
	������,����������������*�
 �������
�	
���������
*�
��������������
	����������
���� �	����������
�#������
���� � ��	 � ������ �
�	�!����� � �� � ��� � � � 	
���� ����� �%
�
!
��
�
����'
�
�������������
�	�������#����������'��+����
�����������
����� � �� � ���	
����!�
 � ���)����	
������������

	���!�
 � ��
' � �� � ��
 ���	
� � '���� � ��� � ��	
��� � ����
��������������#���������!�����	�

��������������������#���������������
�	
����
	�!��
�)
��#��������
 ����
��������
������!��
���
���������	�
���3�.� �
���� ��	���� � �
����0�&	� � ����(�+&	������
���
 ����
���#�	�##
�
�����)
������!
�	����������
	�
��������##�,������
���������'���������	�!
�;�;�#���!
���
�
����
�
���� � ;�; � #�� � ���)�
 #���
�� � ;�; � #���
�
���	�� � ;��; � #�� � ������
���	�� � �� � ���
 � #�� � ��
�
�����
�����
�!
�'

��A�A���������#���
�)��
�� ����
��
��	�@�A��
�	��#���
�)��
�� ����
���"

�������
������
.�-�9���
 F���
:�

<�##
�
���'�����#���������
��
�����	���������!��
��
�� ��	�����
�
�
��� � ����'� �� �	���������� �!
�'

��
	�##
�
����
���������#���
������������������7�/#�!����
���
�����	�����������!��
���
����
�����
�����
������	�
!
�)���
	�!
�'

���'����������'�������
���)��������
��
��
	 � �� � ��
 � �)
��#�
	 � ���
��.� /# � ���� � � ��
���
�����!��
��� ����
���������� ������� �����	���)��������
�
����
��
	������
����
����
��!����
 ��
��� �����!��
��
��	���
�
�	��#���
�����
������	�!
�	
���
	�!����
�

�	 ��������#�����)��
�� ����
������������#������� ����
�����!��
�������
�����
�����
������	����������
	���
���
!
���	� ��
 �)�
������� �	
����
	�����
 � ��� � �
��� ��#�
*�
������)�
��������!���������������
�!
���������#�
��
�)��
�� ����
���#���
�����
����	�����
�
�
��������
�
#�������
����������
��������
�
��0

�������������"������	
�����������������(������
�����	��������������
�������0$�(%&	����
��������� !!���
	��	�����	��
�	��������!������%�%�!!�
�����	����������������	0������(+�)+&	����
��������� !!�������������
����0$�(%&	������(+�)+&	��!!�
�����	�����������

��3�0������/)�&(/	���
�������

3,��)�
�.7�����
,� 	
)
�	
���	
#������#����
���
��	���������!��
�

./�������	�!
�������
�����������	
�����	������ ���
�����
!
���������	
	������
�����
��	
����!������
�#�����	����
�
�
)�����������
��������
��'��������
�����
��?����
�����������

�	 ���
�������	�!
���	
�����	����!
����
,���	
	�#����
��
�����
��	
���������
�#�����	����
�
�)�����������
��#�
����
�

�	��#���
�����
���<����
�
�)������������
�����	�
�����!
�
�����
	�!����
����)�
 #���
���	
,��

0����� �����	��
������
,� �	
)
�	
��� � �� � ��
�)������
)���
���'�����������
����)�
,����������	 ����
�*�

)���
�����
�	
����
	�������	�
�!����
��
��
���$�'
�
���
+

)��� � ����+ � �# � ���� � � � ����
,� � �� � �
�����
�� �
��� � �#�
)������ � ���	��
�!�� ����
����� � ��
�	����
�� ��

 �������
�))�������� �
�
� � �=��������= �)�������
	�� � �� � '�
��
�
�����&����8�	
�
�����&�����!�
����������#����*�
�'�����
������������'����
�
,
��������#������ �)
��#�����	
�'���
�
)�������

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-5

LAC07-5

(�����
=����
�����)������������	�������
�����#����
�)
��#�����
���
���#���
�#����'�����)�����7

@� /�	
)
�	
������)
��#������
#
�
��
�������
�������
��	���
�
�	�������7

�	������
��������!���������������!�������
������������

-� "
�����������������������	��
��������
�
�	 �������
#����'��#�
�������
�����
�	�������7

�	������
��������!����������3�.������!�������
������������

.� "
����� � �� �
�	 ������� ��	 � �
����� � ��
 � �����
������� �))
�� �
����
� � !� � � � �)
��#�
	 � ���
�
	�������7

�	�������������!����������3�.������!�������
������������

0� "
���������
�	 ���������	���������
������ �������
�# � ��
 ����� �)�
������� � 	
����
	 � ����
 � ��� � ��
�
)��
��=������� ��������# � ��
�	
���
	�����
 ��� ���
�
#�������
����������
��������
�
��7

�	�������������!�������������������

1� ����� � ��
 �
�	 ���
 � �# � ��
 � ���� �)�
��������
	
����
	 � ����
 � �� � � � ����� ������=� � ���
 � ��	�
��
���������
�	 ��������#���
��)
��#�
	�	��������
�#�
����
������ ������7

�	��������3�.������!�������������������

4� ?� � ����� � ��
 � ���� � #��� � #�� �
,)����� � �������
��
����� � ����	
 ��	�����
�
�
���� � �

 � ��
�
#����'������! �
������

(�)���
� � �����	 � !
 � �'��
 � �# � ��
�
 � 	�##
�
���
���!�����������	��
)�������
������#�������	������!��
�
�
����
������������

��
���������	����3�. �����!��
���
��
�����
����
����
����
�
������
�
	�

(������"���&��	'

"���
�� � ������� � ��	 � ���
� � ��� � ���� �!
 � �����
	�

,)������� � �� � � � #��� ��&
 � *�
 � �������� � ���������
����������������,����
�����
)������
��������!
�'

��
��
�
�
�����
��������
�����
�!

��
,)�
��
	�!����
�
����
)�����	��������	
��������
���
#�
��
	�	��
�����
!� � ��
 � ����
�)��	��� � *�
 �
�
�
��� ��	�������
����.�
����	��������

G�����������
������!
������
	�
���
�������	
����
	�
���� #����������������� #����������������������!
�
	
����
	�
���
��!����
���
��#���#��� ��&
������,�����
���
������
�� � !� ���+��� � ��
 � �# � � � �������� �����
�����!��
�����	
���
�����.�
�
�
�
���

� !!�����!	�-��	������������.�
������
�����	��!!�

�	������������"	������
�����	��
��
���������anchor��������"6���7��6	��
�6anchor���
������������� !!���������	�3�������
���	��
���

��3�����.�	
�����������������anchor��
�����	��.�
��!!�
������������������
�����������������
���	�$�&��
���	�
�������������������
����������anchor�
������	��
��
���������
��������anchor�
�����"6���7��6���6anchor!�����
��6��	��.�
����
����������
��	�����

� !!�����!	�-�����.�
������
���������	������	������!!�

�anchor��������"6anchor���
����������
���������
���	�$�&��
���	�
�����������
��anchor�

� !!�	.�
��������.�
������
�������!!�

�anchor��������"6anchor2��������$�&5���

3,��)�
�07�#��� ��&
���	�����������������
	
����������

)���
�������	��	
���������

/����	
�����)����	
����
����'����#��
#
�
��������
)��
�� ����
� � �� � �����	 � !
 �)����!�
 � �� � ��)��������
�)
��#������
�����!
��������	�
���#������
������
�!��
)������� ��
�� �	
���������� �����	
�����! ��

��# ���
�
)��
��=���	�����
�
�
���

(�����
������
�'����#��
#
�
��������)��
�� ����
�
'������ � �
����� � � ��	�����
�
�
�� � ����	
 � �����
��
�	�����
�
�
�� � ��� � � �������
�
�
���� � �����	 � !
�
)����	
	�!��
,)���������
#
�
��������
�)��
�� ����
�
������
���
���!
��������!��
�

� !!����������"�
���
���������
���!	������.
��3.���	���3��!!�

�	����������������	0���
����)�(&	������(+�)+&	��
�����	�������������
	�!.���!��!�����	0���
����%�%������%�&���
��	�����

� !!����������"�
���
���������
���!	�����
"�������!!�

�	����������������	0���
����)�(&	������(+�)+&	��
����� !!�����!!�
��	�����

� !!��������89:!�.������������	0*�
����	�	�����	���
�����!!�

�	�������
���!
���������	0����������
	�!.���!��!�����	0��
�
����%�%������%�&���

3,��)�
�17��
#
�
������)��
�� ����
�

)���
�������	����
�

G������+
 �����
�� ����!
��
#
�
��
	������	
���#�
�
���
�� � �� � �����	 � ���� � !
 �)����!�
 � �� � �
#
�
��
�
������� �!�����
������ � �� �
�)
������ ���
#�� �'�
��
�����)�
�����
����
��������
���
����
���������

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-6

LAC07-6

(���������� � ��
 �	
��������� ��# ����
	���������
�����	
���� �����
 ������	 �!
�)����!�
� � �� ���	
� � ���
��+
����������
#
���!�
�#�������
��
�
�
����

�������������"������	
�����������������(�������

�	����������������	0����
���!
�����"������
�����	��
��
������������.�
��������"6���7��6	��
�6���.�
���
������������� !!��������
�
���
�����3��
�����	��.�
�!!�
������������������
�����������������
���	�$�&��
���	�
�������������������
�������������.�
�
������	��
��
���������
������������.�
�
�����"6���7��6���6���.�
���
��������� !!����.�
������
�����	��.
��!!�
����������
��	�����

� !!�	.�
��������������1�.���������������	�
�	���	�
��
�������
���	���3��	.��3�����!�����	��
������.�
!
��	2��!!�

�	�������
���!
�����"��������������
	�!��
�!���.!�����	0��
��������
����%�%�������"6���7��6���6���.�
���

� !!������������.�
������
������	������	������!!�

����.�
�������3��
��6	��
����
����������
���������	�����	�$�(&��	�����	�
�����������
�����.�
�

� !!����������
���
����	�����.��	�������������.�
��!!�

�	�����������������
����3��
��6	��
�������$+(�'	���

�	����������������	0���
����3��
��6	��
�������&$�/	���

3,��)�
�47����
	��������

(����)�
�
�������������	�
������
��
#
�
��
�����
	
����
	�
�
�
��� ��#�
�� ������ ����)�
�
�� �)���
	�
��
 �*�
 �	����
��� � �� � ��	
� � �� � ����' � #��'��	
�
#
�
��
������	
���#�
���1

/-/ �����
���
����������

/����	
��������+���
����#���
�'��
#�����������
	�
���������
�����)��#�����	�
�������
�)��
�� ����
�����
�����
�
�
��������	�!
�)����	
	�4�(������
�
�
���
�������+
���
��
�������
>�
��
��#��	�����
�
�
����
'�������
��)
��#�
	��������
�����
���#����'����
����
���
������
��������#���
�#�����	�����������������������
�	���� � ���3�.������ � ��� � ��� � ��
 ������
�
�
���
����	�!
���
	��������+
���
��	�����
�
�
���������	
��
���	
����
��������
	�)�����#���
�����	������������
)�
�
7

1���� � ����
����� � ����� � ��)��
� � �� � �		��������
�
>���
�
����������
,� �
�����������#���
�)���
��

4����������)�
�
��
�=��)
��)
����
���
������
�
�
���
�������

���
	��	���������������
>�����
�����!
��
)���
	�
!����	���� ����
�'������
�
���
�����
	��$�'
�
���'
�
!
��
�
 � ���� � #��� � � � 	����� �)
��#�� �)
��)
����
�
�		���������
�����������
,)�
��
	�!��
,)�����������+������
)�����������
	��'��������'�����
������
�
�
����������	
	�
�����
�)��)�����

@�
���
��!��)�		����������)
��#�������������������
�
������
��)�	���
��
	��#�
�'��	��'������������������

�	����
�7

�������������!��������

-� ���!��)�		�������)
��#���	���������#����
7

��������3�.������!��������

/-4 3��$�	&�
��$�������

(��������� ������
>�
����������
�������#��
#
�
��
��
�� �����
�� �"��� ���� ��	���	��� � �
#
�
��
 ������	 �!
�
����
	��������2�
�������	�����'�����
 �
#
�
��
�����
�))
������������	
����	�#����������!
���#����
�����
� ���
����� �%�
�� ��
 ���
���� � �� �)���
	 !��+�!�����
��)�
�
����� � �))��������� � �� � �����	 � �
>�
��������
���)�����
�����
�������
����
�'�������#���
����	�!

��
����
	����!
���
�������'��
#����

/�������	�!
�)����!�
����������������
��������
�����
��� �� ����� �����!��
� � �� ���	
� � �� ����
 � � � �
#
�
��
�
���	�
������
���
�����#���������������))���������

)���
��������������������

H
������
�	
������������#���
����������	
���
������
�����	�!
�)����!�
����������
�)
���������
#���'�
��
��
����
����
�����������!
��
)
��
	������)�
����
��!��
��
��#���
�
����� �����!��
�

(�
�� �����!��
������	�����'�����
#
�������
������
	
����
	�
��
'�
�
������
�	����
���

� !!��������	�����������3�������������	��!!�

������	���������";����	���
���������	����!
�������
���
�������$���
���������	����!
���������	0���
���������	����!
����

��3�0���
���������	����!
�������
����
���������	����!
���������	$���
���������	����!
�����.�
�	0��
�������(���
�������	��

� !!������	�	���	��������.�
������	���!!�

������	��������	��3��
���������	����!
�������
���
�������$���
���������	����!
���������	0���
����
����������	��
�������$��
�������������	����!
����

��3�0���
�������������	����!
�������
����
�����������	��
����
����������	��
������
����
�������	��

������	����������
���
����� !!�����!!�
�������	��

3,��)�
�57����
���
�����

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-7

LAC07-7

4 ������&����������
�����
�	��������
�

��
�
 � �� � �� �
,)
���
���� �)������)
 � ��#�'��
�
�))��������������	
��������
�����
�#
����
���#���
�
)��)��
	 �*�
 � #������ � /� � �� � ����
	 � ��
 � ="�"���
�
�����
�= � ��	 � '����
� � �� � ��
 �"�)
�2����	
��. � C0D�
�������
� � ������� ��� � ��)��# � ��
 ���2��� C1D �������
��!�����

��
 � �))�������� � ���
� �'��� ��� �
,��)�
 � ��	���
#��
�'������
�������
	�������
�
������
����	������
��
�
 ���!��
	�������
'���	�����
����������)�
�
����
	
����!
	�!����
���))��
	���
������3,��)�
�6����'��
��
���))��
	�*�
�#��
�'������
���)���
��
	�!����
�
)������)
����)�������
'�����������#���
�����
	���	���
#��
�

��
 �)������)
 �
,������
�� � ��
� � ��
 � ���������
�����,�

���	�
������

����������	
����������	���������	����

������
���������	�����������	��
�������$%�&&'()	���
���������	��������������
������$+�,)'+'	���
���������	�����������-��	�.��������(/�'(,(+	���
���������	����������������
���
����((�%,	������(/�'$	���
���������	�����������
�	�	���
����(/�)	������/)�0,(('	���
���������	���������������"���
����/)�0)	������&,�((���
���������	����������������"0���
����&,�(&	������,(�/,	���
���������	����������������"$���
����,(�&	������+%�,&	���
���������	����������������"(���
����+%�+	������++�'(+0	���
���������	��������������������0�%���
�����������
����
����������	��������	��3��
�������������	����!
����	��
����
�������������	����!
����-��	�.�����
�������������	����!
���������
��
�������/���
�������������	����!
����
�	�	���
�������������	����!
��������"���
�������������	����!
���������"0��
�������$���
�������������	����!
���������"$���
�������������	����!
����
�	�	���
�������������	����!
���������"0��
�������$���
�������������	����!
���������"(���
�������������	����!
���������
��
�������'���
�������������	����!
��������"���
�������������	����!
���������"0���
�������������	����!
���������"$���
�������������	����!
���������"(���
�������������	����!
����������
�������������	����!
���������"$���
�������������	����!
���������"0���
�������������	����!
���������"$���
�������������	����!
���������"(���
�������������	����!
������������������
�����������	��

����	�
������

3,��)�
�67�*�
�
,��)�
�#��
���������'������
�
)������)
���)�
�
�������

��
 �)������)
 � ��)�
�
�������� � ����� � '����

,��)�
���	���#��
� ���	��		������� �	����
��������
�# � ��
 � ����
)���� � ��	
� � ��	 � ��
 � *�
�
��)�
�
������������������!�
�#���	�'����	����C@D�

5 !���6'����������$����
�����
7����

������� �'
������ � ���+ �����������
�
��))���������
'���� ����	�
�� '��
#���� � ��	 � ���
 �)����������
3��
�+���������������)���#������	���#��
�
	����������
�����&
� � ��
 � "�)
�2����	
��. � �
��
� � #�� � �
�����
�
��	���)���
������C-D�

/� � ��
 � ����
�� � !
�� �
����� � A�5� � ���� � ��������
�����
	 � 9���+
��: � �
�
� � ��
 � ��))���
	� � !�� � ��
�
��)�
�
���������#�����
������9H
�����:�����)����
	��
���+
�����
�	��)���
	��� ���
����	������� �'��������
�
)����
� ����+������ �'���� ��
 �'��
#�����'�
�
 ���
���
������
���
����#���������
�����&�������,����/����
�
��	
���������	
���
��������+��� ���������
	�'������
���� � �# � �
����� � '���� � �� � 	��!�
 ����
	 � �!� � ������
#���
���	����)�#���
��������'���
	�������)
��������
�����������������)���������������
��������!
��))��
	�
���#���
����������	�������������!
�	
����!
	�!����
��������	����)�#���
�

%���
���
���	
�������#���
'��+���
�������)�
�
#���
����
!��
�������
���
��)�
�
���������
�
�����

����
� � ��� � !
 � �)
��#�
	 � �� � ���)�
 � #���
���
������
���	�� ���7��7�� ��� �)
��
����
���
#
�
������
�� � ��
 � 9��)����� � ����
� � ����
: � �# � ��
 � '���
�
	����
����)�����������'����������-7

�����-7�
	�����������+
�����3��
�+����

��#�������
������
���������#����+
�����	��
������
����
��	
)
�	���������
���	���#��
�#��������
	������

,��)�
��(/���#��
��C4D�)����	
�!���� �����))����#���
���+
���!��������
������ �%(F3�#��
��C5D�)����	
�
������� ��������
�� �����
)�� ��# �!��� ����+
�� ���	�
�
������

%���
 � 3��
�+���� � ����
���� � ��
� � ��
 � ���+
��8�
�
�����#�������
���#���
�)������������	���#��
�#��������
��
 � ��)�
�
������� � �# � �� � ��	
)
�	
�� � ���
�
)�������� �#��
 ��� �)��)��
	��� ����� �)�)
���� ��������
	
����!�
�#����
��
�����
�����7

� ��
 �
	����� � �# � ���+
� �)�������� � �� � �#�
� � ��
�
)����
 �)���
�� � ��	
)
�	
�� � �# � ������� � ��	�
�����#������ � ��
 � ��	�� �'��
#���� � /� �
,�������
��	���#��
�#���������������(/������%(F3����
�
	
�
���� � �� � ��
����� � �# � ���� � � � �����
 � ���+
��

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-8

LAC07-8

�
>���
����
�'���
���	���#��
�I��#�
�����	�
	���#�
�
��!��
��I����!
��
'����
��'�
��������

� ���+
��������	���#��
����������!
��
�����#������
���
�����
���#���
�)���
�������#���
,��)�
�����
��
 � "�)
�2����	
��. �
�������
��� � ���
����� � ��
����	#��
 � �## � 	��+ � ���� � �������� � ���	�
	� � ���
�������	� � �# � ���+
�� �)��� � �� � ���
�
������
���)������� � !��	
� � �� � ��
 � �
��
� � �!�
����
����&������
�	������
�#��
�������������
����+
���
��
��������
#���#������
�����	
��!�
��������	�����

� ���+
���������+
�	�##
�
������
����	��#�
���

	�
�� �!
���������
	�'����
�����
	��
�� 	���������

,��)�
� � �� � ��	�� � #��
 ���� � !
 � �
��
��
	 � ���
��	
���������'�	��������
�
��������#����
��������
� � �
�����
 �)
�#������
 � �� � ����	 � ��������������
�
>������ � �		������� � 	��� � ���� � �� � #�	
 �� � ��	�
#�	
 ��� � ���
�� � �
�����
 � ���� � �	�����
�����
	
����)���
 � �����!��
� � ���� � �� � �������
�
���
����
� �
��� �2��������	���#��
 �#�������	��
����)����	
���##���
����
��������		���
�
��
��
	����������+
���

��
 � �������� � �� � ���� � ���� � ����
 � �� � �� � ��)� � ��
�
���+
�����������������
,�����!�������#��
����
)����
�
#������
���	���#��
���3��
�+��������
�	��#��������
��
������))����������������
���))����#����?)
��"���	�
2��������?"2��CJD��
��
���2��
�������)�������'����
��
�� �"�)
�2����	
�� � ��� � ���
���� �'��� �	����
��� ��#�
��
���	���#��
�
	���������'��'���7

�
,)����� � ?"2 � �		�
��
� � ��	 � ������	� � ��
�
)����	
	�������
�����
�	����
������	���������+���
��
�#����'����
,��)�
����'����'��������+
���
�#���
�����
��������
���	���#��
�	����
�������!
�
�
���
�
	�#������"�)
�2����	
�����
��7

����<�	��=
�����������>
�����
��������>

���7��
��	�������
=�
	�����.�����������������
1
��
=�?
������
��	3*�
���*����>
����
���������7��
"1�#��������������������#*�@
����2���
	�>
��������������7��
"1�#��������������
=�
	#*�@������2���
	�>
�����	3�������3��1�#��������������
=�
	#*���@
��3�*�%*������2>
�����	3����
	A�1?��
3���	*�����>
����1�9�
=�
�#�BB����BB�#�����
�����BB��	BB�����
��������BB1��	�
���2��	C���D�
��31�%�%%0�22���	���>
����E2>
E
2

3,��)�
�J7��
�	�������+
�����������?"2

� ���
��
������
����
���������
��
��
'����+
��7

����
�������3�����
���	�
��	����$%���
=�
	���
�		��.������
1
��
=�?
������
����*�	����*���	*�����	*���
=	>
��������������7��
"1�#��������������������#*�@���3�.�2���
	�>
������	�����F

�"�3���1�$%*�%�0*�0�$�2>
����	�������������1��	���	��G�0�$2>
������	�������	��������1?��
3��>�1��G�	����2��	H���3�
�E2>
��������	���F

�"�����1�$%*�?��
3��>��9�
=�4��BB�1�B02�E2>
������
=	���1��	�BB�����	2�������1�$%�2��������>
��������	�D���9	31��#��������������
=�
	#*�@������BB���
=	�2>
E
2

3,��)�
�@A7��		�������+
�����������?"2

� ��)����� � ?"2 � �		�
��
� � ��	 � ������	� � ��
�
)����	
	 � ������� � "'���?"2 � CJD� � �����
#���
'��+ � ����'� � ��
 � ���
��� � �� � ��
��
 � ��	�
������� � ������ � E�/ �
�
�
��� � ����	
 � ��
�
3��
�+������))����������(�����
��
���#��)
�����&
	�
E�/ � �����
� � #�� � "�)
�2����	
� � �� �)����	
	��
2���
>�
��������
�
	��������
�#�����!
�+
)��������
��	��
�
�����'���
�����������+
�����	�������	�
����)������� �	������ ���� �!
�)����������������
�		
	�!����
����
�������	
)���
	���������.7

�����.7��������
	�����������"'���?"2

� �������� �3��
�+���� �	�
� ���� � �
� �)����	
 �����
�������
����
������
��#������+
������
����
�������
'
���)�
�
�����
������������
��������	����
	�!��
��
����

��������
'���(����9�
�� 	���:���+
�#�	

�����	�#�	
 �������
�����'
�������
�����
�������
)
���
�������
�)�
�
��
	������
����
�����
'����
�
���
�� � ��+
� � �
�)����!����� � #��� ������� � ��
�
���+
�������#����������*�
�#��
�������������
�

"��
��		��������'��+��

	�����!
������
	��������
������
����
����
��������!
�'

��?"2����
�����	�
3��
�+����������
,��)�
�����+
�������	�!
�����
	�
'��� � #����� � ��	������� � ��
�� � ������ � �� � ��	��������
'�
��
����
�������	�!
����
	�������'������
�	
#�����

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-9

LAC07-9

��	���#��
�����
)����
���!����
����
���������'������
�
��
��
�� � #�
,�!����� � ��� � !
 � ��������
	 � '�������
��+��� �)�
���)����� � �!��� � ��
 � �����
 � �# � ��
�
���+
��������
�������))���������

%���������������
����
�����
'����
�������
�������
�
���	��������������#���
�9����	#��
�
	����:��/���
�	��#�
��+������
����	��#��
����������	#��
�
	������'����
���������+��
���	�����))����������I����#���
,��)�
�

,
����
	����(�	������C@AD�I����
���	���#��
�
	�����
!
���
� � � � ���
 ���#��	
�
�
�
�� � ����	
 � ��
���%�
*�#�
�������
�� � #�� � ��
 � ���)������� � �#�

�
������������ � ��	 � ����
 � ������ � �
�����
�
)
�#������
 � ��	 � ����	 � ������������� � /� � �� � �� � ����
#���� � �# � ����>�
 � �����K�
 � ���� � ��
 � ������������
)���
�� �	
)���� � #���� ��
 � �������� � ��	�
	����� ��#�
����� ����
������ �����+�����#����
�!
������
������
#��	��
�����
�
�
�����������������������

(�#�����
,��)�
����)�
�
��
	���������0����
�����
�
���'�������!���������
�#���������	�����������������
��
 �#���
��)����� ��# � ��
 �E<H=�����������# �"���
�
"
���������#"�����3�#�����E
��������������
��-AA4�
C@@D��(�+��	��#����
���
���
��#������)����!�������
����
����� � #��
 � 	�##
�
�� � ����
� � �� � #��� � ����	�
���
������ � 3��� � ����	 � ���
���� � �� � ���'� � �� � ��
�������� � ���)
� � ��	 � ���+
�� � ��
 � ��
	 � #���
�
��
������� � �# �
��� � ���
���� � ���	����
	 � !��
�)�+
��� �(���� � ���� � �� � � � ���)��#������� � �� � #�	����
�������
������� � ��
 � ��� � 	��)���
	� �(� � �##�
�� � ��	�
�
�������# ���
��
������ ���
�����
�����	��������
�
)����������)
�#������
������	����
	�!��!��
��
������

(�� � ���+
�� � ���
 � !

� � �����#
��
	 � #����
3��
�+���� � �� � "�)
�2����	
� � ����� � 	��� ��	 	��)�
������
�?"2��
��
��	�	������
��
,���������������
���
(�������
��������
��
�������������
����)���������+
	�
���
��
��������	���
	�!����
�����
�������!
�'

����
�
���
������9%��	�"�
��:���	�9%��	�(���:��/�������
���
����!������#��
�#������'�������
��#���!������
�
#��� � ��	 � ��
 � ��
��������� � ���+
��� � ��'
�
� � ��
�
)�
�
��
 � �# � � � ����	��	�&
	 � *�
 � #����� � ��	�
��))�����
 � ��!����
� � ����	 � ���
 � ���)��#�
	 � ��
�
)���
���

8 9���������
�

��
����
��)��)��������������������))������'�����
�������
�	�������
	���	���������������)���
�
����
��	����
������
���/��'����	
�
��)���
�����
����	����
��
 � 	��� � #����� ������ � �
� � ��)�
�
��
	 � �� � ���
��
�))���������� ���	�#�������� � '��� � #��' � !��+ � #����
��
�
��

(��������)��
������#���#����
��	
�
��)�
�����
��
�� � !���	
���� � ��
 � #���� � #��� � ��	�� 	��� � �� � ����
���
 !��
	��
	��������������	
������
�
����� ���
�
!��
	��
	�����+
�'����
��	����
�����/����
�
����
���
����
� � ����	 � 	
���
 � ��
�
�� � ���� � �� � ���)�
�� � ��	�

)������)��� ����
 ����
� �����	�!
�
,�
�	
	� �� �!
�
���� � �)
��#��!�
 � �� ���	
� #���
�� � � #���
�� �)��

���!
��8����
 ���!
�����!���������
���

: ,�
$�����

��
�)��)��
	���	
� ����
�� ��
�
��� � ����
� � �����
���
�!

���	
���#�
	�����)
��#�� ������
�	�������#�
���+����)�����������	��
�����������	���'��
#����
	���� � /� � ��� � !

� � ���'� � ���� � ��
�
 � ���+� � ��
 � �#�
)�����������)������
��������#���
	�!��
,)
��
��
��
'������
�	
�
��)�
����#���
�3��
�+�������	���#��
�

	������

��
���	
����	�����*�
���)�
�
��������)��)��
�
� � ���!
� � �# �)��#���	�� �
��!����
	 � ���������� � ���
#��#�� � ��������� � �
�
���� � �
>���
�
���� � ��
�
�))���������� �����!
���
	��� ���� ������� �!���� �#���
#����
��
��!����������
���	
����	���
�*�
�#�������
/� � �� ���
 �������!����� � �� �� ����� �'�	
� � ����
 ��#�
���
��)
��!�
 � 	��� � #������ � 	
����!��� � ��������

�
������	����
�����
 !��
	��
	���'������
��'����
���!
����
��
	�

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-10

LAC07-10

!�	���
$���

C@D E��	
���G���

����	����
�	��+,-���������	�����
��#������������
���������	�#�
	
��������#���
�	����
��������
)�������	
����	���#�'��
��
.������	��=��.�
=!
.��
�
3����''''�9�	��C��.����3"�+',

C-D H��&��$��$���.����*
	���/��
������	���
��
	�#���������#���
����#�'��
��
.����������	��		������	��=
���

C.D E��	
���G���,�#���0
���������%	
��
0�����������%��������
!����#�
�	�#�1,-��
��������#
�
��

C0D ��2����
���G�������
!����#�
�/���
�	�������
	�#����&���������
��
	�������	���	����
��#�'��
�
.������	���
�������
�	�����

C1D 2��������B���22!�������
!����#�
�3��'��������
���
	
&����#�'��
��
.������������	���������=�5��$+$�

���$�.���

C4D ��#���4���
��	����(����(�
�	��
.����������
�
3�����5I3��������.������.�� ����

C5D �� .�(����(�
�	��
.����������
�
3�����5I3��������.������.�� ����

C6D ?)
��"���	�2��������
.��������������	��������
����
� �3��

CJD H��&��$��$����%���$�!�/�$��������#�!���
���
��
��
������
��������5	�	��	���	��*���#�'��
�
.����������	��		����	���3�D� �;��

C@AD <���������&&����
���������#	���&�/�����(
��� �
!
����
�	���
������#�.#���
����#�'��
��
.�������������"�	��
����
3�����

C@@D H��&��$��$����������#��6�����789:���������������
.�������������	�.��		���

C@-D "������������
���������,����������	�+,-�
 	��#	��
����#�'��
�
.���	����	������I�������

�����07�"���
��#�=������
	��L
��
�@06�=����	��������
��	���#��
��
��
��������

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-11

LAC07-11

����
��2;���
63$0������	�
����
�<�3�=

�J������
	�����0�%���������3��KCL!'�J�
��	�	�.��������	��	��.�����������(��
3�$%%0�89:D�.�����
�������������������	�
�������
����
������	�����������������	�
�������
����������	��������C"���
��������������	��.������������
	��%���������
	����
��������
������������������	���������
�����������
������������������	���������
���������	����
������������������	���������
����	�������
������������������	���������
�������.�
���
���������������	��.�����
��������������	����
�
�����������������"�����	�	�
��3���
�����������	��������C"���
�������	���������
����
������	���������������������
����������	��������C"���
��������������	��.������������
	��%���������
	����
��������
������������������	���������
����	�������
������������������	���������
����������
���������������	��.�����
��������������	����
�
�����������������"�����	�	�
��3���
��������������	����
�
����������	
����"�����	�	�
��3�
��������������������������������������	���
�7��
�����
��������������	����
�
������������������"�����	�����������
��������������	����
�
�������������	�����"�����	�	�
��3���
�����������	��������C"���
�������	���������
����
������	���������������	������
����������	��������C"���������	����!�"����
��������������	������������
	��%���������
	��0��
������������������	���������
����	��
����
������������������	���������
����������
���������������	�����
��������������	������������
	��%���������
	����
��������
������������������	���������
����	�������
���������������	�����
��������������	����
�
�����������������"�����	�	�
��3���
��������������	����
�
������������
���!
�����"�����	�	�
��3���
��������������	����
�
�����������
�����"�����	�	�
��3���
��������������	����
�
���������������"�����	�	�
��3���
��������������	����
�
�������������3�.���"�����	�	�
��3���
�����������	��������C"���
�������	���������
����
������	��������������������
����������	��������C"���
��������������	��������;�������
������������������	�
�	�
�������
�	���	����!�"����
����������������������	������������
	��%���������
	��0��
��������������������������	���������
����	��
����
��������������������������	���������
����������
�����������������������	�����
����������������������	����
�
����������������
�����������������������������������"�����	�	�
��3�
�����������������������������������	����
�.�
�������
����������������������	����
�
�����������
���
�����������������������������������"�����	�	�
��3���
����������������������	����
�
�������������
�����������������������������������"�����	�	�
��3���
����������������������	����
�
�������������3�.�
�����������������������������������"�����	�	�
��3���
�������������������	�
�	�
�������
���������������	��������;�������
�����������	��������C"���
�������	���������
����
������	������������������.�
��
����������	��������C"���
��������������	��.������������
	��%���������
	��0��
������������������	���������
�����������
���������������	��.�����
��������������	����
�
�����������������"�����	�	�
��3���
��������������	����
�
����������
�����"�����	�	�
��3���
��������������	����
�
�����������������"�����	�	�
��3���
�����������	��������C"���
�������	���������
����
������	���������������	��
���
����������	��������C"���
��������������	�	�7�������������
	��0���������
	��0��

������������������	���������
�������.�
���
���������������	�	�7������
�����������	��������C"���
�������	���������
����
������	��������������������
����������	��������C"���
��������������	�	�7�������������
	��0���������
	��0��
������������������	���������
�������.�
���
���������������	�	�7������
�����������	��������C"���
�������	���������
����
������	���������������������
����������	��������C"���
��������������	��.������������
	��%���������
	��0��
������������������	���������������
���	���"�����	�����������
������������������	����������������
���	���"�����	�����3�
���
������������������	���������������	�����	���"�����	�����������
������������������	��������������������	�����	�
�����������������������������"�����	�����������
������������������	���������������
����������"�����	�	�
��3���
���������������	��.�����
��������������	����
�
�����������������
���������������������������"�����	�	�
��3���
�����������	��������C"���
�������	���������
����
������	��������������������	���
����������	��������C"���
��������������	��.������������
	��%���������
	����
��������
������������������	���������
����������
������������������	���������
���������	����
���������������	��.�����
��������������	����
�
�����������������"�����	�	�
��3���
��������������	����
�
����������
�����"�����	�	�
��3���
��������������	����
�
����������
��������"�����	�����3�
���
�����������	��������C"���
�������	���������
����
������	��������������������
����������	��������C"���
��������������	����
�
����������	����!
�����"�����	�	�
��3��
��	���
�7��
�����
��������������	����
�
����������
��������"�����	�����3�
���
�����������	��������C"���
�������	���������
����
���	�	�.����

(���*�

,��)�
��)�
�
��
	���������������
����
�!

������	��
	���������
��������
�����������
�"�������� "��
���*�
�F���	������C@-D��

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-12

LAC07-12

Real-Time Multiple-Description Coding of Speech Signals

Jan Weil and Kai Clüver and Thomas Sikora

Communication Systems Group, Technische Universität Berlin
Einsteinufer 17
10587 Berlin

Germany
{weil,cluever,sikora}@nue.tu-berlin.de

Abstract
When sending speech data over lossy networks like
the internet, multiple-description (MD) coding is a
means to improve the perceived quality by dividing
the data into multiple descriptions which are then
sent as separate packets. In doing so the speech sig-
nal can still be decoded even if only parts of these de-
scriptions are received. The present paper describes
the structure of a software which demonstrates the
benefits of this coding scheme using a client-server
architecture.

Keywords
Multiple-Description Coding, Speech Coding, Real-
Time Coding

1 Introduction

When transmitting real-time speech data over
the internet to multiple receivers (multicast or
broadcast), the quality on the receiving side de-
pends on how many packets are lost on their
way. Various receivers may experience greatly
differing speech quality due to varying network
conditions. Since in the multicast scenario de-
livery monitoring for all of the subscribed re-
ceivers is not feasible, action is needed on the
receiving side.

To ensure graceful degradation of the per-
ceived quality with increasing packet loss, MD
coding can be applied, i. e. the data which is to
be transmitted is divided into two or more de-
scriptions. Even if not all of them are received,
the signal can still be decoded, albeit with lower
quality.

In the course of our project, two different MD
speech codecs were developed. The first one
is based on logarithmic pulse code modulation
(PCM). The second one is a variation of the
G.729 annex A codec, which is based on code
excited linear prediction (CELP) and defined
by the International Telecommunication Union
(ITU). To show the improvement due to MD
coding over lossy channels, a demonstrator ap-
plication has been developed. The structure of

this application is described in the present pa-
per.

The rest of this paper is organized as follows:
In Section 2 the principles of MD coding are
explained. The actual implementation of the
demonstration application, which is the main
subject of this paper, is described in section
3. After that the usage of the program is il-
lustrated in Section 4. Section 5 contains some
concluding remarks.

2 Multiple-Description Coding

MD coding [1] provides a transmission link with
diversity in order to improve robustness to chan-
nel breakdown. The coded signal is split into
two or more descriptions which are transmit-
ted over the same number of different channels.
These channels may indeed consist of different
physical links, or of different packets transmit-
ted through networks like the internet.

Encoder

Side Decoder 1

Central Decoder

Side Decoder 2

x1(n)

y1(n)

y0(n)

y2(n)

C1 (Bit Rate R1)

C2 (Bit Rate R2)

Figure 1: MD coding scheme with two descrip-
tions

The principle of a two-channel MD coded
transmission is shown in fig. 1. From the in-
put signal, x(n), the encoder generates two de-
scriptions C1 and C2 to be sent over two lossy
channels. If no loss occurs, both descriptions
will be used by the central decoder to recon-
struct the signal y0(n) with high quality. If one
of the descriptions is lost, the received part of
the code will enable its corresponding side de-
coder to yield a reduced-quality version of the
output signal, y1(n) or y2(n). The transmission
will be interrupted only when both descriptions

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-13

LAC07-13

are lost.
The design of MD coders is subject to con-

flicting requirements [1]. If the side decoders
were optimized for high signal quality, given
the bit rates R1 and R2 for C1 and C2, little
would be gained by combining both descriptions
in the central decoder, which would then yield
a similarly high quality, but at a considerably
increased bit rate of R = R1 + R2. If, on the
other hand, the central decoder were designed
for minimum distortion at a bit rate of R, any
splitting of the code would result in poor per-
formance of the side decoders. Therefore, the
usual objective is to find a compromise for cen-
tral and side decoder qualities.

Many designs aim at balanced descriptions,
i. e. equal bit rates (R2 = R1) and equal distor-
tions of the side decoders. For more than two
MD channels, balanced descriptions will yield
decoding distortions which do not depend on
the individual subset of descriptions but only
on the number of descriptions received. The de-
coded quality will then degrade gracefully with
increasing channel failure ratio.

A receiver for L descriptions consists of 2L−1
decoders (including the central decoder). Con-
sequently, the MD decoder will be extremely
complex for high values of L if explicit side
decoders are employed. This problem can be
avoided by using a hierarchical (layered) speech
coder together with forward error correction
(FEC) codes for the construction of multiple de-
scriptions [2]. The approach consists of apply-
ing unequal loss protection to L code layers and
re-grouping the symbols of the resulting code
words into L descriptions. With k < L descrip-
tions received, the MD decoder is able to decode
the basic k layers of the coded speech. The side
decoders are constructed implicitly by FEC de-
coding.

The FEC coding scheme causes high gross bit
rates compared to the original codecs. It is pos-
sible, though, to trade robustness for bit rate
savings if the coarse base layer is made up of
more than one description.

3 Real-Time Implementation

3.1 Overview
An overview of the system as a whole is given
in fig. 2. It allows multiple client applications
to be served concurrently. On the sending side
a server waits for incoming requests. Clients
connect to the server and request speech data
streams. For every requested stream, a new

sender process is started by the server which
connects to one of the available speech sources,
encodes the data frame by frame, and sends the
coded frames to the client by which the stream
has been requested. It is possible to set up sev-
eral streams to enable the user to compare dif-
ferent configurations.

3.2 Serving side
In fig. 2 every square-cornered box represents a
separate process. Technically there is no need
to start a separate process for every newly re-
quested stream. Since, however, in the course of
this project a single sender application had al-
ready been developed, it was easier to add a sim-
ple server and start the senders as subprocesses.
This server is written in Python [3], which is a
dynamic object-oriented programming language
and even provides a TcpServer class as part of
the standard library.

For demonstration purposes the source of the
speech data was supposed to be selectable so
that different speech sources could be offered.
Using the Jack Audio Connection Kit (JACK)
[4] this can easily be achieved. Part of it is
jackd, a low-latency audio server which al-
lows several different applications to share audio
data among them. It is typically used for pro-
fessional audio processing applications, which
means that running jackd at a sampling rate
of 8 kHz, as we did, is quite unusual. Neverthe-
less, JACK has proven absolutely appropriate
to our needs.

In our case the selectable sources are pro-
vided by Ecasound [5]. Ecasound is a software
package designed for multitrack audio process-
ing, which, among other things, can be used to
play back audio files in loops. For each loop a
JACK port is registered so that our senders can
connect to these ports.

3.3 Transport protocol
The transmission of audio and video data over
the internet is often done using the Real-time
Transport Protocol (RTP) which is usually built
on top of the User Datagram Protocol (UDP).
Compared to pure UDP, RTP additionally
provides sequence numbering, time stamping,
payload-type identification, and delivery moni-
toring. Because sequence numbering is the only
feature that was needed in our case, we decided
not to use RTP. Instead we added a 16-bit
header containing a sequence number which is
incremented for each packet. To make sure that
an overflow of the sequence number does not

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-14

LAC07-14

Sender2

Sender1

Sender3

Sender4

Sender5

Loop2

Loop3

Loop1

Ecasound

Stream1

Stream2

Stream3

Client1

Stream1

Stream2

Client2

Jackd

Server

Figure 2: Structure of the system. Clients connect to the server’s control port and request streams.
For each stream, the server starts a new sender process which encodes the audio data delivered by
JACK and sends it to the requesting client.

disturb the order of descriptions, the sequence
number range is limited to a multiple of L.

The UDP port number on the receiving side
is limited to the range of 55550 to 55569, which
means that, on a distinct host, at most 20 sep-
arate ports can be served simultaneously.

3.4 Control protocol
In order to control the transmission of data a
simple plain-text protocol has been designed.
The transport protocol used for this purpose is
the Transmission Control Protocol (TCP). The
server waits for requests coming in on TCP port
55555. A request consists of a special command
word in capital letters, possibly a list of argu-
ments separated by spaces, and the closing two
special characters carriage return (CR) and line
feed (LF). After the request has been processed
the server returns an answer which consists of
a return string in capital letters (OK on success,
otherwise ERROR), possibly an additional return
string, and once more the concluding sequence
CR-LF. There are four known commands:

SOURCES This command is used to retrieve the
list of available speech sources. It does not
allow any arguments. On success a comma-
separated list of readable JACK ports is
returned.

PORT Before a stream is requested, the client
asks the server to allocate a port number.
The next time the client issues the OPEN

command this port will be used. On suc-
cess the port number is returned by the
server. If the client is located behind a
firewall, incoming UDP traffic is usually
blocked. If, however, the client sends an
initial packet to the newly allocated port
on the serving side, many firewalls will ac-
cept the incoming stream as a response to
this packet. This concept is known as UDP
hole punching.

OPEN Exactly six arguments are expected to
open a new stream: the number of the
receiving UDP port, one of the formerly
listed sources, the codec to use (either pcm
or celp), the number of descriptions to use,
the number of descriptions which make up
the base layer, and an additional argument
which is either the segment length (PCM)
or the number of CELP segments per MD
frame. If a new sender process has been
started successfully the server returns the
corresponding process ID.

CLOSE This command needs the formerly trans-
mitted process ID of a sender as the only
argument. By receiving this command the
server sends a signal (SIGINT) to the ap-
propriate process. To ensure that no other
processes are killed maliciously, this is only
done if the transmitted ID actually rep-
resents one of the formerly spawned child
processes.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-15

LAC07-15

3.5 Client side
On startup every client must connect to the
server. If this connection fails, the client exits
with an error message. A client which is con-
nected to the server asks for the available audio
sources first. After that it may request up to 20
separate streams. For each stream a new UDP
socket is opened on the client side. The audio
processing driver has again been implemented
based on JACK. For cross-platform purposes
audio drivers based on RtAudio [6] and Port-
Audio [7] have also been added.
3.5.1 Jitter buffer
In the internet, as in any packet-switched net-
work, packets can be lost or delayed, which in
real-time applications is the same when a cer-
tain delay is exceeded. Due to its best-effort
nature, the internet protocol may even result
in duplicated packets. Variations in the trans-
mission delay are taken into account by a jitter
buffer which collects packets as they come in
and delivers them in order and thus ensures con-
tinuous playout of the speech data. Our jitter
buffer implementation firstly collects the incom-
ing packets in a separate programming thread
and, secondly, delivers all available descriptions
of the current frame whenever the data of a
frame is requested by the decoder. The size of
the jitter buffer is initially set to 500 ms. It
grows exponentially when a packet is received
which cannot be buffered due to its sequence
number being too high. Basically, this means a
change of size is not supposed to happen more
than once. This is, however, also influenced by
the clock skew compensation algorithm which is
described in section 3.5.3.
3.5.2 Packet loss simulation
To demonstrate the effect of packet loss on the
client side, even if actually not a single packet
is lost in the internet, a packet loss simulator
has been added. Independent random packet
losses are simulated. Packet loss is applied after
the received packets have been delivered by the
jitter buffer.
3.5.3 Clock skew compensation
On the serving side the senders are synchro-
nized by JACK which is driven by a clock as
part of the sound card. On the client side an-
other clock is used to drive the audio processing.
Since these two clocks are not synchronous it is
highly likely that they do not run at exactly
the same rate. With typical clocks this skew
can amount to up to ±0.5% [8].

Assuming the audio data on the client side is
processed faster than on the sending side, the
jitter buffer will eventually run empty. If, on
the other hand, packets are sent faster than a
client plays out the decoded audio data, the jit-
ter buffer will overflow. We tested our client on
serveral systems and in some cases we saw the
jitter buffer run empty in only 40 seconds. To
counter this problem, we added a cubic spline
interpolator as suggested in [8]. Depending on
the jitter buffer fill level, which was low-pass fil-
tered for this purpose, the playout is accelerated
if the level is too high and slowed down if it is
too low. Fortunately this interpolation does not
degrade the perceived speech quality.

4 Usage

The client side of the demonstrator is imple-
mented as a graphical user interface (GUI),
available for GNU/Linux as well as Microsoft
Windows operating systems. Fig. 3 shows a
screen shot of the demonstrator operating on
Linux.

The parameters of a stream that is to be
added can be configured in the upper part of
the GUI. Beneath this part, the simulated loss
rate can be controlled. Every stream is shown
as a row in the table on the left side. In this
table, several stream parameters are displayed.
By selecting one of these rows, the active stream
is determined. At any time, there is exactly one
active stream of which the audio data is being
played out. The history of the active stream re-
garding all packet loss, both possible losses in
the network and simulated losses, is displayed
on the right side. The bit rate actually received
is drawn in red. The blue graph displays the
residual packet loss ratio which counts those
frames for which none of the descriptions has
been received.

5 Conclusions

Multiple-description coding is a technique to
improve the perceived quality when sending
multimedia data over lossy packet-switched net-
works like the internet. A software architecture
for real-time transmission of MD coded speech
signals over the internet has been developed.
The system allows experimental comparison of
different configurations of MD speech codecs
under varying channel conditions. It forms an
extensible framework for further experiments on
MD speech and audio coding in general.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-16

LAC07-16

Figure 3: Screen shot of the demonstrator

6 Acknowledgements

The authors would like to thank Rubén Heras
Evangelio for providing the initial implementa-
tion of the jitter buffer as well as helping with
porting the demonstrator to the Windows oper-
ating system.

This project was funded by the German Re-
search Foundation (DFG).

References

[1] V. K. Goyal. Multiple description coding:
compression meets the network. IEEE Sig-
nal Processing Magazine, 18(5):74–93, 2001.

[2] L. Rizzo. Effective erasure codes for reliable
computer communication protocols. ACM
Computer Communication Review, 27(2),
April 1997.

[3] Python Software Foundation. Python
programming language – official web-
site. http://www.python.org. last checked:
05.01.2007.

[4] P. Davis et al. Jack audio connection
kit website. http://www.jackaudio.org. last
checked: 05.01.2007.

[5] K. Vehmanen. Ecasound website.
http://www.eca.cx/ecasound. last checked:
05.01.2007.

[6] G. P. Scavone. Rtaudio website.
http://www.music.mcgill.ca/∼gary/rtaudio/.
last checked: 07.01.2007.

[7] R. Bencina et al. Portaudio website.
http://www.portaudio.com/. last checked:
07.01.2007.

[8] T. Trump. Compensation for clock skew in
voice over packet networks by speech inter-
polation. In Proceedings of the 2004 Interna-
tional Symposium on Circuits and Systems,
Vancouver, Canada, 2004.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-17

LAC07-17

Musical Signal Scripting with PySndObj

Victor Lazzarini
Sound and Digital Music Technology Group,

Music Technology Lab,
NUI, Maynooth

Ireland
Victor.Lazzarini@nuim.ie

Abstract

This article discusses musical signal scripting
using a Python language module, PySndObj, based
on the Sound Object (SndObj) Library. This
module allows for advanced music and audio
scripting and provides support for fast application
development and on-the-fly synthesis
programming. The article discusses the main
concepts involved in audio programming with the
library. This is complemented by an overview of
the PySndObj module with a number of basic
examples of its use. The article concludes with the
description of a proposed Musical Signal
Processing system, which would include the
previously discussed SndObj and PySndObj
components.

Keywords

Musical Signal Processing, Object-Oriented
Programming, Scripting Languages, Music
Composition

1 Introduction
The Sound Object (SndObj) Library [1] is an

object-oriented[2] audio processing library. It is a
collection of classes for synthesis and processing
of sound, inspired by the example set by the
MUSIC N family of programs [3]. These can be
used to build applications for computer-generated
music. The source code is multi-platform and can
be compiled under most C++ compilers. The
library is a both an audio programming framework
and a fast application development toolkit, with
over 100 classes in its current release. For the
latter uses, the library is available on C++[4],
Java[5] or Python[6]. This article will discuss
aspects of audio scripting using the SndObj library
Python module, PySndObj.

1.1 What is a SndObj?

A SndObj (pronounced ‘Sound Object’) is a
programming unit that can generate signals with
audio or control characteristics. It has a number of
basic attributes, such as an output vector, a
sampling rate, a vectorsize and an input connection
(which points to another SndObj). Depending on
the type of SndObj, other attributes will also be
featured: an oscillator will have an input
connection for a function table, a delayline will
have a delay buffer, etc..

SndObjs contain their own output signal. So, at
a given time, if we want to obtain the signal it
generates, we can probe its output vector. This will
contain a vecsize number of samples that the
object has generated after it was asked to either
process or synthesise a signal. This is a basic
characteristic of SndObjs: signals are internal, as
opposed to existing in external buffers or busses.
SndObjs can interface very easily with external
signals, but in a pure SndObj processing chain,
signals are internal and hidden.

1.2 Generating output

The basic operation that a SndObj performs is to
produce an output signal. This is done by invoking
the public member function SndObj::DoProcess().
Each call will generate a new output vector full of
samples, so to generate a continuous signal stream,
DoProcess() should be invoked repeatedly in a
loop (known as the ‘processing loop’). Programs
will have to feature at least one such loop in order
to generate audio signals.

As an alternative to directly programming a
loop, users can avail of the services of the
SndThread class and its derivatives, which provide
processing thread management and a hidden
processing loop (see below). The DoProcess()
method is overridable, so each different variety of
SndObj will implement it differently so that
different objects can generate different signals. In

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-18

LAC07-18

addition, other types of processing might be
achieved with some overloaded operators (see
below in ‘Manipulating SndObjs’).

1.3 Connecting SndObjs

Another basic programming concept found in
this library is that SndObjs do not have direct
signal inputs, because of the fact that signals are
internal to them. Instead, they will have input
connections to other SndObjs. This way an object
will read the output signal of another which is
connected to it. Any type of signal input, either a
processing input or a parameter modulator input is
connected in the same way.

Certain processing parameters will have two
types of input: an offset value and a SndObj
connection. The offset value, generally a single
floating point value is added to whatever signal the
connected SndObj has generated. In most cases,
SndObj connections for parameters are optional: if
they are not present, then only the offset value is
used for it. In this case, they are in fact not an
‘offset’, but the actual value for the parameter. In
other cases, the user will want to set the parameter
offset to 0, so that only the SndObj input is used to
control that parameter.

1.4 Manipulating SndObjs

Apart from invoking processing, users can
manipulate SndObjs in other ways. The first
obvious operation is parameter setting, for which
different varieties of SndObjs will have different
methods. However, a unified message-passing
interface is defined by SndObj, with the
SndObj::Set() and SndObj::Connect() methods.
These can be used to change the status of SndObjs
via the various messages defined for them.

Messages are also inherited, so the derived
object will have its own set, plus the ones defined
for its superclass(es). Set() is used to set offset and
single parameter values. Connect() is used to
connect input objects, which can be of SndObj,
SndIO (input and output objects) or Table
(function table objects) types. Messages are string
constants. In addition, the output signal buffer can
be accessed with a variety of methods such as
SndObj::Output(), SndObj::PushIn() and
SndObj::PopOut() .

1.5 Input and Output

Signal input and output is handled by SndIOs
(‘sound ios’), which are objects that can write and
read to files, memory, devices, etc. They are
modelled in similar ways to SndObjs: signals are
internal, use object connections, etc.. However,

they are designed to deal with a slightly different
type of processing. Their main performing
methods are SndIO::Read() and SndIO::Write().
When invoked, these will read or write a
vectorsize full of samples from/to their
source/destination, respectively. SndIOs can
handle multichannel streams, so their output vector
actually contains frames of samples (in interleaved
format).

SndIOs interact with SndObjs in two basic ways.
For signal input, SndIOs can be accessed via SndIn
objects. Each channel of input audio has to be
connected separately, because SndObjs in general
handle only single signal streams. For signal
output, SndObjs can be connected directly to
SndIOs (again, one for each channel). This can be
done at construction time, or more usually using
SndIO::SetOutput(). For MIDI input, a number of
specialist classes exist, derived from MidiIn,
which work in a similar way to SndIn.

1.6 Function Tables

Certain SndObjs, for instance oscillators, will
depend heavily on tabulated function tables. For
this purpose, a special type of object can be used, a
Table object. Tables are very simple objects whose
most important attribute is their actual tabulated
function, which is created at construction time.
Tables can be updated at any time, by changing
some of their parameters and invoking
Table::MakeTable().

1.7 Frequency-domain issues

The Sound Object Library provides classes for
time and frequency-domain (spectral) processing.
For the latter, a few special considerations must be
made. Time-domain and spectral SndObjs are
designed to fit in together very snuggly in a
processing chain. For this reason, a certain model
was employed, which slightly limits the
arrangement of such SndObjs.

For spectral processing, the FFT size must be
always power-of-two multiple of the hopsize
(usually a minimum four times that value). When
connecting time- and frequency-domain SndObjs,
the hopsize must be the same as the time-domain
vectorsize. Generally for an efficient FFT, the
analysis size is set to a power-of-two value. So, in
practice, this limits the vectorsize/hopsize and FFT
size values to a limited pairing of values. Although
at first this looks limiting, it will in fact have little
impact of the flexibility of spectral processing
using the library. This model, in turn, will
facilitate immensely the interaction between

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-19

LAC07-19

frequency- and time-domain SndObjs. Effectively,
if these conditions are met, they can be inter-
connected transparently, even though they are
dealing with very different types of signals.

1.8 Processing threads

In addition to the basic types of objects
discussed above, the Sound Object Library also
includes a special thread management class,
SndThread. With this type of object, a pthread-
library based thread can be instantiated and run.
This object encapsulates the main processing loop,
calling the basic performing methods of each
object that has been add to it.

Using SndThreads (‘sound threads’) is very
simple. Once an object has been created and a
chain of SndObjs/SndIOs has been defined, a
processing list is initialised using
SndThread::AddObj() or SndThread::Insert(). To
start processing a signal, SndThread::ProcOn() is
invoked. To stop processing, SndThread::Proc-
Off() can be used. SndObjs can be deleted from
the processing list using SndThread::DeleteObj().
Multiple SndThreads can be used for parallel
processing with SndBuffer objects being used to
obtain the signals from each thread.

2 PySndObj

PySndObj is a python module that wraps the
SndObj C++ code in a very useful way to provide
support for Python scripting. It allows for a nice
scripting interface to the library for fast
application development, prototyping of
applications and general on-the-fly synthesis and
processing.

PySndObj can be added, provided you have the
_sndobj dynamic module (.so on Linux, .dylib on
OSX and .dll on Windows) and csnd.py (the
python bindings) in the right places (check your
Python documentation), using the import
command:

import sndobj

or

from sndobj import *

This will allow access to all SndObj library
classes available to your platform, plus some extra
utility classes for array support. The latter form
allows for accessing the SndObj classes directly,
without the package name as a prefix

('namespace'). For sake of simplicity and economy
of space, we will be using the latter form as the
basis for all further code examples. However it is
important to point out that the recommended
Python coding style is to explicitely use
namespaces.

2.1 Python SndObj classes and objects

Python SndObj classes look very similar to their
C++ counterparts. The main difference is that in
Python all objects are dynamically allocated, so
they are equivalent to C++ pointers to objects.
Since the library uses pointers to connect object
(See ‘Programming Concepts’), using SndObjs in
Python is very straightforward and transparent.

Connecting objects is very simple. Let’s say we
want to create a sine wavetable and connect an
oscillator to it:

tab = HarmTable()
osc = Oscili(tab,440, 16000)

Here as variables hold object pointers, we have the
case where ‘tab’ can be passed directly to osc,
with no need for any extra complications. The
same works for SndObj and SndIO connections, so
if we set up a RT output object, we can connect
our oscillator to it:

outp = SndRTIO(1)
outp.SetOutput(1,osc)

This works between SndObjs as we would
expect, if we want to, say, connect a modulator to
our oscillator:

mod = Oscili(tab, 2, 44)
osc.SetFreq(440, mod)

2.2 Running SndObjs

In order to get audio processing out of a SndObj,
it is necessary to invoke its DoProcess() method.
This runs the processing once and produces an
output vector full of samples, eg.

osc.DoProcess()

For a continuous output, continued calls to
DoProcess() are required, so we need to set up a
loop, where this can happen. In addition, any
SndIOs in the chain have also to call their Read()
or Write() methods (for input or output
respectively).

10 seconds of audio output
timecount = 0
end = 10 * osc.GetSr()

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-20

LAC07-20

vecsize = osc.GetVectorSize()
while(timecount < end):
 mod.DoProcess()
 osc.DoProcess()
 outp.Write()
timecount += vecsize

2.3 Using a processing thread

However, the simplest way to get SndObjs
producing audio is to use a SndThread object to
control the synthesis. This will take care of setting
up a processing loop and call all the required
methods. We start by setting the object up:

thread = SndThread()
thread.AddObj(mod)
thread.AddObj(osc)
thread.AddObj(outp, SNDIO_OUT)

Then we can turn on the processing to get some
audio out:

thread.ProcOn()

When we are done with it, we can turn it off:

thread.ProcOff()

In addition to SndThread, it is also possible to
use SndRTThread, which has default realtime
objects for input and output that can be connected
to. In this case the user only needs to set up his/her
SndObj chain and add this to the thread object.

Any asynchronous Python code can also be
called, by setting up a process callback, that will
be invoked once every processing period. This
happens after the input signal(s) has been
obtained, but before any processing by SndObjs.

For instance, if we have a method:

def callb(data):
 ... # callback code

This sets the callback, data is any data object to
be passed to the callback:

thread.SetProcessCallback(callb,data)

The callback can be used for things like
updating a display, changing parameters cyclically,
polling for control input, etc..

2.4 Support for arrays

In order to facilitate certain ways of
programming and to make possible the use of C
arrays with the library, some utility classes have
been added for int, float and double arrays, named,

respectively: intArray, floatArray and double-
Array. These classes can be used as follows

create an array of two items
f = floatArray(2)
array objects can be manipulated
by index as in C
f[0] = 2.5

In addition, a special type of array is also
available, the sndobjArray, which holds SndObjs
(internally C++ SndObj pointers). Objects of this
type can be used similarly to the above array:

objs = sndobjArray(2)
objs[0] = mod
objs[1] = osc

However, when these are used as SndObj
pointer arrays, they will need to be cast as that.
Hopefully the class has a handy method for doing
just that:

objp = objs.cast()

These can be used with objects that take arrays
of SndObjs as input, such as SndThread:

thread = SndThread(2, objp, outp)

in which case we are setting up a thread with
two SndObjs (which is similar to the example
above). Other objects that take SndObj arrays are
for instance SndIO-derived objects and Mixer
SndObjs. But remember, SndObj arrays are not
sndobjArray objects, but can be retrieved using
sndobjArray::cast().

3 Simple examples

Two simple scripts are provided here for
realtime audio processing and synthesis.

3.1 Simple echo using a comb filter

This example demonstrates realtime audio IO and
some delayline processing. The example uses a
SndRTThread object as introduced above. This
takes care of all realtime input/output.

from sndobj import *
import time
import sys

if len(sys.argv) > 1:
 dur = sys.argv[1]
else:
 dur = 60

SndRTThread object has its own
IO objects.
By the default it is created wth

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-21

LAC07-21

2 channels
t = SndRTThread(2)

Echo objects take input from
SndRTThread inputs
comb_left = Comb(0.48,0.6,t.GetInput(1))
comb_right = Comb(0.52, 0.6,t.GetInput(1))

We now add the echo objects to
the output channels
t.AddOutput(1, comb_left)
t.AddOutput(2, comb_right)

This connects input to output
directly
t.Direct(1)
t.Direct(2)

turn on processing for
dur seconds
t.ProcOn()
time.sleep(float(dur))
t.ProcOff()

3.2 Oscillator with GUI (using wxPython)

Here we present a complete GUI-based synthesis
program (albeit a trivial one). This demonstrates
how a GUI toolkit (such as wxPython[7]) can be
used to create complete computer instruments.

from sndobj import *
from wxPython.wx import *
import traceback
import time

class ControlPanel(wxPanel)
Override the base class
constructor
def __init__(self, parent):
wxPanel.__init__(self, parent, -1)
self.ID_BUTTON1 = 10
self.button1 = wxButton(self, \
 self.ID_BUTTON1, "On/Off", \
 (20, 20))
Bind the button to its event
handler.
 EVT_BUTTON(self, self.ID_BUTTON1,\
 self.OnClickButton1)
Create a slider to change pitch
 self.ID_SLIDER1 = 20
 self.slider1 = wxSlider(self, \
 self.ID_SLIDER1, 300, 200, 400,\
 (20, 50), (200,50), \
 wxSL_HORIZONTAL | wxSL_LABELS)
 self.slider1.SetTickFreq(5, 1)
Bind the slider to its event
handler.
 EVT_SLIDER(self, self.ID_SLIDER1, \
 self.OnSlider1Move)
EVT_CLOSE(parent, self.OnClose)
Default pitch.
self.pitch = 300
Sine wave table
self.tab = HarmTable()
Envelope (just attack actually)
self.line = Interp(0, 10000, 0.05)
oscil
self.osc = Oscili(self.tab, \

 self.pitch, 0, None, self.line)
self.out = SndRTIO(1,SND_OUTPUT)
self.out.SetOutput(1, self.osc)
self.thread = SndThread()
self.thread.AddObj(self.line)
self.thread.AddObj(self.osc)
self.thread.AddObj(self.out, SNDIO_OUT)
self.play = False

 def OnClickButton1(self, event):
 if(self.play):
create an envelope decay
self.line.SetCurve(10000, 0)
 self.line.Restart()
 self.play = False
 else:
create an envelope attack
 self.line.SetCurve(0, 10000)
 self.line.Restart()
 self.play = True
 self.thread.ProcOn()

slider movement
def OnSlider1Move(self, event):
 self.pitch = event.GetInt()
 self.osc.SetFreq(self.pitch)

stop performance
def OnClose(self, event):
 try:
 self.thread.ProcOff()
 time.sleep(1)
 self.GetParent().Destroy()
 except:
 print traceback.print_exc()

Create a wx application.
application= wxPySimpleApp()
Create a parent frame
frame= wxFrame(None,-1,"PySndObj example")
Create the controls
controlPanel= ControlPanel(frame)
Display the frame.
frame.Show(True)
Run the application.
application.MainLoop()

4 Towards a Musical Signal Processing
System

The SndObj library and PySndObj, in fact, form
part of a larger picture of a proposed system that
will incorporate a third software component in the
form of graphic 'patching application'. These three
elements would then form a three-layer Musical
Signal Processing System (fig.1), allowing
different entry levels of user interaction.

At the top, the patching application will provide
a GUI layer. At this level, users can set up patches
of SndObjs, event patterns, automation, etc.,
without the use (or at least with reduced use) of
textual declarations.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-22

LAC07-22

The middle layer is provided by Python and
PySndObj (possibly with some Python-written
add-ons for event processing and control). This
provides the interface between the patching
application (itself written in Python) and the
lower-level SndObj library. Users will be able to
use this layer directly, bypassing (or combining
with) the patching application, for scores and,
more general, scripting (for instance, alternative
top-level applications can be written using this
layer).

The lower level is then provided by the SndObj
library itself, the DSP engine for the system. This
layer can be accessed directly by the user in C++
code, providing standalone applications, modules
for languages (similarly to PySndObj, for Java,
Lisp, etc...).

Of the three components for this proposed
system, the lower end is complete and functional.
The middle layer (as discussed in this article) is
functional, but perhaps needing some extensions
for better event processing support. The top level
does not exist yet, although some idea of how it
might look like was provided by the AIDE
software[8], developed using the SndObj library.

5 Conclusion

PySndObj provides a good support for audio
processing in Python. The simplicity of the
language, allied to the modularity and
comprehesiveness of the library proves to be a
powerful combination.

All of the SndObj tools are Free software, GPL
licensed, and are available from sourceforge
download (full releases) or anonymous CVS at:

 http://sndobj.sf.net

Developers are also encouraged to join the
project and can do so by contacting the author at
his e-mail address.

6 References
[1] V Lazzarini. 2000. The Sound Object Library.

Organised Sound 5 (1), pages 35-49.
Cambridge Univ. Press., Cambridge.

[2] M Abadi and L Cardelli. 1996. A Theory of
Objects, Springer-Verlag, New York.

[3] C Dodge and T Jerse. 1985. Computer Music:
Synthesis, Composition and Performance.
Schirmer Books, New York.

[4] B Stroustrop. 1991. The C++ Programming
Language, second edition. Addison-Wesley,
New York.

[5] K Arnold and J Gosling. 1996. The Java
Programming Language. Addison-Wesley,
New York.

[6] G Van Rossum and F Drake. 2003. The
Python Language Reference Manual. Network
Theory, Bristol.

[7] http://www.wxwidgets.org
[8] V Lazzarini and R Walsh. 2004. AIDE, a New

digital audio effects development
environment. Proc. of the 7th Int. Conference
on Digital Audio Effects (DAFx-04), pages 53-
57. Univ.of Naples, Naples.

Figure 1. The three levels of a proposed Musical
Signal Processing System

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-23

LAC07-23

Interfacing Pure Data with Faust

Albert GRÄF
Dept. of Music Informatics, Johannes Gutenberg University

55099 Mainz, Germany,
ag@muwiinfa.geschichte.uni-mainz.de

Abstract

This paper reports on a new plugin interface for
Grame’s functional DSP programming language
Faust. The interface allows Faust programs to be
run as externals in Miller Puckette’s Pd (Pure Data),
making it possible to extend Pd with new audio ob-
jects programmed in Faust. The software also in-
cludes a script to create wrapper patches around
Faust units which feature “graph-on-parent” GUI el-
ements to facilitate the interactive control of Faust
units. The paper gives a description of the interface
and illustrates its usage by means of a few examples.

Keywords

Computer music, digital signal processing, Faust
programming language, functional programming,
Pd, Pure Data

1 Introduction

Faust is a modern-style functional language
for programming digital signal processing algo-
rithms being developed at Grame [1; 2], which
was already presented in-depth at last year’s
Linux Audio Conference [3]. Faust provides an
executable, high-level specification language for
describing block diagrams operating on audio
signals. Signals are modelled as functions of
(discrete) time and DSP algorithms as higher-
order functions operating on signals. The main
advantages of this approach over using graph-
ical block diagrams is that the building blocks
of signal processing algorithms can be combined
in much more flexible ways, and that Faust can
also serve as a formal specification language for
signal processing units.

Faust programs are compiled to efficient C++
code which can be used in various environ-
ments, including Jack, LADSPA, Max/MSP,
SuperCollider, VST and the Q programming
language. This paper reports on Faust’s plugin
interface for Miller Puckette’s Pure Data a.k.a.
Pd (http://puredata.info). The new inter-
face allows audio developers and Pd users to run
Faust programs as Pd externals, in order to test

Faust programs using Pd’s convenient graphi-
cal environment, or to extend Pd with new cus-
tom audio objects. The package also includes
a Q script faust2pd which can create wrap-
per patches featuring “graph-on-parent” GUIs
around Faust externals, which further facilitates
the interactive control of Faust units in the Pd
environment.

The software described in this paper is free
(GPL’ed). It is already included in recent
Faust releases (since version 0.9.8.6), and is
also available as a separate package faust2pd
from http://q-lang.sf.net, which includes
the puredata.cpp Faust architecture file, the
faust2pd script and supporting Pd abstrac-
tions, as well as a bunch of examples. You
can also try Faust interactively, without having
to install the Faust compiler, at Grame’s Faust
website (http://faust.grame.fr).

Because of lack of space we cannot give
an introduction to Faust and Pd here,
so the paper assumes a passing familiarity
with both. More information about these
systems can be found in the documenta-
tion available at http://faust.grame.fr and
http://puredata.info.

2 Building Faust externals

Faust Pd plugins work in much the same way
as the well-known plugin~ object (which in-
terfaces to LADSPA plugins), except that each
Faust DSP is compiled to its own Pd external.
Under Linux, the basic compilation process is
as follows (taking the freeverb module from the
Faust distribution as an example):

compile the Faust source to a C++ module
using the "puredata" architecture
faust -a puredata.cpp freeverb.dsp
-o freeverb.cpp

compile the C++ module to a Pd plugin
g++ -shared -Dmydsp=freeverb freeverb.cpp
-o freeverb~.pd_linux

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-24

LAC07-24

By these means, a Faust DSP named XYZ with
N audio inputs and M audio outputs becomes a
Pd object XYZ~ with N +1 inlets and M +1 out-
lets. The leftmost inlet/outlet pair is for con-
trol messages only. This allows you to inspect
and change the controls the unit provides, as de-
tailed below. The remaining inlets and outlets
are the audio inputs and outputs of the unit,
respectively. For instance, freeverb.dsp be-
comes the Pd object freeverb~ which, in addi-
tion to the control inlet/outlet pair, has 2 audio
inputs and outputs.

When creating a Faust object it is also possi-
ble to specify, as optional creation parameters,
an extra unit name (this is explained in the fol-
lowing section) and a sample rate. If no sample
rate is specified explicitly, it defaults to the sam-
ple rate at which Pd is executing. (Usually it is
not necessary or even desirable to override the
default choice, but this might occasionally be
useful for debugging purposes.)

In addition, there is also a Q script named
faust2pd, described in more detail below,
which allows you to create Pd abstractions as
“wrappers” around Faust units. The wrap-
pers generated by faust2pd can be used in Pd
patches just like any other Pd objects. They are
much easier to operate than the “naked” Faust
plugins themselves, as they also provide “graph-
on-parent” GUI elements to inspect and change
the control values.

Note that, just as with other Pd externals and
abstractions, the compiled .pd_linux modules
and wrapper patches must be put somewhere
where Pd can find them. To these ends you can
either move the files into the directory with the
patches that use the plugin, or you can put them
into the lib/pd/extra directory or some other
directory on Pd’s library path for system-wide
use.

3 The control interface

Besides the DSP algorithm itself, Faust pro-
grams also contain an abstract “user interface”
definition from which the control interface of
a Faust plugin is constructed. The Faust de-
scription of the user interface comprises various
abstract GUI elements such as buttons, check-
boxes, number entries and (horizontal and verti-
cal) sliders as well as the initial value and range
of the associated control values, which are spec-
ified in the Faust source by means of the builtin
functions button, checkbox, nentry, hslider
and vslider. Besides these “active” elements

which are used to input control values into the
Faust program, there are also “passive” ele-
ments (hbargraph, vbargraph) which can be
used to return control values computed by the
Faust program to the client application.

It is also possible to specify a hierarchical lay-
out of the GUI elements by means of appropri-
ate “grouping” elements which are implemented
by the Faust functions hgroup, vgroup and
tgroup (hgroup and vgroup are for horizon-
tal and vertical layouts, respectively, whereas
tgroup is intended for “tabbed” layouts). Each
GUI element (including the grouping elements)
has an associated label (a string) by which the
element can be identified in the client appli-
cation. More precisely, each GUI element is
uniquely identified by the path of labels in the
hierachical layout which leads up to the given
element. For further details we refer the reader
to the Faust documentation [4].

To implement the control interface on the Pd
side, the control inlet of a Faust plugin under-
stands a number of messages which allow to de-
termine the available controls as well as change
and inspect their values:

• The bang message reports all available con-
trols of the unit on the control outlet. The
message output for each control contains
the type of control as specified in the Faust
source (checkbox, nentry, etc.), its (fully
qualified) name, its current value, and its
initial, minimum, maximum and stepsize
values as specified in the Faust source.

• The foo 0.99 message sets the control foo
to the value 0.99, and outputs nothing.

• Just foo outputs the (fully qualified) name
and current value of the foo control on the
control outlet.

Control names can be specified in their
fully qualified form (giving the complete path
of a control, as explained above), like e.g.
/gnu/bar/foo which indicates the control foo
in the subgroup bar of the topmost group gnu,
following the hierarchical group layout defined
in the Faust source. This lets you distinguish
between different controls with the same name
which are located in different groups. To find
out about all the controls of a unit and their
fully qualified names, you can bang the control
inlet of the unit as described above, and con-
nect its control outlet to a print object, which
will cause the descriptions of all controls to be

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-25

LAC07-25

printed in Pd’s main window. (The same infor-
mation can also be used, e.g., to initialize Pd
GUI elements with the proper values. Patches
generated with faust2pd rely on this.)

You can also specify just a part of the control
path (like bar/foo or just foo in the example
above) which means that the message applies to
all controls which have the given pathname as
the final portion of their fully qualified name.
Thus, if there is more than one foo control in
different groups of the Faust unit then sending
the message foo to the control inlet will report
the fully qualified name and value for each of
them. Likewise, sending foo 0.99 will set the
value of all controls named foo at once.

Concerning the naming of Faust controls in
Pd you should also note the following:

• A unit name can be specified at object
creation time, in which case the given
symbol is used as a prefix for all con-
trol names of the unit. E.g., the con-
trol /gnu/bar/foo of an object baz~ cre-
ated with baz~ baz1 has the fully quali-
fied name /baz1/gnu/bar/foo. This lets
you distinguish different instances of an ob-
ject such as, e.g., different voices of a poly-
phonic synth unit.

• Pd’s input syntax for symbols is rather
restrictive. Therefore group and control
names in the Faust source are mangled into
a form which only contains alphanumeric
characters and hyphens, so that the con-
trol names are always legal Pd symbols.
For instance, a Faust control name like
"meter #1 (dB)" will become meter-1-dB
which can be input directly as a symbol in
Pd without any problems.

• “Anonymous” groups and controls (groups
and controls which have empty labels in the
Faust source) are omitted from the path
specification. E.g., if foo is a control lo-
cated in a main group with an empty name
then the fully qualified name of the con-
trol is just /foo rather than //foo. Like-
wise, an anonymous control in the group
/foo/bar is named just /foo/bar instead
of /foo/bar/.

Last but not least, there is also a special con-
venience control named active which is gener-
ated automatically. The default behaviour of
this control is as follows:

• When active is nonzero (the default), the
unit works as usual.

• When active is zero, and the unit’s num-
ber of audio inputs and outputs match,
then the audio input is simply passed
through.

• When active is zero, but the unit’s num-
ber of audio inputs and outputs do not
match, then the unit generates silence.

The active control frequently alleviates the
need for special “bypass” or “mute” controls in
the Faust source. However, if the default be-
haviour of the generated control is not appro-
priate you can also define your own custom ver-
sion of active explicitly in the Faust program;
in this case the custom version will override the
default one.

4 Basic example

Let’s take a look at a simple example to see
how these Faust externals actually work in Pd.
The patch shown on the right of Figure 1 fea-
tures a Faust external tone~ created from the
Faust source shown on the left of the figure.
The Faust program implements a simple DSP, a
sine oscillator with zero audio inputs and stereo
(i.e., two) audio outputs, which is controlled by
means of three control variables vol (the output
volume), pan (the stereo panning) and pitch
(the frequency of the oscillator in Hz). Note
that in the patch the two audio outlets of the
tone~ unit are connected to a dac~ object so
that we can listen to the audio output produced
by the Faust DSP.

Several messages connected to the control in-
let of the tone~ object illustrate how to inspect
and change the control variables. For instance,
by sending a bang to the control inlet, we ob-
tain a description of the control parameters of
the object printed in Pd’s main window, which
in this case looks as follows:

print: nentry /faust/pan 0.5 0.5 0 1 0.01
print: nentry /faust/pitch 440 440 20 20000 0.01
print: nentry /faust/vol 0.3 0.3 0 10 0.01

Clicking the vol 0.1 message changes the
vol parameter of the unit. We can also send
the message vol to show the new value of the
control, which is reported as follows:

print: /faust/vol 0.1

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-26

LAC07-26

import("music.lib");

// control variables

vol = nentry("vol", 0.3, 0, 10, 0.01);
pan = nentry("pan", 0.5, 0, 1, 0.01);
pitch = nentry("pitch", 440, 20, 20000, 0.01);

// simple sine tone generator

process = osci(pitch)*vol : panner(pan);

Figure 1: Basic Faust example

In the same fashion we can also set the pitch
control to change the frequency of the oscillator.
Moreover, the active control (which is not de-
fined in the Faust source, but created automati-
cally by the Pd-Faust plugin interface) allows to
switch the unit on and off. The example patch
allows this control to be operated by means of
a toggle button.

5 Wrapping Faust DSPs with
faust2pd

Controlling bare Faust plugins in the way
sketched out in the preceding section can be
a bit cumbersome, so the faust2pd package
also provides a Q script faust2pd.q which
can generate “wrapper” patches featuring ad-
ditional graph-on-parent GUIs. Most of the
sample patches in the faust2pd package were
actually created that way. To use the script,
you’ll also need the Q interpreter available from
http://q-lang.sf.net. The faust2pd pack-
age contains instructions on how to install the
script and the supporting Pd abstractions on
your system.

The graph-on-parent GUIs of the wrapper
patches are not created from the Faust source
or the compiled plugin, but from the XML de-
scriptions (dsp.xml files) Faust generates when
it is run with the -xml option. Such an XML file
contains a readable description of the complete
hierarchy of the control elements defined in the
Faust program, and includes all necessary in-
formation to create a concrete rendering of the
abstract user interface in the Faust source. The
faust2pd script is able to read this XML de-
scription and create the corresponding Pd GUI
along with the necessary control logic.

The script is run as faust2pd
filename.dsp.xml; this will create a Pd
patch named filename.pd from the Faust
XML description in filename.dsp.xml. The
faust2pd program understands a number of

options which affect the layout of the GUI
elements and the contents of the generated
patch; you can also run faust2pd -h for
information about these additional options.

On Linux, the compilation of a Faust DSP
and creation of the Pd patch typically involves
the following steps (again taking the freeverb
module from the Faust distribution as an ex-
ample):

compile the Faust source and generate
the xml file
faust -a puredata.cpp -xml freeverb.dsp
-o freeverb.cpp

compile the C++ module to a Pd plugin
g++ -shared -Dmydsp=freeverb freeverb.cpp
-o freeverb~.pd_linux

generate the Pd patch from the xml file
faust2pd freeverb.dsp.xml

Just like the Faust plugin itself, the gener-
ated patch has a control input/output as the
leftmost inlet/outlet pair, and the remaining
plugs are signal inlets and outlets for each au-
dio input/output of the Faust unit. However,
the control inlet/outlet pair works slightly dif-
ferent from that of the Faust plugin. Instead of
being used for control replies, the control out-
let of the patch simply passes through its con-
trol input (after processing messages which are
understood by the wrapped plugin). By these
means control messages can flow along with the
audio signal through an entire chain of Faust
units. Moreover, when generating a polyphonic
synth patch using the -n a.k.a. --nvoices op-
tion there will actually be two control inlets, one
for note messages and one for ordinary control
messages. (This is illustrated by the examples
in the following section.)

The generated patch also includes the neces-
sary GUI elements to see and change all (active
and passive) controls of the Faust unit. Faust
control elements are mapped to Pd GUI ele-
ments in an obvious fashion, following the hori-

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-27

LAC07-27

zontal and vertical layout specified in the Faust
source. The script also adds special buttons for
resetting all controls to their defaults and to op-
erate the special active control.

This generally works very well, but you
should be aware that the control GUIs gener-
ated by faust2pd are somewhat hampered by
the limited range of GUI elements available in
a vanilla Pd installation:

• There are no real “button” widgets as
required by the Faust specification, so
“bangs” are used instead. There is a global
delay time for switching the control from 1
back to 0, which can be changed by sending
a value in milliseconds to the faust-delay
receiver. If you need interactive control
over the switching time then it is better
to use checkboxes instead, or you can have
faust2pd automatically substitute check-
boxes for all buttons in a patch by invok-
ing it with the -f a.k.a. --fake-buttons
option.

• Sliders in Pd do not display their value
in numeric form so it may be hard to fig-
ure out what the current value is. There-
fore faust2pd has an option -s a.k.a.
--slider-nums which causes it to add a
number box to each slider control. (This
flag also applies to Faust’s passive bargraph
controls, as these are implemented using
sliders, see below.)

• Pd’s sliders also have no provision for spec-
ifying a stepsize, so they are an awkward
way to input integral values from a small
range. On the other hand, Faust doesn’t
support the “radio” control elements which
Pd provides for that purpose. As a remedy,
faust2pd allows you to specify the option
-r MAX (a.k.a. --radio-sliders=MAX) to
indicate that sliders with integral values
from the range 0..MAX-1 are to be mapped
to corresponding Pd radio controls.

• Faust’s “bargraphs” are emulated using
sliders. Note that these are passive con-
trols which just display a value computed
by the Faust unit. A different background
color is used for these widgets so that you
can distinguish them from the ordinary (ac-
tive) slider controls. The values shown in
passive controls are sampled every 40 ms by
default. You can change this value by send-
ing an appropriate message to the global
faust-timer receiver.

• Since Pd has no “tabbed” (notebook-
like) GUI element, Faust’s “tgroups” are
mapped to “hgroups” instead. It may be
difficult to present large and complicated
control interfaces without tabbed dialogs,
though. As a remedy, you can control the
amount of horizontal or vertical space avail-
able for the GUI area with the -x and -y
(a.k.a. --width and --height) options and
faust2pd will then try to break rows and
columns in the layout to make everything
fit within that area.

• You can also exclude certain controls from
appearing in the GUI using the -X option.
This option takes a comma-separated list
of shell glob patterns indicating either just
the names or the fully qualified paths of
Faust controls which are to be excluded
from the GUI. For instance, the option
-X ’volume,meter*,faust/resonator?/*’
will exclude all volume controls, all con-
trols whose names start with meter,
and all controls in groups matching
faust/resonator?.

• Faust group labels are not shown at all,
since there seems to be no easy way to draw
some kind of labelled frame in Pd.

Despite these limitations, faust2pd appears
to work rather well, at least for the kind of DSPs
found in the Faust distribution. Still, for more
complicated control surfaces and interfaces to
be used on stage you’ll probably have to edit
the generated GUI layouts by hand.

6 Faust2pd examples

Figure 2 shows the Faust program of a sim-
ple chorus unit. On the right side of the fig-
ure you see the corresponding object generated
with faust2pd with its graph-on-parent area, as
it is displayed in a parent patch. The object has
three inlet/outlet pairs, one for the control mes-
sages and two for the stereo input and output
signals. For this abstraction, we ran faust2pd
with the -s a.k.a. --slider-nums options so
that each hslider control in the Faust source
is represented by a pair of horizontal slider and
number GUI elements in the Pd patch.

If you open the chorus object inside Pd you
can have a closer look at the contents of the
patch (Figure 3). Besides the graph-on-parent
area with the GUI elements, it contains the
chorus~ external itself along with inlets/outlets
and receivers/senders for the control and audio

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-28

LAC07-28

import("music.lib");

level = hslider("level", 0.5, 0, 1, 0.01);
freq = hslider("freq", 2, 0, 10, 0.01);
dtime = hslider("delay", 0.025, 0, 0.2, 0.001);
depth = hslider("depth", 0.02, 0, 1, 0.001);

tblosc(n,f,freq,mod)
= (1-d)*rdtable(n,waveform,i&(n-1)) +
d*rdtable(n,waveform,(i+1)&(n-1))

with {
waveform = time*(2.0*PI)/n : f;
phase = freq/SR : (+ : decimal) ~ _;
modphase = decimal(phase+mod/(2*PI))*n;
i = int(floor(modphase));
d = decimal(modphase);

};

chorus(d,freq,depth) = fdelay(1<<16, t)
with { t = SR*d/2*(1+depth*tblosc(1<<16, sin, freq, 0)); };

process = vgroup("chorus", (c, c))
with { c(x) = x+level*chorus(dtime,freq,depth,x); };

Figure 2: Faust chorus patch

Figure 3: Inside the chorus patch

inputs and outputs (on the left side of the fig-
ure, below the GUI area) and the control logic
for the GUI elements (on the right side). Of
course, the generated contents of the patch can
also be edited manually as needed.

It is also possible to generate polyphonic
synth patches. Figure 4 shows a simple exam-
ple, an additive synthesizer. On this Faust pro-
gram we invoked faust2pd with the -n a.k.a.
--nvoices option which specifies the desired
number of voices. The generated abstraction
then contains as many instances of the Faust

external as given with the -n option. The re-
sulting patch does not have any audio inputs,
but two control inputs instead of one. While
the right control inlet takes Faust control mes-
sages which are sent to all the Faust objects
(a.k.a. “voices”) simultaneously, the left inlet
takes triples of numbers consisting of a voice
number, a note number and a velocity value and
translates these to the appropriate freq, gain
and gate messages for the corresponding voice.

(At this time, the names of the three special
voice controls are hard-wired into the faust2pd

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-29

LAC07-29

import("music.lib");

// control variables

vol = hslider("vol", 0.3, 0, 10, 0.01);
pan = hslider("pan", 0.5, 0, 1, 0.01);
attack = hslider("attack", 0.01, 0, 1, 0.001);
decay = hslider("decay", 0.3, 0, 1, 0.001);
sustain = hslider("sustain", 0.5, 0, 1, 0.01);
release = hslider("release", 0.2, 0, 1, 0.001);

// voice controls

freq = nentry("freq", 440, 20, 20000, 1);
gain = nentry("gain", 0.3, 0, 10, 0.01);
gate = button("gate");

// additive synth: 3 sine oscillators with adsr envelop

process = (osc(freq)+0.5*osc(2*freq)+0.25*osc(3*freq))
* (gate : vgroup("1-adsr", adsr(attack, decay, sustain, release)))
* gain : vgroup("2-master", *(vol) : panner(pan));

Figure 4: Faust organ patch

script, so Faust programs must follow this stan-
dard interface if they are to be used as synth
units.)

Both kinds of patches can then easily be
arranged to the usual synth-effect chains, as
shown in Figure 5. In this example we combined
the organ and chorus patches from above with
another effect unit generated from the freeverb
module in the Faust distribution, and added a
frontend which translates incoming MIDI mes-
sages and a backend which handles the audio
output and displays a dB meter. (The latter
two components are just plain Pd abstractions.)

These sample patches can all be found in the
faust2pd package, along with a bunch of other
instructive examples, including the full collec-
tion of example DSPs from the Faust distri-
bution, more polyphonic synth examples and a
pattern sequencer demo.

7 Conclusion

The Pd-Faust external interface and the
faust2pd script described in this paper make
it easy to extend Pd with new audio processing
objects without having to resort to C program-
ming. Faust programs are concise and com-
paratively easy to write (once the initial learn-
ing curve has been mastered), and can easily
be ported to other plugin architectures such as
LADSPA and VST by simply recompiling the
Faust source. Still the efficiency of the gen-

erated code can compete with carefully hand-
coded C routines, and sometimes even outper-
form these, because of the sophisticated opti-
mizations applied by the Faust compiler.

The Pd-Faust interface is especially useful for
DSPs which cannot be implemented directly in
Pd in a satisfactory manner, like the Karplus-
Strong algorithm, because of Pd’s 1-block min-
imum delay restriction for feedback loops. But
it is also suitable for implementing all kinds of
specialized DSP components like filter designs
which could also be done directly in Pd but not
with the same efficiency. Last but not least, the
interface also gives you the opportunity to make
use of the growing collection of readily available
Faust programs for different audio processing
needs.

The Pd-Faust interface is of course only suit-
able for creating audio objects. However, there
is also a companion Pd-Q plugin interface for
the Q programming language [5], also avail-
able at http://q-lang.sf.net. Together, the
faust2pd package and Pd-Q provide a com-
plete functional programming environment for
extending Pd with custom audio and control ob-
jects.

Future work on Faust will probably concen-
trate on making the language still more flexible
and easy to use, on providing an extensive col-
lection of DSP algorithms for various purposes,

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-30

LAC07-30

Figure 5: Synth-effects chain

and on adding support for as many target DSP
architectures and platforms as possible. Consid-
ering the considerable size of these tasks, con-
tributions (especially Faust implementations of
common DSP algorithms, and additional plu-
gin architectures) are most welcome. Interested
audio developers are invited to join the Faust
community at http://faust.grame.fr.

References

[1] Y. Orlarey, D. Fober, and S. Letz. An al-
gebra for block diagram languages. In Pro-
ceedings of the International Computer Mu-

sic Conference (ICMC 2002). International
Computer Music Association, 2002.

[2] Y. Orlarey, D. Fober, and S. Letz. Syntac-
tical and semantical aspects of Faust. Soft
Computing, 8(9):623–632, 2004.

[3] Yann Orlarey, Albert Gräf, and Stefan Ker-
sten. DSP programming with Faust, Q
and SuperCollider. In Proceedings of the
4th International Linux Audio Conference
(LAC06), pages 39–47, Karlsruhe, 2006.
ZKM.

[4] Yann Orlarey. Faust quick reference. Tech-
nical report, Grame, 2006.

[5] Albert Gräf. Q: A functional programming
language for multimedia applications. In
Proceedings of the 3rd International Linux
Audio Conference (LAC05), pages 21–28,
Karlsruhe, 2005. ZKM.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-31

LAC07-31

Getting Linux to produce Music fast and powerful

Hartmut NOACK
www.linuxuse.de/snd

Max-Steinke-Strasse 23
13086 Berlin,

BRD,
zettberlin@linuxuse.de

Abstract

At the LAC 2006 I introduced a plan to build a PC
to serve as a Linux Audio Workstation (L.A.W.).
Now we have a prototype of this machine, that we
would like to demonstrate. The box shall be dis-
played, tried and reviewed by visitors of the con-
ference to find out, how its concept can yield its
intended results. The machine has a set of essential
GUI-oriented Linux audio software that works with
jackd and is integrated with scripts, presets and tem-
plates that allow to start complex scenarios with a
single click and comes with extensive user-oriented
documentation.

Keywords

usability, integration, suite, interface, workstation

1 Introduction

Musicians often state that they don’t know very
much about computers, that they only want to
use these boxes and that they have neither the
time nor motivation to learn how a computer
or software works. Proprietary software ven-
dors try to adapt to such attitudes by design-
ing all-in-one applications, such as Steinberg’s
Cubase, with simple-looking interfaces and au-
tomatic setup assistants that leave power usage
and fine tuning to the experienced users and
hide possible options and - of course - the source
code from the ”end user” to keep their products
under control and consistent.

This is not the way that Linux audio can go,
since it is free/libre open source(floss). Free
software authors, as well as the distributors,
need to develop other ways to achieve usabil-
ity and a trustworthiness that meets the needs
of productive use. This can be done if the
whole audio workstation is developed and built
as an integrated combination of software and

hardware components, that fit together and are
Linux compatible down to the last screw. The
complexity of the software environment, that
comes with the way, this software is developed,
cannot and should not be simplified to achieve

better usability. But it can be made much more
accessible by explaining how it ticks in user ori-
ented documentation and tutorials.

Some may ask:

is this still possible without charg-
ing the users for software?

I say: It is! - if we find a way to charge the users
for integration and support... it is my belief that
the time is nigh to make people invest in free
audio software development. People like Fons
Adriaensen, Rob C. Buse or Paul Nasca should
be rewarded for their work. A reasonable part of
the revenue that could be generated with floss-
based audio workstations should go directly to
the developers of the most important software
for these boxes - especially if these developers do
not yet receive any reasonable financial support.

The prototype of the L.A.W. is able to prove,
that musicians can get not only the same, but
very new and exciting results when using Linux
for production. So we also intend, to find mu-
sicians that are willing to invest in free soft-
ware development by purchasing a preconfig-
ured hardware system such as the L.A.W. We
commit 30 Percent of the profit that is made
with each box sold to be donated as a contribu-
tion to linux audio developers. Though this can
only be a symbolic act for we lack the resources
to gain a big market-share, we consider it a start
to better funding of Linux audio development.

2 Gathering functionality the
UNIX-Way

Most users coming from proprietary tools, such
as Steinberg Nuendo or Magix Samplitude, have
a rather ambivalent impression of the system
when looking at Linux solutions. On the one
hand they like tools such as Jamin or SND, but
on the other hand they are disappointed by the
lack of features that they have commonly come
to expect in proprietary applications. The con-
cept that a complex system can be built out of

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-32

LAC07-32

many little tools that provide each other with
functions is not very common amongst users of
proprietary systems.
Testing demos of commercial suites on MS-
Windows and comparing this way of working
with the work in a Linux audio environment I
came to the conclusion, that the sometimes un-
comfortable diversity and modularity of Linux
audio is indeed its strength - as an artist I want
to do new and unusual things, I want to exper-
iment, I want to go beyond limits, I want to be
free. Jackd provides such freedom by allowing
to combine virtually anything one can do with
audio on computers. As the tools derive from
the free software culture, they are built to coop-
erate - there are no reasons to avoid integration
with tools from others and there are no reasons
to provide many features that are provided by
others already in a single software suite.

Some may argue that applications like
Rosegarden and Muse try to be just that: one-
stop applications like Cubase. But to honour
reality: has anyone seen significant progress for
the wave tracks of these applications in the past
2-3 years? And still those applications have seen
significant development indeed - in their special
domains as sequencers. Truth is: those appli-
cations do not need powerful wave editing fea-
tures because their users can edit wavefiles to be
merely played in them with a plethora of other
programs and/or sync with Ardour. The recent
Muse and Rosegarden allow calling an external
audio editor to edit wave segments and can rein-
tegrate the results - that’s the UNIX-way and
it is implemented perfectly.

So the L.A.W. does not make the futile at-
tempt to mimic proprietary audio suites but em-
braces the diversity of free software and tries to
give the user a hand to ease the use of the Linux
audio tools. This primarily means 2 things:

1. Integrating all the little, cute and power-
ful free tools to make them work properly
together, without limiting their flexibility

2. Providing readable, usage oriented docu-
mentation.

3 Not much else matters - reliability
or death

If one asks a musician/producer, what could be
the most important feature of an audio work-
station, there may be different results. But if
you ask, if occasional crashes would be an ac-
ceptable price for many extra-features they will

consider you crazy. If you work for (paid) hours
with a band there will always be a good expla-
nation why a certain feature is missing - if the
box freezes and the work is destroyed, not even
the most creative producer will find a reason to
have this accepted. So to make a producer feel
comfortable with a workstation it must be rock-
solid. There are 3 prerequisites for this type of
comfort:

1. Every part of the suite works with the given
drivers.

2. The parts - soft and hard, do not conflict
with each other

3. The documentation points the user to bugs
and pitfalls that still exist in the software
and shows ways to work around them.

Point one is a matter of testing, experience
and understanding of predictable user behavior
(as far as there is something like predictable user
behavior...). Point one and two can be achieved
with free components under Linux, but it takes
a lot of effort to set it up and there is still no
integrated user interface that allows truly intu-
itive work with the full power of available possi-
bilities without unwanted surprises. The ingre-
dients for a workstation that is both powerful
and stable are available for Linux and PC hard-
ware properly supported by Linux is available
too. So the first steps to build a Linux Audio
Workstation would be:

1. To design a hardware setup for a reason-
able price, that fits perfectly together and
is completely Linux proof.

2. To develop a set of scripts and consis-
tent templates and presets that allow the
user to switch on the full force of a jack-
environment with a single click without
breaking something.

3. To write complete and up to date documen-
tation with the user in mind.

If Linux software is simply installed as a bi-
nary package and automatically set up, then
Linux will not be as stable and consistent as is
required. Many developers work and build on
Fedora or Debian and most of them massively
alter/tune their systems - so that users who try
to run preconfigured applications on out-of-the-
box systems from Novell, Canonical or Man-
driva will be confronted with the unpredictable

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-33

LAC07-33

effects of diversity. No installation program can
predict everything and certainly no installer is
capable to set an audio card to a single IRQ. So
a reliable, full force system for audio can only
be set up with direct human intervention. Point
three of the prerequsites - the documentation of
pitfalls - is a matter of testing, experience and
understanding of predictable user behavior (as
far as there is something like predictable user
behavior...). The goal is, to provide the flexibil-
ity of the multitude of combinations, that can be
used with Linux audio software and to make the
unevitable learning as easy and non-frustrating
as possible.

Since we cannot rely on consistency - we
need to use the diversity and freedom of free
software to prove that free development can
lead to the same and even better functionality
as known from commercial vendors. Whereas
the basic system can safely be installed auto-
matically, the important applications (Jackit,
Ardour, Muse and some 5-6 more) are compiled
on the box with sane ./configure-flags and the
whole system setup is examined, adapted and
thoroughly tested by humans.
We did so on the prototype with very good
results. Still not everything is as perfect as it
should be on a workstation ready for unlimited
commercial use. Especially kernel hacking is
still an issue, because we want a box that is not
only a good audio machine but also usable as
a desktop computer. As we use Ubuntu on the
machine, we also suffer from Canonical’s deci-
sion to drop realtime support and other audio
related settings in Ubuntu’s default kernels due
to problems reported with laptops. Using a
selfmade kernel or a third party package works
well but breaks compatibility with certain
drivers and programs like VM-Ware. There is
an announcement from Canonical to provide an
unsupported rt-kernel package with the needed
driver support for the upcoming release called
feisty fawn. If this will not solve the situation,
we need to find another free distribution
like 64Studio or Jacklab or help pushing the
development of the Ubuntustudio-project, that
aims for a multimedia metadistro for Ubuntu.
We have a tutorial in the wiki of
http://www.audio4linux.de, that describes
every step to set up the stuff on Ubuntu
dapper drake. It provides information on
adapting it for the recent Ubuntu edgy eft
and links to download the needed files. The
L.A.W.-documentation is online and a chapter

that describes the hardwaresetup is on its way.

3.1 What is being done and how we are

different

The user has the opportunity of choosing be-
tween 3-4 preconfigured setups:

• Audio workstation (preset configuration
with factory support, guaranteed function-
ality, limited configurability)

• Audio workstation experimental (same pre-
set configuration as above, but with full
configurability, limited support and no
guarantee - this would also be available for
download)

• PC Workstation (Standard home computer
with all the power of a Linux desktop sys-
tem, Internet, office, graphics/layout etc.)

• Rescue system (with direct access to
scripts, that reset configurations and replay
backups)

The desktop and standard audio system uses
XFCE4 as desktop, the experimental audiosys-
tem and the rescue will use Fluxbox. All have
the same menu, except the rescuesystem of
course (there will be a printed documentation
on how to use the rescuesystem from comman-
dline in case X is broken, a Live-CD to rescue
the system is planned for later). However, all
the scripts, templates and presets can be used
in any Desktop environment - templates and
presets rely on fitting versions of the respective
audio applications and the scripts only require
bash. KDE-base must be installed also, since
the wrapper scripts utilise kdialog to display
messages and konqueror is used to show HTML
help pages.

There are both integrated hardware solu-
tions with Linux and CD and/or metadistros
available for installation out there. The hard-
ware systems are designed and priced for semi-
professionals and we don’t know of any Linux-
based audio solution that is also a decent desk-
top PC. Our aim is to provide a box that can
be built for about 700,- EUR and that can also
serve as a desktop/internet computer.
The installable Distros such as Demudi, Jacklab
or CCRMA all have one thing in common: they
work with binaries, they do little to integrate
the apps and they leave the choice and setup
of the hardware to the user. All these people
still do great work and it is definitely not our

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-34

LAC07-34

intention to replace any of them, but rather to
collaborate with them.
We are not trying to build our own little world,
but wish to incorporate things that are already
there and glue them together in a useful way.
As mentioned before, we primarily deliver sim-
ple wrapper scripts, presets, templates and sam-
ples. These will work on any distro that has
the software installed, which is called by these
scripts and can handle these presets etc. On the
box that we ship, the same things will run like a
charm (no kidding - our concept allows intense
testing of the very machine that will be deliv-
ered - so unwanted surprises will be seldom...) -
if one wants to use the stuff in a similar but dif-
ferent environment, adaptations may be needed.

We follow a paradigm that favours a grass-
roots style growth of the project. So we have
built a standard desktop PC with an Intel PIV
2.8 CPU 1024MB DDR-RAM and a Terratec
EWX 24/96 audio card - rather average real
world hardware available for less then 700,- .
If we can muster the financial resources until
then, we will have a second prototype based on
AMD 64 with an M-Audio Audiophile card to
bring to the LAC.

We have tested the setup by using it to
record several multitrack sessions, composing
and manipulating music with midi-driven
softsynths and by editing and optimising a
noisy-tape-to CD - job for the complete ”Ring”
by Richard Wagner (plus several similar smaller
jobs for string quartet and for rehearsal tapes).
We also tested the machine with a Midi-
Keyboard/controller with very good results.
The setup works well and stable and provides
everything we need.

The issues regarding compatibility/stability
are solved so far (though it would not be wise,
to actually guarantee full stability for all needed
programs under all conditions...)

3.1.1 The additionals

We have built the previously mentioned frame-
work of helping elements, consisting of 4 major
components:

• XFCE configuration scripts, wich allow ac-
cess to all needed features in a logical and
comfortable manner

• an extensive manual in HTML

• several scripts and hacks to load complex
scenarios and to provide additional help

text

• a set of templates for all major applications
that also involve the collaboration between
them

• about 300 free licensed presets, sounds and
patterns

Starting setups of several collaborating appli-
cations could be trivial - if all involved elements
were aware of each other. Today we still face
the problem of certain softsynths that can be
attached to jackd via their own command line,
and others that need to be called up via tools
such as jack connect. These are not serious ob-
stacles of course, but there is no reason not to
address smaller annoyances as well as great to-
dos. The communication between the several
processes is particularly critical and often leads
to ruin, especially if LADSPA-FX is involved
- this should be remarked amongst developers
and distributors.

The website http://www.linuxuse.de/snd of-
fers downloads of sample scripts and templates
plus some help texts. More help is to be found
at http://www.audio4linux.de and we are also
working on an extensive user manual that can
serve as an introduction to Linux audio, this
can be found at: http://gnupc.de/ zettber-
lin/law/Documentation/ . In addition to the
help provided by the programmers, there are
also 3 levels of extra help for the users:

• kdialog popups explaining things that hap-
pen, ask the user for needed interaction and
point to more detailed help.

• HTML help files for every application that
explain the basics and how the whole sys-
tem works. It will be possible to start
scripts directly from these files, which will
be shown in KDE’s konqueror. (Security
people may be not that enthusiastic about
the help system...)

• an online forum (a simple wiki linked to the
forum of audio4linux.de) with daily appear-
ance of at least one developer/help author.

4 Next steps

I would like to present a wish list to the devel-
opers and to the user community as well. Devel-
opers should improve their documentation and
users should start to read it.... . Back in 2003
we had a set of experimental stuff that could

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-35

LAC07-35

be used but was limited by some crucial weak-
nesses, especially the lack of stability. Today
we have the tools complete and solid enough to
start to discover how to deploy them as per-
fectly as possible. To do this, there must be a
vivid community of more than just about 100
users. We do our best to spread word about
linux audio and we find new linux audio users
every day.

We have combined Ardour, Muse, Hydrogen,
AMS, ZynaddSubFX and about 20 tools such
as LADSPA, qalsatools etc. into a setup that is
powerful and usable for us as experienced Linux
users, and we now work intensively on making
the setup powerful and usable for everyone that
wants to deal with music and computers. We
monitor the development of the Linux Audio
Session Handler (LASH) constantly and try to
encourage developers searching for new goals to
join its development. LASH could do the tricks,
we now perform to integrate applications much
better then the quite clumsy scripts we use now.
So we will switch to LASH as soon as it gets
ready.

We now begin to give users the opportunity to
test the complete Linux Audio Workstation, to
give sound tech people and musicians a chance
to find out that Linux audio is ready to run for
everybody.

5 Conclusions

We believe that free audio software can be an
important, powerful way to make Linux visible
to the public and thus to make the very con-
cept of collaborative, open and free production
of software a success. We not only believe that
Linux audio is somewhat usable now and could
have a niche - we believe that within 2-3 years
it can develop into a superior solution for cre-
ative sound people in the same manner as Linux
has become a success in motion picture anima-
tion/CGI - production.
This can be done if it becomes easier to use,
more logically integrated, more stable and more
consistent without hiding anything of its great
opportunities from the user.

At LAC I would like to present our approach
to making Linux audio usable for everyone to
developers and users as well and to demonstrate
the prototype of the Linux Audio Workstation
in a workshop and/or as a presentation.

6 Acknowledgements

Our thanks go to . . . Paul Davis, Werner
Schweer, Paul Nasca, Chris Cannam and to
all the other great Linux audio developers out
there, to the people at ZKM and Linuxtag
that allowed us to present our project at Karl-
sruhe and Wiesbaden in 2006, and to the peo-
ple at www.audio4linux.de (especially linux-
chaos/Olaf Giesbrecht), jacklab.de (Metasym-
bol/Michael Bohle, www.mde.djura.org (Thac
and Ze), ccrma.stanford.edu/planetccrma and
all the other websites, mailing lists and BB’s
where Linux audio springs to life...

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-36

LAC07-36

Music composition through Spectral Modeling Synthesis and Pure Data

Edgar Barroso
PHONOS Foundation

P. Circunval.lació 8 (UPF-Estacío França)
Barcelona, Spain, 08003
ebarroso@iua.upf.edu

Alfonso Pérez
MTG – Pompeu Fabra University

P. Circunval.lació 8 (UPF-Estacío França)
Barcelona, Spain, 08003

aperez@iua.upf.edu

Abstract

A major problem of the composition process
involving music technology is the selection of the
tools within the broader context of the ever-
changing language of multimedia production.

The focus of this contribution will be on creative
applications of the Spectral Modeling Synthesis
(SMS) and Pure Data (PD) in two specific works:
Searching your Synesthesia (2005) for flute,
clarinet, cello, piano and live electronics and ODD
(2006) an electro-acoustic multi channel 5.1
Surround piece.

This paper will provide a brief view on how this
open source software offers the user the possibility
to experiment with a vast number of compositional
techniques in very flexible programming
environments.

This view is based on the analysis of the research
that has been carried out within the compositional
course of action concerning several pieces using
these systems. It is intended to share a particular
framework for enabling interactions between
specific tools for the creative compositional
process.

Keywords
Composition, Pure Data, Audio tools,
Interaction, Spectral Synthesis.

1 Introduction

During the last recent years there has been a huge
proliferation of music software designed to build
interactive music systems and audio signal
processing. The rapid development in personal
computers and the increasing number of audio
application users, have situated composers into
endless aesthetics, and ethical crossroads, that
could result overwhelming and perhaps
discouraging. This is particularly true for those
initiating composers in computer-generated music
composition. Even though experimentation is a

fundamental part of almost every composition
process, time spent familiarizing with endless
different softwares could be enormous, and will
take away precious time to deal with the core of
the creative process.
In this contribution we present two compositions
that deal with interactive systems and spectral
modeling synthesis and make use of open source
software, in order to show specific practical
examples of the usage of those technologies. The
aim is to facilitate and quicken the user decision on
whether or not this tools have meaningful
applications for their own compositional
necessities. In the first composition “Searching
your Synesthesia” the composer makes use of the
graphical programming language Pure Data (PD)
developed by Miller Puckette in the 1990s for the
creation of interactive computer music and
multimedia works. PD is an open source project
and has a large developer base working on new
extensions to the program. In the second
composition, ODD, is inspired in SMS developed
by Xavier Serra [1] which is a set of techniques
and software implementations for the analysis,
transformation and synthesis of musical sounds.
These techniques can be used for synthesis,
processing and coding applications, while some of
the intermediate results might also be applied to
other music related problems, such as sound source
separation, musical acoustics, music perception, or
performance analysis. Two open source
implementations of SMS are cited, for Octave and
CLAM frameworks.

2 Searching your Synesthesia – Musical
Control and Live Performance

This is a piece for flute, clarinet, cello, piano and
live electronics, first performed in the Paine Hall
of the Harvard University Department of Music
on March of 2006. Composer selected this
piece to explain a succinct overview of the
software he programmed in Pure Data, to show
aspects of its flexibility and some of the features

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-37

LAC07-37

and possibilities that can be achieved with this
programming environment. The only intention of
this paper is to share a specific thinking framework
within a complete performed work, any aesthetic
or technical statement must be interpreted only as a
subjective opinions of the authors.

2.1 The Patch
All the programming for the performing of the
piece was made in Pure Data version 0.40-2
downloaded from the Miller Puckette [2] web
page. It uses only two external objects, the first
named counter and the second one is the freeverb
object written by Olaf Matthes [3].

The patch contains the following features:

• Recording Machine: allows to record and
store in tables and/or hard disk up to 128
audio files. There is a possibility to do it
manually or automatically. It also has the
capability to load and send this files to any
of the sample triggers modules located in
the interface.

• Multi Triggering Sampler: Permits to
trigger up to eight different simultaneous
audio files, each one of them has an
independent pitch shift, amplitude,
volume, panning, and duration parameters.

• Loop Sampler Triggering: triggers in loop
up to 16 voices of the same file, each one
of them will have individual controls for
the panning, pitch shifting, volume,
duration of the loop, starting reading point,
and number of voices.

• Microphones / Mixer: Controls all the
microphones input and output gains.

• Audio Effects: Resonator-Multi tap Delays
and three different reverbs.

• Score Follower: Order the sequence of
the events in time during the piece, it uses
a MIDI pedal switch to advance to the next
musical event, all the rest of the
parameters are automated.

• Scratcher: Records in real time and store
the recordings in tables, that can be later
retrieved in different positions, repetitions
and speed .

• Pitch Follower Device: It works with
filtered oscillators that can follow or
make aleatory counterpoint and
harmonization of the incoming signal.

• Amplitude contour device: It uses an
amplitude threshold to decide a series of
conditions and constrains.

• MIDI: A module that sends midi notes to a
midi synthesizer or to a controller. You
can activate or de-activate a continuous
stream of midi notes by detecting the input
gain of the microphone.

• Quadraphonic & Stereo diffusion system:
can diffuse every module and sampler
trigger individually up to four individual
speakers.

2.1.1 The Interface

Figure 1: Searching your Synesthesia Pure Data
Interface

In this particular work, the attainment of the
interface was much more oriented to be an
aesthetic platform defining musical structures and
a practical controller of the sound engine, in
opposition to the idea of conceiving the interface
as an instrument itself as in [4]. It was built with a
series of modules that work independently and
provide the performer the necessary data to control
the complete piece only with the use of a MIDI
switch pedal (which is controlled by the
conductor) which sends commands to the score
follower (see figure 1).
One of the goals in the designing process of this
interface was the riddance of any direct human
control, (except for the MIDI pedal) therefore, the
complete piece is built with automated parameters.
All the rest of the real time processes are carried
out by the computer itself in all senses. One
particular challenge of the research was to avoid
the overly mechanical sounding, typical of
computers that produce every time the exact same
parametric control quantities. In the presented
patch the computer controllers were implemented
trying to simulate (at some level) the human error
with the use of random parameters, and inconstant
sliders movements to achieve gestural

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-38

LAC07-38

expressiveness and versatility in the outcome audio
results.
Another important aspect that the composer tried
to achieve in this piece, was the experimentation
with dynamically changing sound processing, were
one or more morphological characteristics of the
input sound are analyzed and immediately used to
control one or more aspects of treatment [5]. The
fact that sound itself controls its own treatment
was implemented in the programming, although
only at specific rather short parts of the sore.

2.1.2 The Score Follower

Figure 2: Searching your Synesthesia Pure Data
Score Follower

The core of the program is the score follower. It is
a work-in-progress device which allows you to
divide the score with several cues, and create a
single patch for each one of them. The advantage
of this system is the economization of processing
resources of the computer. The composer created
sub-patches (see figure 2), each one having a
totally independent self-contained patch that
communicates with the interface. These events are
always following the triggers coming form the
MIDI pedal, using a counter to define the position
in time during the performance. Inside this boxes
all audio output parameters are controlled. This
method was develop since it was much more easy
to follow short events rather than long periods of
time in which the liability of the analysis could get
inaccurate, specially due to the relationship among
the measured loudness and other external
conditions. Even though the system is divided in
this boxes, it allows you to make transitions
between particular events in different ways, they
can be done in a sudden movement, smoothly or
even mixing two or three events simultaneously.
For the score following the composer used 4
features that can be recognized: 1) MIDI switch
pedal controlled by the conductor or the computer
performer. 2) Tone events (notes of the score), 3)
Phrase events, 4) Amplitude contour.

2.1.3 Synchronizing vs Chaotic Interaction

In the early stages of the creative process of this
piece, the aim was to take advantage of the
flexibility of the software and try to combine these
tools in order to include the following ideas.

• Elaborate a system in which the interaction
could be as clear as possible, however
preventing from being too obvious (action
- reaction).

• Elaborate a system that generates some
indeterminacy and is able to control
computer composition that would help
performers to add tension and coherence to
the musical ideas, yet only for specific
parts of the piece.

Some of the strategies that the composer followed
to achieve these two goals was to simulate the
interaction of the classical period chamber music,
where the interaction between the musicians is
constant and very clear, however, the idea of
variation is constantly present in the music. The
composer particularly studied the string quartets
from L. V. Beethoven Op. 59 and 132 and tried to
apply the same way of thinking about interactivity
as he did with the electronics and the
instrumentalists.

Figure 3: Searching your Synesthesia performing
technique diagram.

Another issue concerning the composition of the
piece and the use of the synchrony–chaos idea was
the diffusion of the total outcoming audio of the
ensemble. The first performance took place at the
Paine Hall of the Harvard University, and was
diffused with the loudspeaker orchestra Hydra [6]
which has 24 speakers. For this performance,

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-39

LAC07-39

special arrangements were made to the patch in
order to get advantage of the number of speakers.
Withal, it was necessary that an additional
performer controlled the diffusion system in real
time. In normal conditions, the piece uses a four
channel configuration (see figure 3). As previously
mentioned, every individual sample trigger and
module of the interface can have two panning
options: left - right and front - back. The aim of
using this system is that it allows to make
transitions very rapidly and effectively, from
totally chaotic individual panning to very subtle
panning remarks. Again the same principal: chaos
and synchronization in the same piece.

2.1.4 Indeterminacy and Pure Data flexibility.

The possibilities to create an open work with the
use of pure data are endless. The composer also
includes in the design of the software a few
indeterminacy elements. He lefts some
composition and structure decisions to the
computer using the parameters of sound itself, and
some probability results from the analysis of pitch
and amplitude that the program re-uses, for
instance, to decide when to start or finish
producing sound or determine the pitch and
location of a prerecorded samples among others.
Even though these considerations, there are in fact
(few) specific moments of this indeterminacy, the
composer considered the compositional structures
to be linear, and with sections of music ordered
sequentially as in a traditional score. From the
composer point of view the piece leaves no room
for improvisation coming from the musicians, it
was a better idea to leave all indeterminate actions
only to the computer. As the composer is not a
programmer, the capacity to adapt the system to a
new environment and resilience in recovering from
a crash or from a human error (MIDI switch pedal)
was also a very important and not at all an easy
task. Nevertheless Pure Data proved to be a
robust, liable environment in which the flexibility
can be determined by your imagination.

3 ODD – Composition with Spectral
Modelling Synthesis

ODD was conceived based on the SMS
technology. SMS is a set of techniques and
software implementations for the analysis,
transformation and synthesis of musical sounds.
The aim of this work is to get general and
musically meaningful sound representations
(specifically for harmonic sounds) based on

analysis, from which musical parameters might be
manipulated while maintaining high quality sound.
There are two main open source implementations
of SMS, one is based on Octave (code can be
found at [8]), and the other one on CLAM [7].
As is shown in ODD, this technique can also be
used as a “creative” tool. (Although there is no
single, authoritative perspective or definition of
creativity. Most experts agree that is a mental
process involving the generation of new ideas or
concepts, or new associations between existing
ideas or concepts.) The composer makes use of the
SMS technology dealing with sound morphing,
transformations, separation of residual-noise
components of sound objects and also is inspired
in the graphical representation of analysis data that
provokes and stimulates musical concept
associations as if it was a score.

3.1 SMS Overview
During analysis, sound is divided into temporal
frames that are spectrally analyzed. At each frame
the signal is separated into harmonic content and
residual or noise. The harmonics of a frame are
matched with the ones in the next frame, giving
rise to tracks (usually called sinusoidal tracks) that
indicate the temporal evolution of each harmonic.
This way we can represent any sound as a
parametric harmonic part plus a noise residual, and
we can get back to the original waveform
representation by the resynthesis process.

The parametric representation of the harmonic part
of the sound is very useful in order to make sound
transformations. If any parameter is modified, the
re synthesized sound will be different. SMS lets
the composer to experiment with the analysis
parameters can produce very interesting and
unexpected results.

3.2 SMS Transformations
Transformations are another important process that
allows you to have a way of making “variations”
of the same sound, from very subtle changes to
totally unrecognizable sound source.

Typical transformations include pitch shift, time
stretch, timber manipulations, etc. and a special
type of transformations called morphing that
consists of a cross-synthesis between two sounds,
resulting in a new one that has hybrid
characteristics. In this process it is quite interesting
to provoke ambiguity of identity of the sound
source, by approaching sounds in their inner
spectral content. Among the endless possibilities of
transformation we can emphasize morphing

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-40

LAC07-40

between instruments and voice, or between
“natural” sounds and synthetic ones, the so called
“hybrid sounds”.

In am more semantic or conceptual context,
transformation are defined as the genetic alteration
of a cell sound resulting from the introduction of
foreign DNA. In music, transformation refers to
any operation or process that a composer or
performer may apply to a musical variable. The
transformation concept of the SMS tools reminded
me the so called “Variations” which is a formal
musical technique where material is altered during
repetition; reiteration with changes. The internal
structure of “ODD “ is constructed thinking in
variations of all sounds, to keep the piece in
constant movement during time.
Also the concept of Morphing lead us to the
concept of curiosity, which by definition is the
unknown result of combining two more more
different elements or in this case sounds. It is a
very useful tool to generate complex unique
sounds. Many experts agree that curiosity is any
natural inquisitive behavior. and is the emotional
aspect of living beings that engenders exploration,
investigation and learning.

 3.2 The residual component

Figure 4. Residual Graphic Representation

Apart from the transformations above mentioned,
the possibility of isolating the residual component
of the sound is fascinating for creative aims. As an
example, we can extract the noise part of an
instrumental sound or the non-pitched element of
a vocal sample. In figure 4 we can see at the top
the original sound , in the middle the resynthesized
sound and the bottom the residual component. The
composer used the concept of residual ,
understanding the residual as the quantity left over
at the end of a process; a remainder. The composer

found that recycling this sounds, in other words to
put or pass through a cycle again, as for further
treatment would be a interesting idea. This thought
became the core of the composition, the subjective
analogy of extracting useful materials from
otherwise unwanted frequencies, and make a
complete composition structure with it..

Figure 5. Graphical Representation of Analysis
parameters.

3.3 Graphical Representation of Analysis
parameters as a score generator

3.0.1 Evolution in time of SMS analysis data can be
easily visualized. Among this data we can mention
the FFT, sinusoidal tracks, residual part, pitch, sine
amplitudes, etc. (see Figure 5)
Non-traditional music notation has always looked
for inspirational ideas on graphic structures. The
graphical representation of the analysis parameters
can be seen as such.

Figure 6. Score generator graphic

Graphical representation of some parameters
resulting from the analysis of sounds created for
the piece, is used as feed-back by the composer to
determine the upcoming musical ideas (see figure
6). The word "fractal" in colloquial usage, denotes
a shape that is recursively constructed or self-
similar, that is, a shape that appears similar at all

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-41

LAC07-41

scales of magnification and is therefore often
referred to as infinitely complex.

4 Conclusion
We had introduced the creative applications of the
Spectral Modeling Synthesis (SMS) and Pure Data
(PD) in and its use for music composition. We
have shown that the open source software SMS
and PD could be very well suited to the design and
development of music compositions. Future work
will involve increasing the flexibility of the
interactive system and extending the
experimentation with SMS to obtain new
processed sounds.

5 Acknowledgements
The authors would like to thank to Hans Tutschku,
Matteo Sistisette, Ricard Marxer, Berio Molina
and Günter Geiger for the advise in the
programming and musical aspects of the pieces.
We also thank Folkmar Hein, Stefan Kersten,
Miguel Álvarez-Fernández and the Inventionen
Festival, the MTG and the PHONOS Foundation
for providing the infrastructure for developing
these two pieces.

References
[1] Xavier Serra. “Musical Sound Modelling With

Sinusoids Plus Noise”. Published in C. Roads, S.
Pope, A Picialli, G. De Poli, editors. 1997.
“Musical Signal processing”, Swets&Zeitlnger
Pubishers.

[2] Miller Puckette.
http://crca.ucsd.edu/~msp/software.html
2006.
[3] Schroeder/Moorer reverb model implemen-
tation, version 0.2c written by Olaf Matthes, based
on Freeverb by Jezar. <olaf.matthes@gmx.de>
[4] Thor Magnusson. “ixi software: The Interface
as Instrument”. Proceedings of the 2005
International Conference on New Interfaces for
Musical Expression (NIME05), Vancouver, BC,
Canada.
[5] Hans Tutschku. “Portfolio of Compositions”
Department of Music School of Humanities. The
University of Birmingham March 2003
[6] Harvard University Studio for Electroacoustic
Composition.

http://huseac.fas.harvard.edu/pages/05hydra/1hydr
a.html 2007
[7] CLAM Framework. http://clam.iua.upf.edu/
[8] Octave code for SMS Framework.
http://www.iua.upf.es/mtg/sms/

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-42

LAC07-42

�����������	
�	��
�����������
������������
���

��
���
���	���	

���������

���������������

Abstract

	
���
���
��������
�����������

�
���������������

����
��

�����

���
�������������
 ��	
!�
����

�

��
���	
����
������" ��
�

���
����
����
#�����
���

���$
��%&�� ����
 ��'�������
��������

���(

�

)'��(*�#������
�&�����
 ����+������$
��%�,�����

���

��
����)�$,�*�#�������&�����
 ����
��

�#���
���
�����
���+��+�������#�
��-�#��
�����$
��%�

����
������
��.����
�

���/0�&�����
���-�

���
��
���
��
 ����������� �����
��
��

�� !����

$
��%&����
�&�����&�'��(&��$,�&����

�
����&�

������
��&����������

" �
�������
�

���������$
��%����
���##��
��&�	
���
���
����
��

�������

����

���# ����#��
���-�
���������#���
 ��

�� �����- � ������� � �����
��
�� � 1���+��& �
��

�������& �

 �
� � 2��
 � -�
 � ���
 �� � �
�

�� � ���
� � ����

���� � ���

�
���� � ������

�� � ��� � ���������

��#
���������
��

����" �����
�������#���

����

-�

������
��������#�������
�� �
 ���������������

�

���� � ������
�� �
�� �
���� � #�� � ������ � ���
��

���
��� � �
 � �
���
� ��� �
�
�

+� ���� ����- �
� ������

0�#��
���
��-& � #�� �
 � � �����
� � ��� � ����

��

���
�
��& �
 ��� � ��� � ��� � �
�� � �� � �� � ����� �
��

�
����
����-��
����#���������

���

	
���
���
��
��
�

+��-�
����������
��#�
 ��$
��%�

 �����
��
�� �3+�� �
 ��� ���
�
 ��� �� ������

��

����
��

������

��
���& �

 �
� ���
�����
 �
�����
 ��

� �����#�

� �4��
��� �

� �����&�

 �� ����������
���

 �
�

�
����
�
 ��������
��������������#�
 �
������

��������������������#
������1���+��&�

�� �������
 ��

����
�
�

���
����������� �
 ����������-��������

������
�- �
 � � ���- � ���� � �# � ��� � ��+������&�

��+�������
� ����
��
����
����5	5667&�
�

���-����

� � 	
8 � ����
��

��� � ,
��� � 9�
���� � 566: �

;��

�##
�
���- �� �	
! �����
��

��� � �
 �
� � �

�� �� ������
��

������������2��
�

�
 �
� � ��

+��- � ����
��� � ��� � �%����
+� �
� �
 ��

'��(� ���
� �
�#���
���
��� � ��� �
 � � �$,��

����������#�������&�
 ���������
�-���
�����$
��%�

���-�����
��

��� �" ������� ���
�������
�
��

����

���������
�
����-��
 ������
#�����

	
���
�� �
� � #��� ������������ ���#
����& � �
�������

������
 ��/<$�����
��������
����������������

���

������+
���#����
 ��$
��%����
����+������ �����

���� � ������

- �
� � ���

����� � ��� �
 � � ����
� �
��

��������

�
�������
�

#$" ����
����
��

" � � ��#
���� � ����
�����
� � #�� � ��
�� � ��� � ����

��������
�
������#������=�

�����
��-=

� 	
!�)����&���
&�%��*�>5?

� '��(�>8?

� �$,��>!?

� �
����#
���>7?

9�

�����)��
���
���
���
���

��*=

� �
�+���
��)���&�#
��*�>:?

� �
�����>@?

� �
���������
��>A?

#$# ��!
����

	
���
�� �
���

�� �
����� ���
�����#���+�������
&�

��
 � ������-� #���- � #���

����� �" � � ������ ����� �
��

����
��- � �+�
����� � #��� � ������#�������
 � �B,�

�����

��-�>C?�

2.3 Build

" ���
�����������������#�����������
�
�
��

����

����� � �� �������	
� #������& �
 ���� �
 � � ������

��������	
��

������

������ �������& ��
� �

�
�������
��
���
���
 � ���
����
 ��
���-��%���
�����

��������
���
����#
����

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-43

LAC07-43

#$% ��
&
'����
�

	
���
�� � ���� �

� � ����

�� � ��

��� � ����

���#
����

�� � �
�
� ���� � ����& �
� � � � #
�� � ����
�� ����

��������������
������
����
����
������ ��

D������-&�
 ����
����������
����

�

��#
��&����

�
��

������
�����������

����+��-�

�����
����
�
������

3 GUI

	
���
�� � ���� �
�
��#��� � ���
�� �
� �
 ���
 � ���

��
��
����������
����������

��������������������

�����
�������
�����+
������
���" ��������
�

���

��-���
�����������
��������-�#���
 ���+�����������
��

�
����
 � ��� �
� � �
���+�� �
 � � #��� � ��
��

�� � ����

#���

����

- � �# �
 � �
���� � ���� � ����
��

�� � ��-���

)
�������
��������������
���&�
������
� ���*�

E
���� �C � � ��� ��� ��+����� � �����
 ��# �
 � �/0�&�

�

 ��%����������
����������
�
��
 ������������

" � � ��
� � ������
�

�� � �
���� �
������� �
 ��

����� ���	�& �����
���� �

 ������� ���

�� �
����

��

���& � ��� �
 � � ��
� � ����
��

�� � ����������

� ��������#
����
 � ������������ ���
 ����#
 �����
 ��

����� � ����� ����� � ����� � �
 �
 � �
�� � �# � �
 � ���
��

�������� ������ �����& ��
� �
� �� ��� ���
����

���

���� ������ � ��� �
����� � ��� � ��
�� � ��� �����
����-�

�
����-���

���������
��

���#���

����

-�
�����������
���

�

 ��������� ��# �
�����+�� �#���

�� ��
�����= �
 ��

�������
����&��������
������
%
������������
� �

���
�
� �
� �
 � ����
��� ���� ����

��
�� ������

���&�

����
 � ���		�����	���
����&�#��
��
���
�
����
���

�
�������
��

�����+
���������

+

-�

"����

�

-��
��������� ����

�����-�#��
����=�

 � ���������� �
����& � ����
���- � ��

�� � #���

������
��&�����
 ��
������
������ ��������
������

�����#
�������������
F������������
�������������

���������������������������������	�������������� ������!�		�����	���	"���������	"���#

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-44

LAC07-44

�
���� ��
����� � #�� � ��

�� �������	� ��� �������

������

�� � ��� � ���� � ������
��� �
� �
 �
� � �������

���
�%
� � E
����-& � ����
�� � ��� � ����
��

���

���#
����

�� � ��

��� � ��� � ���
�
�� �
 ���� �

������

+�����
��
F
����
�����= �
����&��	������	���

���������	��

4 Sessions

	
���
�� � ����
��� � ��� � ��#
��� � �� �
 � � ������
��

����
�
������-������
�

+���
�
���#��������������
�

������

 �
 ����#
������ �"
���
�
�������
�

���
��

��
��
��
F���
���������
�#���&������G�$���������

#
��� � � � ����
�� �
� �
 ���#��� �
 � � �����
�

�����

�����
�

����#���� �������

��& �+��
�����& ���#��������

��� �������
��� ��# � ��� � ���
� ���� ������ #
��� �����

�����
�� �
 �
 � �������� �
 � � ����
�� � ���
����

����������
&���
�
���
 ����
�������
����

 �
 ��

��#
������

3##��

+��-&�����
��������#�������-�������������

�����&��
� �
��
����
��������
 �
��������

+������

#�������
���������
�& �
 ����
��� ���������
��� �����

����+��
 �
�#����

�� �
���
���� �
��
 ������
���#
��&�

���
���

����#��
�-�����
����
�����
����
 ��������
�

����
�������
����
�����
���

����,���
��������
 ���

�������
���������&���+�����������������������&����

#���������������������
�������/0������
��

�����

	
���
���
����,�������
��

��&����-���������
�������

����������#���������
���-����

���

�
�
��
����
��
�
����
��
 �
�	
���
�������
��������

������ � ��� �
� � ���& � ��� � ���- � ���& � #
%�� � ���
��

�
��������������
�&��%��
�-�
 ������
 ��'��(�>8?�

���+���
������
����
�
 ��

���
 ������
���
���
��
����

��- � �

���
 �
� � ���+��
 � �
�����
� � ���������
��

����
��� �
�����2��
 �
��������������

�������
���

���������1���+��&�
��
+
��������
����
��#
��������

��
���

����-����+��
�� �������-�����
�� �����

���

��
 �� ��
����������
��)+
���
���������
��>A?*��

���
 �� � ���
�
�

�� � ���
 � ���

��
�� �
� �
 �
�

����
��� � �+� � ����
��
 �
���� �)4<�* ��-� ������
�

���
������
�
��& ���
���������
 ���
�� �� �������
�

��-�

����1���+��&�

����
�����

�� ���������������

�������������
-��#�
 ��� �������
��������������
&�

 �
�����
���
 ����
�����������
�#�����
��������&�

-�
��

5 Files

,�����#
��������

���
��������+�
������
 ���� ���

����� � �
�
������
F�� � ��� � ���+��
��
 � �
���
��

���
� ���� ������ #
�� � �
�
� ���� ����
 �������
�� ����

 �
��������

+��
�����E
������������%��
�

�-�������

������������
�
����
�����
����
�����
�
�����
+
�����

#
��� ���������%��
�

�-������������������#����
 ��

����
�����+
������
������

��
 �����+
����
����

�
�
��"
���
�
������
 ��#
�����
� �������#������
��
 ��

����
�� � ����������
 � ����
��� � E
�� �

��� � ��� � ���

������������������
���
�-�
�
��
 ��
������
����&�

 �� � ����

�� � ��� � ��
�� �
� �
 � � ����
���

����������
���

����
��#
���#����
�������
�
��
 ����������
 ������

���+
�����-��
����#
���)��+&��
##&�#���&���&��
���>7?*�

���&���

�����-��
�+���
�#
�� �)����>:?* ������
�����

)��8�>@?*�������#
���������
���+����
 ��������,�E�

#����
� � 6 � ��� � C& �
 ���� � ��

+�& � ���������

�������
�

���

6 Tracks and Clips

��
�������#���-������
�������
 ��������
���

����

�#�������
�������������
&���
����

 �� �
�
����� ����

���

�� ����
���#��%
�

������
�������������
��
��&�

�
���������%
������#����
���#
�����

���
�&�	
���
���
��
�� �
����-������
�������������

���
���

+� � ��������� � ��� � ��������� � �
 � ���� � ��
�

�##��
& � ��
�� ��� ����
#- �
� � ��- ���-& ����� ��# �
 ��

���
����������#
����
 �
������������������������
���

�����
����E
���������

���#�������
��������������
���

�����

��� � ��� �
 � � ��
���� � �%���

���� � 9����

����
��&��������������#
��������
 ����#
�������������

������ �������

��������

��� ������������
� ���
��

�%����
+��������
�
��#���&� �+
������������������

� �
���+������
 ��#
����-�
����

���
����
���������������
�

�����#�
 ��� �������

���
 � �# � � � �
���� � ���
� � #
��� � ���� � ��
�� � ����

��������
�

��� � �# � � � �������� � �# � �+��
� � �# � ����

�
���� ����� � � �����& � �� � �%
���
�� � #��� � � �,�E�

#����
�6�#
�������#������
�����
����&����#������,�E�

#����
�C����&��

 ���
��� �������
�����
�

��
� � ������

�� ���- �
������ �

� � ����� �)����*&�

�
��
�

���)����

��*&��##��
���������
 �)
��#�����*&�

#����
� � ��� � #������
 � ����
 �)
� � #�����*&�

������

+��- � #��� �
 � � �
��
 � ��� � ��� � �# �
 � � ��
���

��
 ��� � #����
� � ��� � #������
� � ��� � ����-��

�
����-�������
��
�
��
���&�
 ����
�������
��+������

)��
�*����������+����

-��##��
����������
���
�����

�#��

 ����
����&��������������
��� ����
��
�

��

��
�����������������
�����&��

 �� ��-�
����

���

�
���������
�����������#
�����������
����������-�

��������������
�� � #
��� �
�
� �
 � �
�����+
���

�������� ��
����� ��#
�� ���
���
�

���-������� ����

 �
��������

+��
�����&���
����������2��
�
����
��
��

#��
���� ���
�����
��������

���= ��������+�&����-&�

��
& � ���
�& � ����
�& � �
�� ���
��
�� � ��
� � #����
� � ����

#������
 �
� � ���� � ����
�� � ��
 � �- � �����
���

����������
���+
����� �������

���
 � ��
� ���

�� ������

��� ���� ��������
� ���

 ���� ������ �/0��
�
����

��& ��-� #
��
 � �����

���

����������

������
�������������
������������-
���

 ����

���

��������
 �������

��������

����" ����

����
 ���������

����������+�
�����=���
�&�����������

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-45

LAC07-45

���
������� � �����

��� � �� � ��
������& � ��
�� � ����

�����
�� � �� � � � � ��� � �

 � �� � ������
� � ���
����

����
���� ��������������&���
�����
�������������
���

�� � ��� �
����� � ��
���� � � � �
+�� �

�� �
�
��+�� � ���

������ �������
������������&����-�
 �����
��� �
 �
�

#��� � ����� � � � ���
������� � ���� � ��� � �����
��& �
 �
�

����
���#�����2����
�
������������
������-��

"��������-����������#���������
��&����
�����-�

#�� �����

�� ��������
� ������������
� �#
��� ��

 �

���
���� ���
��
��� �"��������������������
�������

������ � �� � �
%������ � ���
 � ��

�� � �����

����

� ������������
��� ��
�� ����-�����
������
���)��
�

��
 � ������
��- � ��#� �
 ��� H �
 ��� � ��� � ���-�

���������� � ������& � ��
 � ��
 � ������
��- � ���
�
���

�

 ������#������
�

+��&�-�
*�

7 Engines and Buses

	
���
�� �
� � � � #�
��- � ����
+� � ���

�
 �������

����
��

��� � E�� �
��
����& � ��� � ���
� � ��
� � �� � ��

���
��
�� � �
�� � ��9 � �%���

+� �
 ����& � �
� �

�-�� ���
F�� ��

 �
 � ����
�� ����
�� ����& �#�� �����

��������& �
� � ���
��� � '��(� �����

�� � ���
��

�������
����-���& �
 ���� ��������#��� ��
�����##����

" ��� � ���
� � #
�� � �
�����##��� � ��� � ���-�����

)#
��������

��*��
������������
 ��� ���&����� �����

��%
���� �
����
�� � �����

- � �# � !�7 � ������� � �#�

���
�����������
���,���������
���������������
�-�

��� ���
����##���

���
� �
 ���� � �� ����
�� �
� � ���
���� � ����

�����
���
 ���� �
 ��'��(�����������<���������

���� � ��
� � � �+��
� � ��� � ������ �
� � ��

�
��

���

 ���� ���� ��������
��
 �
 ����& ��
� � #���� ���

�$,�����������������&��-�� ���
F������C��������

���
����
��
 ��'��(����������-��������
�����
 �����

���������
����
���
�
��
���)����
��*���������
���
�

��� � ���

���%�� � ��� �
����
�� � �+��
� �
 ���� �

������������������
�������"
���
���
���
�������

 ���� ��$,������������#��
�

-�

$���
���
�����
�
����
�
�
 ���� �
 �����
��#
���

��##��
�����-��&��
�
 ���
�����9�
 ��������
�%
��" ��

���� � ����
����

�� �
� � ����
�� � #�� ����� � ��
��
�

����
����'��(�
�������
�������
�
����
������

��&�

�������-��������

��
���
������
��
�-����
�
����#
�

� ����#��
�������
��#�����������

���
��������
���

#�����������
+� �'��(���
��
 �������� ��-���� �)
����

��##������
���������

��*�

'��(������$,���������������
���������
����-�

�������
�������������

 �������
�
��
 �����
������

���� � �
���� � ���

�� � ��
 �& � #���

��
�� � �� �
 ��

#�������
�� � ��+
�� �
�
��#����� � ����
 � �����&�

 ���� ��%���
���
 �
� �������

+��
���
����
�& �����

�������
����
���
��������
��������������
����9�
��
�

����� � ��� �
 � � ��
� � �
���� � ��
��
� � ��� � ����

�������
����������-����������
%��������+
����

E
�����5�� ������������
�����������
������
 �
�

��
�
���&�
��+��-��
���
�

��#���&�
 �����
�������
��

����������
�����#����

4���� � ��� �
���������
�- � ���
���� �
� �
�������

3�� �
���� �
� � ���
���� �
� � ��� �
���
 � ��� � #���

������
��&�����
��������
��
�����#������-���������

�
%�������" �����
�������
��
�������
���
����
 ��

������ � �# � � ������ �
 � �
���� � ������
�� � ��
���

��������
���
�����
�����

� ���������
��#
���&�#���

�
� �
 �
����������#�� ������������
���
� ��

 �

�����������
����;�����&�������
���

����-������+���

����
%�������

4- � ��#���
& � I���
��J � ����� � ��� � ��
���

����-�

����
����
�����
����
��
��&���
����
�����#������
��)5�

� ����������
�&���
��������
��*������
��������
�#���

���� �)C: � ����������� � � ������*� � 4�� � ���
� � ����

������
��� � #�� � ���

���- � ������

�� �
� � ��� � #����

�%
��������
��
�����
��

���������+
���&�
 ���� �
 ��

������

�����
�����
�
��#����

8 Track View

"����� � ��� � �������� � �� � � � �������� � �# � ��� � ���

������+������
�����
����#�
 �������#
���
-��&��

 ���

���
� ��� ������ �" � �
����� ��
�����
� �
 � ���
��

�������$��!�	��������%�����&������

��������

�	�
��

�

���

�����
��

��������	�

������
���

������

�����

����������	�

��������
���

���
���	 ���� ��	�	� ����!����

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-46

LAC07-46

����
��

������������&����+
��������+
�
�������+���

�#������

�
�����������

����������������
��#�
 ��

��

��������

����������������

��
������
�
�+
���

�
�����

" ��
������
�
�+
����
����� ���
��������& �
 ��

��#
 � ��� � �
����-� �
 � � �
�
 � �# �
����� � �

 �
 �
��

������

+� �������

�� �����
 �����
����
�
 ������
��

 ���������
�����+
������+����
������ ������
��

���

�
���� �������

�� �����������
�����

+

- �
��

�
�
���� � ��� � ���#������ � "����� � ��� � �
����� � ���

 ��
F��
�� � �
�
�� � ��� � ��
�� � ��� � ��-���� � �� � � � �
�

�
����
�������
�&�
��

������������#������ �
�����

�
�
���"
���
�������������
 �� ��
F��
����%
������

�
�
������-����������
��������������
�
 ��
����#�
 ��

�����+
���

��
�� ���-��� ����+��
��
�- ���
���� �
� ��
����
��

�� � ���

���& � ������
�� � �� �
 � � ������
 ��	���

���� � ��

��� � . �� � ��
 � ��
 �
� � ID���J& �
 ��

�����
���
������-������
�����
�
�������������

��&�

����

F���
���

������������
�����
����������

-�

3�� �
����� ���

��������������
��������������#���

��

�� � +
���� �
���

#
��

��� � ���
� � ��
�� � ����

�
����-�� � �

 � �����%
��
� � ��+�#��� � ����
�&�

�

 ����������K�,��
�������+������&���������#����

 ��������

+�����
��#
���������
���������
�������

� ��� � �� � � ����	�'����� �
�� � ����
�& � �

 � ��
��

�+��
���� ����������������
������&����
�

����

� &�

�����������

���

��������
��&�
�����������
����

��������

��������

��������������� ��
����
� �+
���F���
�������
�����

+��

�������
F
��������

��������������+�
������

9 Mixer

" � ��
%�� ��
��������+�� � #�� � ����
�� ����
���&�

���

��
��&�������
����������
�
���� �
���
%�����

�����

���� �" � ��
%�� �
� ��
+
��� �
� �
 ��� ������=�

 � � ��#
 � ��������
�� � ��� �
���
 � �����& �
 � � ���
���

�

 �
��
+
���� �
������
�
�� �����
 � ��
�
 �#�� �
 ��

��
��
��������3�� ��
%����
�
���##������+����������

��� � ���
��� � ��� � ���

��� � ��� � ��� � �# �
 ��

������

+� � ����� � ��� �
������ � � ���
� � �
�
�� � �����

�##��� �
 � � ����
�
�

- �
� � � �
� � �����
� � �##��
��

)$��,<��>L?*��

���

��
�� �
� � ������
�� �
� �
 � � #��� � �# � �����

��+�����
����#������
��������
���+��
�+����

-�#���

����& ���
 ��

 � #�����## ��-������-� �������
%���

�
�
��������#��
���������
��
��+��
���

+

-�$3��

���
��+������
��������
���������4#��������)�3��

5:A�C6*���������
������
���
�������%
��
���������

�������##��
�)
�
������
�
����
�

��*��E��������

�����& � +����� � ���
��� �
� �
�������
�� �
 ���� �

������

+� � � ����� � ���
�������@ � ��� � �-�
���

�%����
+� ����
�� �+������#�� ���
��
 ������� ������

�������
����
�����-��+�
������#���
������
�
�������
��

�������
���
 ���� �� ���������
�������C6�������

���
 � ����� � �+� � +����� � ��� � ��� � ���
�����

�
�������

10 Connections

" ��������

�����
��������+���
 ����
���
�
���

�#����
��������������
 �������

��� ���
�����
 ��

�
�������������-���
���
�������
��
�����������
 ��

�%
��������+
���������
��
�����
��

��������
���
���-�

 ��������

�����
����������������������
�������

������

��� � ��
���� � �%
����� � ��
��
 � ����
��

���

���
�& � �

 �� � '��(� ��
��
� � #�� � ���
� � �� � �$,��

��������� � ��
��
� � #�� � ����� � �� � #��
& �

 � �����
�

������
��-�����
��
�� �
 ��+��-������#���

����

-�

�#�	2����
��>C6?������������

�������
 ���%
�

���

���
 � ��� � ��
��
 � ����� � ��� � �������- � ��+�� � ����

���
��������������
����������

11 Audio Effects Plug-ins

$��,<��>L?������
��������
�
���+�
������#�������

���
� �
���
 � ��� � ��
��
 � ����� � ��� � #�� � ��� � ���
��

������ �<����
��������������
������������-��������

�
�����
��
�������������

�� ���������
�%
���������

�� �
��
+
�����- � �����
��& � ��

+�
�� � ��� � ��+���

�

��
 �������
��� �
�������� ����
+
���� ������
��

���
��� � ������
��� � ��� ��� ����
#
�� �
� � �����

���

 ���� ����+
�����
������
������������
�
�
����

��������������
��#����������
�

-��

12 Instruments

���������
�� �#��
���& ����������>CC?�
��
�����
�

��#
�

���#
��� �)�
��* �������

+��-�������
��& �
 ���

�##��
�� ������+��
��
 ����������������
���������

� ���� � ����
�� � #�� � �%
�

�� � ���� �
��
�����
�

��
� ������& ���� ����
��& �
�
���
�
��� ������

�� ��#�

�����
������ �������

13 Future Thoughts

�� � �# �

� � ������
 � �
�
��& �
 ��� � ��� ����- � ����

��
 ���#�������
���#���

����

-��

����
���
���
 �
�

��� �	
���
�� � ����
 � #��� � � � #
�
� �� � ������
& � ��
�

������#���
 ������
��#�

��������������
;���

����������

����������� �����-������������� ����������
��

-&�

 ��#�����
�������
 �������#���
��
��������
��

����

������=

� �������
����

���

� ������%���
�

� <��� �
����
�������
���

� "
����
��
�
��H��

� ��
#

����

� ���
���%���
�

� "���������

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-47

LAC07-47

14 Conclusion

�� � #�������
�� � �� �
�& �	
���
�� ��
�
 � �� � 2��
�

������������#�����
��������%
�

�����#
����&���
���

���
��
�-������#�
 ����������;��<������
�����
����

�
�
�� ���+��������
 ���
 �
&�� ������������#����

 � �#��� ������������ ���#
���� ���+�������
 ���
�
�

�# � +
��& � ��� � �
�� � ���� � �������� � #��������&�

�������
��
��& � ������������& � ��

��� � ���������&�

�+��
����- �
����
�� � �� � � � ��
��

�� �
�����% � ����

�������� �#������-&��
���
&��
+�����
�����
�������

�%���
���
��
��

15 Acknowledgements

��������
�#�� �
� �
 � �#��� ���#
���� �������������

������

- �
� � ������� � ��� �
� �
 � � $
��% ����
��

��+������������������
�����

�����& �� �����
��
���

 �
��+��������

���
��
 ����+�������
�����������
�

�# �#��� ����
�������������#
����& ���
���	
���
���

2��
 � ��� � ����� ����
#��
�

�� � �# � ��� � ����� � �#�

 ����������+������

	
���
�� ������
����
�������
�
����������#����-�

E

F�
���& � �������� � #��� �
 � � ����
� � ����
��

������
���
�����������-�

��� � �� � ���� �������
 � ����� ����

���� �
� �

��

�������
 ���-��� �
��������� ��# �
 �
� � ������

+��

 �������

��&���
����

>C?�Qtractor – An Audio/MIDI multi -track
sequencer, http://qtractor.sourceforge.net/

>5?�	
!��������������
����-�����
�����#���������

���
#������+�������
�����
�
����

����
F�

����

http://www.trolltech.org/products/qt/

>8?�JACK Audio Connection Kit,
http://jackaudio.org/

>!?��$,������+������$
��%�,��������

��
���&

�=��������������2��
�����

>7?��
����#
��������
����-�#�������
���������

���

#
�������
�
�
����������������&

�=���������������������
����#
���

>:?��
�+���
����9���B���
�����
����������
��&

�=��%
� �����+���
��

>@?��
�������1
� �����

-��<3/����
���������&

�=������������

�����������
������

>A?��
���������
��M�" �������
�����

�����&���

�
����-�#������
�����������
�����+���
��&

�=��������������������,K���

>L?�$��,<����$
��%����
����+������;��,
�����

<���
���<�&�

�=�����������������

>C6?�	2����
��M�'��(�	
�/0�&

�=���2����
��������#�������

>CC?������������<����#����������-�
������������
��

#������
������

�������������
��&�

�=������������������

>C5?��������������-����������������������&�����&�

#����������
 �������������
��
��&

�=���������������

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-48

LAC07-48

JJack – Using the JACK Audio Connection Kit with Java

Jens GULDEN

Formal Models, Logic and Programming (FLP),

Technical University Berlin

jgulden@cs.tu-berlin.de

Abstract

The JACK Audio Connection Kit is one of the

de-facto standards on Linux operating systems

for low-latency audio routing between

multiple audio processing applications. As

sound processing in an interconnected setup is

not originally supported by the Java language

itself, it has proven to be useful to provide

interoperability between JACK and Java via

the JJack bridge API. This allows creating

music applications for use in a professional

audio environment with the Java programming

language.

Keywords

JACK Audio Connection Kit, Java, low-

latency, Linux audio

1 Introduction

This article introduces JJack ([1]), a JACK-to-

Java bridge API, which consists of a native bridge

library providing access to the JACK ([2]) audio

processing system, and a Java-side model API

which reflects features of the native JACK system

into the object-oriented world of Java. With JJack,

audio processing in an interconnected virtual

studio environment can be achieved on Linux and

MacOS with software written in Java.

First, the JACK Audio Connection Kit gets

briefly introduced in section 2. Section 3 shows the

main principles of creating JACK clients with Java

using JJack. An object-oriented model of basic

client interconnectivity is provided by the high-

level API of JJack as discussed in section 4.

Section 5 sketches possible further applications by

pointing out the JavaBeans-compatibility of JJack

clients. In section 6, sample JJack clients from the

JJack distribution archive are presented. Section 7

gives a note on how new features since JDK 1.4

have helped to optimize JJack's performance, and

section 8 provides a short comparison between the

core features of Java's internal Java Sound API and

the JJack bridge API. Finally, a real-world

application using JJack, the music sequencer

Frinika, is presented in section 9, and section 10

gives a short concluding summary.

2 The JACK Audio Connection Kit

JACK ([2]) is a low-latency audio server which

provides interconnectivity between different audio

applications, such as software-synthesizers, multi-

track sequencers, effect-modules, mixers,

recording applications etc. While physically being

assigned to usually just a single audio device, on

the software-side the JACK server provides a

virtual studio environment for any number of

different software applications, and allows to

interconnect them with virtual cables.

A possible JACK system setup, with one JJack-

based application acting as a JACK client, is

schematically displayed in Fig. 1.

3 Processing Audio with JACK and Java

Each native software application that is capable

of acting as a JACK client provides a ���������-

function. This function gets called by the JACK

system regularly to pass in audio data as input, and

probably receive audio data as output from the

���������-method.

The very basic idea of how a JACK-client works

in Java is the same: a method ��������� is invoked

repeatedly, providing audio data as input for

processing. This data can then be used by the

���������-method to be analyzed or transformed in

any way, and to finally generate output audio data.

Clients can also choose to restrict themselves to

only process audio input data without generating

any output (e. g. recording the audio input), or to

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-49

LAC07-49

ignore any audio input and exclusively generate

output (e. g. sound-generators, synthesizers etc.).

Fig. 1: JACK processing loop and JJack client

Each implementation of the interface

	�
��
	��
���������
�����
�������	������������

owns a method ���������������	���������� which

is responsible for processing audio data in this

basic way. Example 1 gives an idea of how the

���������-method can be implemented.

public void process(JJackAudioEvent e) {

 float v = getVolume(); // parameter from gui

 for (int i=0; i<e.countChannels(); i++) {

 FloatBuffer in = e.getInput(i);
 FloatBuffer out = e.getOutput(i);

 int cap = in.capacity();

 for (int j=0; j<cap; j++) {

 float a = in.get(j);

 a *= v;

 if (a>1.0) {

 a = 1.0f;

 } else if (a<-1.0) {

 a = -1.0f;
 }
 out.put(j, a);
 }
 }
}

Example 1: ���������-method in Java

In the most simple scenario, a Java-written

JACK client implements one basic ���������-

method, which will get called by a native bridge

library with every callback from the JACK

processing thread. The native bridge library

appears as one native JACK client to the overall

JACK system. (This situation had been depicted in

Fig. 1.) Audio input data is provided via

�������	�������
���������������
� as a Java-

accessible ������
�������!. Audio output data is

written to another ������
�������! retrieved by

�������	�������
���"������������
�, which in

turn will be passed as a memory-addressed native

float-array back to the JACK server again.

Initializing JJack to be used in such a single-

���������-method setup is done as demonstrated in

example 2.

public class MyJJackClient implements JJackAudioProcessor {

 public static void main(String[] args) {

 // get JACK system's sample rate, initialize

 int sampleRate = JJackSystem.getSampleRate();

 System.out.print("Sample-rate: "+ sampleRate);

 // set single processing client

 MyJJackClient client = new MyJJackClient();

 JJackSystem.setClient(client);

 // ...
 }

 public void process(JJackAudioEvent e) {

 // ... (example 1) ...
 }

}

Example 2: using a single ���������-method

4 JJack high-level API

Besides the 1:1 reflection of a native JACK

client's ���������-method as described in the

previous section, JJack also contains a basic

object-oriented framework for interconnecting

multiple �������	�����������s inside one running

virtual machine, making them appear as one

complex JACK client to the native JACK system.

The high-level API is an add-on to JJack's basic

functionality. It can be used to model complex

audio processors which internally consist of

multiple �������	�����������s (or derived classes)

in a Java-style, object-oriented manner on the Java

side.

When using JJack's high-level API, the audio

data is internally routed among the connected

�������	�����������s within one Java virtual

machine. The overall combined setup of JJack-

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-50

LAC07-50

processors appears as one single native JACK

client to the overall native JACK system. This

situation is shown in Fig. 3.

Fig. 3: Using the high-level API with multiple

interconnected clients

Some core elements of the high-level API are

displayed by the UML class-diagram in Fig. 4.

Fig. 4: JJack API UML class-diagram (partial)

5 JavaBeans compatibility

Interconnecting JJack clients is achieved by a

JavaBeans-compatible event mechanism. As a

consequence, it is possible to configure and

interconnect multiple JJack clients inside a

JavaBeans development-environment like Sun's

Bean Builder ([4]). All clients combined inside

one Java virtual machine appear as a single native

client to the JACK system. Figure 5 demonstrates

the use of the Bean Builder for creating setups of

multiple JJack clients.

Fig. 5: JJack clients configured as JavaBeans in

the BeanBuilder

6 Example clients

Some example JJack clients are included in the

distribution archive, together with source-code.

They can act as a starting point to learn how to use

the JJack API. The examples are

GAIN:

class 	�
��
	��
���
�������
�����
�
�����
#���, a

simple volume control (linear multiplication of the

signal amplitude).

VU:

class 	�
��
	��
���
�������
�����
�
�����
$%, a

monitor client (input only) for displaying the

average signal amplitude.

OSCILLATOR:

	�
��
	��
���
�������
�����
�
�����
"���

����,

a monitor client (input only) for displaying the

signal as a waveform graph.

DELAY:

class 	�
��
	��
���
�������
�����
�
�����
��
�!,

adds an echo effect to the audio signal.

GATE:

class 	�
��
	��
���
�������
�����
�
�����
#���, a

noise gate that suppresses audio signal below a

given threshold value. Only if the signal is loud

enough, it will be passed through.

CHANNEL:

	�
��
	��
���
�������
�����
�
�����
&�����
,

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-51

LAC07-51

selects one channel from a multi-channel input and

routes it to the mono output channel #0.

CABLE:

class 	�
��
	��
���
�������
�����
�
�����
&�'
�,

passes the audio signal through without any

change. This is just a null-client for demonstration.

Fig. 6 shows a combination of example clients in

operation.

Fig. 6: Screenshot showing a combination of

example clients in operation

The source-code implementing the DELAY

client might help giving insight in how digital

audio processing is done with Java and JJack. The

source-code of the ���������-method is listed in

example 3.

7 Used features from JDK 1.4

Bridging between native JACK and Java can be

achieved efficiently thanks to new “hardware-near”

extensions to the Java standard API. Since JDK

version 1.4, Java contains the package ����
���
(�

which allows the mapping of physical memory to

Java-accessible arrays of choosable data-types

([4]). By using the interface ����
���

���)������

and its implementation ������
���)�����, no

data-format conversion and even no copying of

data is required to interface JACK's processing

thread with code running inside the Java virtual

machine.

This major advantage of JDK 1.4's features are

the reason why JJack requires Java version 1.4 or

above, versions up to 1.3 cannot be used with

JJack.

/**
 * class: de.gulden.application.jjack.clients.Delay
 * (implements
 * de.gulden.framework.jjack.JJackAudioProcessor)
 * method: void process(JJackAudioEvent e)
 *
 * Applies a classical digital delay, seperately
 * for each channel.
 */

public void process(JJackAudioEvent e) {

 int delaytime = getTime();

 float mixSignal = (float)getMixSignal() / 100;

 float mixFx = (float)getMixFx() / 100;

 float outSignal = (float)getOutSignal() / 100;

 float outFx = (float)getOutFx() / 100;

 int sampleRate = getSampleRate();

 int diff = delaytime * sampleRate / 1000 ;

 int channels = e.countChannels(); ����������	
���
�����

 if (ring == null) { ���
������
���������������

���

 ring = new RingFloat[channels];

 for (int i = 0; i < channels; i++) {

 ring[i] = new RingFloat(diff);

 }
 }

 for (int i=0; i < channels; i++) {

 RingFloat r = ring[i];
 r.ensureCapacity(diff);
 FloatBuffer in = e.getInput(i); �����������

��

 FloatBuffer out = e.getOutput(i); ���	��������

��

 int cap = in.capacity(); ����������	
��
������
�
��
���

 for (int j=0; j<cap; j++) {

 float signal = in.get(j); �����
������������
�

 float fx = r.get(diff);

 float mix = signal * mixSignal + fx * mixFx;

 float ou = signal * outSignal + fx * outFx;

 r.put(mix); ������������
	�����
�

 out.put(j, ou); ���������	����������
�

 }
 }
}

Example 3: ���������-method of the Delay

example client

8 Comparison between JJack and the

Java Sound API

Since JDK version 1.3, the Java Sound API ([5])

is part of the Java language standard. As JJack and

the Java Sound API differ in several aspects, it is

important to be aware of the differences when

deciding which audio processing approach is best

suited for a software project's needs.

Table 1 gives an explanatory overview on the

most relevant differences between JJack and the

Java Sound API.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-52

LAC07-52

JJack JavaSound

interoper-

ability

high, virtual

cable-

connectivity

low, device I/O

oriented

timing

latency1

JACK timing,

potential low-

latency below

5 ms on fast

machines

device-

dependent,

varying among

OSs and JDK

versions (up to

200 ms latency

JDK1.4/Linux,

below 5 ms with

JDK1.5 and

higher)

realtime-

capability

yes

(application can

run in a user-

thread, JACK in

a realtime

thread)

no

(unless the

whole JVM runs

in a realtime

thread)

process

architecture

pull-architecture

(the JACK

thread calls the

���������-

method)

push-

architecture

(application is

responsible for

delivering data

on time)

internal

data -format

32-bit float

(less aliasing

and higher

performance

expected, less

conversions

between

interconnected

applications)

16-bit integer

(faster

processing for

simple clients,

additional

floating-point

conversion

required for

complex tasks)

number of

channels

any according to

hardware driver

or software

mixer

operating

system

Linux or Mac

(JACK required)

Any

(JDK >= 1.3)

Table 1: Comparison JJack – Java Sound API

1Latency tests have been performed with a two-

computers setup, using the benchmark application
	�
��
	��
���������
�����
���

'��������
��	��*

)�������� (available via JJack's concurrent versions

system, CVS).

9 Real-world application

The music sequencer application Frinika ([7]) is

entirely written in Java and serves as a real-world

example for the use of JJack. On Linux systems,

Frinika detects the available audio system, and if

JACK can be accessed successfully, the application

runs on top of JJack to handle its audio I/O.

Since version 0.3.0, Frinika supports multi-track

audio recording, the accuracy of which is again

based on JACK through JJack on Linux systems.

Fig. 7 shows a screenshot of the Frinika music

sequencer in operation.

Fig. 7: Screenshot of the Frinika

music sequencer

10 Conclusion

JJack has proven to be a serious alternative to

the standard Java Sound API natively shipped with

the Java programming language. Especially music

applications for Linux and MacOS that are

supposed to interoperate with other audio-

processing software can benefit from interfacing

with the JACK audio system instead of relying on

the audio support internally provided by Java.

The overall architecture of a JACK-based audio

application appears more elegant through the

continuous use of floating-point arithmetic. It also

is expected to be more stable with regard to timing

issues, which is suggested by the pull-approach of

the JACK processing architecture and the potential

use of realtime-capabilities. Depending on the

system configuration and driver support, using

JJack may also offer lower latency times.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-53

LAC07-53

References

[1] Gulden, J., JJack – JACK to Java bridge API,

software, ����+,,�����
'��
���
	�,, licensed

under the GNU Lesser General Public License

(LGPL)

[2] Davis, P. et al, JACK – JACK Audio Connection

Kit, software, ����+,,������	��
���,, licensed

under the GNU General Public License (GPL)

and GNU Lesser General Public License (LGPL)

[3] Sun Microsystems, Bean Builder, a visual

programming environment demonstrating the

assembly of applications by joining live

instances of JavaBeans, software, �����+,,'���*

'��
	��
	��
����
���,, licensed under the

Berkeley Software Distribution (BSD) License

[4] Sun Microsystems, New I/O APIs, ����+,,�
����
���
���,�-��,.
/
-,	���,���	�,���,

[5] Sun Microsystems, Java Sound API, ����+,,�
����
���
���,���	����,����*��	��,����	,

[6] Schmeder, A., PyJack, JACK client for Python,

����+,,�-�	
���,��������, licensed under the

GNU General Public License (GPL)

[7] Salomonsen, P. et al, Frinika music work-

station, software, ����+,,���
�������
���,,

licensed under the GNU General Public License

(GPL)

[8] GNU Software Foundation, GNU General

Public License (GPL), legal license,
http://www.gnu.org/licenses/gpl.txt

[9] GNU Software Foundation, GNU Lesser

General Public License (GPL), legal license,
http://www.gnu.org/licenses/lgpl.txt

 Figure 1 partially by Paul Davis

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-54

LAC07-54

pnpd/nova, a new audio synthesis engine with a dataflow language

Tim BLECHMANN
Vienna, Austria
tim@klingt.org

Abstract

pnpd/nova is a new dataflow-based computer mu-
sic system. Its syntax shares a common subset with
max-like languages like Pd or Max/MSP, but intro-
duces some new concepts to the dataflow language,
most notably an extended and extendable message
type system, data encapsulation and namespaces.
Currently, it doesn’t provide a graphic user interface,
but contains a compiler for a text-based patcher lan-
guage and a command-line interpreter, which can be
controlled via OSC.
The audio synthesis engine is designed for support-
ing low latencies and is optimized for high perfor-
mance.

Keywords

audio synthesis, computer music system, dataflow
language

1 Introduction & Motivation

Max-like dataflow languages have been used in
computer music systems since the 1980s. Cur-
rently Max/MSP1 and Pd2 are the most com-
monly used programs implementing the max
paradigm[3].
Although pnpd/nova is heavily influenced by
Max/MSP and Pd, it is not just a rewrite of one
of these programs in C++. The dataflow lan-
guage of pnpd/nova contains language features
like namespaces or hierarchical object bindings,
that work quite different in other max-like lan-
guage and should make pnpd/nova much better
suited for more complex applications.

2 Type System

2.1 Built-in Types

Like other max-like languages, pnpd/nova has
a strong separation between signals and mes-
sages. The messaging happens synchronous
with the audio signal, to be able to schedule

1http://www.cycling74.com/products/maxmsp
2http://puredata.info/

events very tightly, unless it is explicitly de-
tached to low-priority threads by the used ob-
jects. The pnpd/nova language contains the fol-
lowing atom types:

bang a simple function call, the atom represen-
tation of a bang is #None

float a double-precision floating point number

integer an exact integer number3

symbol a reference counted, hashed string, to
be used as message selector

string a string class (based on the string class
from stl)

atomlist a list, containing zero or more atoms

pointer pointer to a user-defined type

2.2 Extending Types

Using the pointer type, it is easy to extend the
type system by adding custom message types
from the C++ interface. Developers of ex-
ternals can define their own custom message
type by simply deriving their classes from the
CustomMessageType class. All calls to pointer
methods use the same inlet handler, the dis-
patching is done by using the runtime type in-
formation of C++. Custom messages are passed
by reference. Currently the OSC implementa-
tion is based on this feature.

3 Patcher Language

3.1 Text-Based Patcher Syntax

The text-based syntax was designed to describe
the patcher language in a human-readable4 way.
It can be used to write patches until there is a
graphical patcher available. Listing 1 shows a
simple ’hello world’ patch.

3based on the GNU Multi-Precision Library http:
//www.swox.com/gmp/

4in contrary to the internally used xml format

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-55

LAC07-55

Listing 1 simple “hello world” patch

{
signal = osc~<440>()
dac~(signal[0], signal[0])

}

It creates a patch, containing a sine-wave os-
cillator with a frequency of 440 Hz with the sym-
bolic name “signal”, that’s first outlet is con-
nected to the first two inlets of the dac~ class,
that represents the audio output. The curly
brackets {} define canvases, round brackets
object() define object creations, angle brack-
ets object<args>() define creation arguments
and square brackets [] select an outlet of an
object.
Connections can be defined implicitly with a
comma-separated list in the round brackets as
done in Listing 1 or explicitly. The construction
-> declares connections, if inlets or outlets are
not specified explicitly, the first outlet is used
for the connection. This is shown in Listing 2

Figure 1 hello world patch (block diagram)

Listing 2 hello “world patch” with explicit con-
nections
{

signal = osc~<440>()
out = dac~()
signal -> out
signal -> out[1]

}

Both pieces of code represent the same block
diagram, that is shown in Figure 1. The written
patch files have to be converted to the internal
xml file format, which is can be loaded into the
interpreter.

3.2 Semantics

Data Encapsulation & Patch Lifetime

pnpd/nova patches are used as independent
classes, that should be reusable in different envi-

ronments. After a patch has been created and
it is inserted into the dataflow interpreter, all
objects execute their loadbang functions. It is
not allowed to insert information into the patch,
before this has been done, otherwise it could be
used before its initalization is complete, what
would obviously lead to severe problems. If
there is the attempt of sending information to
the patch, before the loadbangs has been ex-
ecuted (via inlets or message busses), the mes-
sage is queued and run after the loadbangs have
been executed. Before a patch is destroyed,
endbang functions are executed so that cleanup
handlers can be called. At that time, no infor-
mation is allowed to get into the patch, so calls
to inlet functions and message busses will be
ignored.

Object Bindings

In Max/MSP and Pd languages, a global scope
is used to control the access to objects by sym-
bolic names. If local objects have to be used
per-instance, the only workaroud would be to
add a new unique symbol to the global scope5.
pnpd/nova provides a mechanism to avoid that.
Bindable objects are not directly bound to the
symbols, but each patch contains a container
for bindable objects. They can be declared ex-
plicitly on a certain scope, or implicitly on the
topmost point in the hierarchy, where they are
visible in every patch. A declare object can be
used to declare global or local objects.

Listings 3, 4 and 5 demonstrate this. In
the main patch ’message bus’ (Listing 3), a bus
named ’foo’ is implicitly constructed in the cur-
rent scope. In the subpatch ’message bus local’
(Listing 4) a local bus named ’foo’ is explicitly
declared, thus the send and receive objects of
this patch are bound to the local bus. The patch
’message bus sub local’ (Listing 5), which is
lower in the hierarchy than ’message bus local’,
declares a global bus, which is used in this scope.
The global bus is located on the top of the hi-
erarchy, where the implicitly declared bus from
the top of the hierarchy is then getting rebound
to. The block diagram representation is shown
in Figure 2.

Namespaces

pnpd/nova features namespaces, which are in-
spired by the use of namespaces in python. If
an object foo.bar is created, the interpreter
searches for abstractions and externals in the

5in Pd this is done with $0, in Max/MSP with #0
prefixes

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-56

LAC07-56

Figure 2 message bus patch (block diagram)

Listing 3 message bus.np

{
metro = metro<1000>(loadbang())
send<foo>(symbol<’main>(metro))
cerr<"main">(receive<foo>())
message_bus_local()

}

Listing 4 message bus local.np

{
declare<’bus ’foo>()
metro = metro<1000>(loadbang())
send<foo>(symbol<’local>(metro))
cerr<"local">(receive<foo>())
message_bus_sub_global()

}

subfolder foo with the name bar, and for the
external library with the name foo, containing
the object bar. It will be searched relative to
the path of the root patch and in user-defined
search paths. If different objects are found in
more than one place, loading the object fails,
to avoid undefined behavior in the case of name
clashes.
In future a using object will allow to search a
certain namespace by default.

Listing 5 message bus sub local.np

{
declare<’bus ’foo ’global>()
cerr<"sub_global">(receive<foo>())

}

4 Some Implementation Details

pnpd/nova is completely written in C++, with
the exception of the parser for the text-based
patcher, which is written in python. Portau-
dio6 is used for audio i/o. Most of the internal
thread communication is making use of lockfree
C++ data structures. Most system operations
are run in low-priority threads in order to make
it possible to run pnpd/nova with as little as
possible audio dropouts even during times of
high cpu load.

4.1 Boost

pnpd/nova relies heavily on the boost C++ li-
braries7, as they provide very powerful, portable
and stable implementations for many aspects,
the C++ standard doesn’t deal with. Further-
more, several boost libraries are going to be part
of the future C++ standard.
It simplified the memory-management of heap-
allocated objects, which is now using smart
pointers in certain areas, the spirit parser frame-

6http://www.portaudio.com/
7http://boost.org/

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-57

LAC07-57

work made it much easier to write a decent
parser for the string representation of atoms.
The boost graph library turn out to be a great
help for representing the dsp graph and cre-
ating the dsp chain. But also for network i/o
(OSC via asio), filesystem traversal, the python
bindings and several other parts it simplified the
code a lot.

4.2 DSP

The implementation of the dsp core is similar to
Pd[2], providing means to suspend parts of the
dsp graph in order to save cpu power, or to re-
block and overlap specific areas, as it is required
for certain applications like windowed spectral
processing. As in Pd, reblocking, overlapping
and muting is directly bound to the canvases,
where the dsp objects are located.
But unlike Pd, it is using nested dsp chains.
If a canvas contains a switch~ or reblock~ ob-
ject, a separate dsp chain is used for this and its
child canvas. Changes to the dsp graph trigger a
generation of a new dsp graph in a background
thread. When the new dsp chains are ready,
the root chain is exchanged with the obsolete
chain. Since the sorting of the dsp graph is done
asynchronously, it is possible to do changes to
the patches or even load patches without audio
dropouts.
The ugens are not necessarily bound to graphi-
cal objects. Dsp objects can either provide the
dsp function as member function or allocate a
special ugen class, depending on the dsp context
or the state of the dsp graph. This way, objects
can implement several ugens and allocate the
most efficient one.

4.3 Performance Notes

pnpd/nova is optimized for high performance,
making heavy use of the sse instruction set on
modern cpus of the x86 and x86 64 architec-
tures. Although recent compilers are able to
vectorize certain code, it is usually not possible
to generate optimal code, e.g. because of alias-
ing issues or the requirement to write algorithms
differently8. In addition to that, it is using
compile-time loop unrolling for performance-
critical parts, implemented using C++ template
metaprogramming techniques. The results of
a general-purpose benchmark9 against Pd-0.40
with oprofile showed 11537 samples (200000

8more details can be found here [1]
9fm synth, delayline, filtered noise, sampling objects,

signal i/o. testing system: pentium-m 750, 1024MB,
linux 2.6.20-rt1

CPU CLK UNHALT events per sample) com-
pared to 27065 samples with Pd.

4.4 Portability

At the moment the only supported platform
is linux. However, all dependencies are either
platform independent C or C++ libraries or
they support linux, osx and win32 and there are
plans to provide binaries for other operating sys-
tem than linux. The sse code is completely sep-
arated and plain C++ equivalents exist to as-
sure portability to other architectures than x86.
The lockfree algorithms are implemented using
atomic ops10, which provides a wrapper for the
assembler code of the used atomic primitives for
several compilers and architectures.

4.5 Extending pnpd/nova

The public C++ api can be used to write exter-
nals in C++. Externals are shared libraries that
are dynamically loaded at runtime. External
developers simply have to derive their external
classes from the GObj or GObj_dsp base classes.
The C++ api should be reasonably stable, al-
though the binary compatibility might not be
guarrantied, because pnpd/nova is using lots of
header implemented inline and template func-
tions.
Beside the C++ api, it is possible to extend
pnpd/nova with python. With the py class it
is possible to run python functions and pyx can
load python classes, which implement messag-
ing externals.11

5 Todo List

pnpd/nova is already usable, but a lot of stuff
needs to be done

• graphical user interface (possibly based on
gtkmm/gnomecanvasmm or PyQt4)

• extend the object library, lots of objects are
still missing

• better documentation of both the patcher
language and the library

• testing, testing, testing . . .

10http://www.hpl.hp.com/research/linux/atomic_
ops/

11the interface is inspired by Thomas Grill’s py/pyext
objects for Pd and Max/MSP, http://grrrr.org/ext/
py/

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-58

LAC07-58

6 Conclusions

Although pnpd/nova is still in an early state of
development, it is already quite usable. I have
been using it in concerts since the late 2006.
Lots of features are still missing, especially a
gui client with a graphical patcher. However,
it already prove to run very efficiently on mod-
ern hardware, supporting lowest latencies. We
will see, if it is able to compete with Max/MSP
or Pd, since both programs have a huge user
base. Nevertheless, for users of these programs,
switching should be very easy. For now, the
most important thing beside manpower for writ-
ing a gui, is to find some users, who are willing
to do beta testing.

7 Acknowledgements

I’d like to thank Miller Puckette for Pd and
for making it open source, because i learned a
lot when reading the Pd sources and it inspired
pnpd/nova’s design and dieb13 for hosting the
project at klingt.org.

References

[1] T. Blechmann. Simd in dsp algorithmen.
https://tim.klingt.org/pnpd/Members/
tim/iem.pdf.

[2] M. Puckette. Pure data: another integrated
computer music environment. In Proc. the

Second Intercollege Computer Music Con-

certs, pages 37–41, 1996.

[3] Miller Puckette. Max at seventeen. Com-

puter Music Journal, 26(4):31–43, 2002.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-59

LAC07-59

Developing LADSPA Plugins with Csound

Victor Lazzarini
National University of Ireland, Maynooth

Maynooth
Co. Kildare

Ireland
victor.lazzarini@nuim.ie

Rory Walsh
Dundalk Institute of Technology

Dundalk
Co.Louth
Ireland

rory.walsh@ear.ie

Abstract

Csound is one of the most powerful audio
programming languages available to
electroacoustic composers today. It origins can be
traced directly back to Max Matthews in Bell Labs
and since its inception it has grown to become one
of the most extensive computer music toolkits in
development. This paper will describe a new
toolkit for the development of LADSPA plugins
using the Csound audio programming language.
The toolkit itself was developed using the new
Csound API and the Linux Audio Developers
Simple Plugin API. This text will explore the
implementation of said toolkit and conclude with
examples of the toolkit in use.

Keywords

Computer Music, Audio Plugins, Musical Signal
Processing

1 Introduction
csLADSPA is a new toolkit for the development

of LADSPA[1] plugins using the Csound audio
programming language. csLADSPA provides
musicians with no low-level programming
experience with a simple albeit powerful toolkit
for the development of audio plugins. The main
goal of this project keeps in line with one of the
main objectives of the LADSPA project i.e., to
create a 'simple' architecture for the development
of plugins. It was of the utmost importance to the
author that the end-user need only a rudimentary
knowledge of Csound in order to get started with
csLADSPA. It is expected that a novice user will
in time explore more of Csound to create complex
plugins.

1.1 The Csound host API

An API (application programming interface) is
an interface provided by a computer system,

library or application, which provides users with a
way of accessing functions and routines particular
to the control program. Essentially APIs provide
developers with a means of harnessing an existing
applications functionality within a host
application.

The Csound API[2] can be used to start any
number of Csound instances through a series of
different calling functions. The API also provides
mechanisms for two way communication with an
instance of Csound through the use of a 'named
software bus'. In short, the Csound API makes it
possible to harness all the power of Csound in
ones own application.

1.2 LADSPA Plugins

The LADSPA framework came to fruition in
early 2000 following the combined efforts of Paul
Davis, Richard W.E. Furse, and Stefan
Westerfield[3]. LADSPA provides developers
with a simple way of developing audio plugins
which can be loaded by a wide range of host
applications. In terms of implementation, all
LADSPA plugins must:

● Declare a plugin structure (for audio
buffers, etc.).

● Instantiate the plug-in by calling a user
defined function which returns a
LADSPA_Handle data type.

● Register the plugin using a user-defined
'ladspa_descriptor()' function.

● Connect ports to data locations using a
user-defined connect function.

● Process blocks of samples in a run
function.

● Free memory

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-60

LAC07-60

2 Inside csLADSPA
The csLADSPA library was written in C++[4].

It is programmed using the same basic structure as
any LADSPA plugin. Calls are made to the
Csound API at different stages in the execution of
the plugin. The Plugin declares a data structure,
which includes a pointer to an instance of the
Csound class, an array to hold control values and
an array to hold the names of the software bus
channels which will be used for parameter control.
The steps taken in the actual operation of the
plugin are as follows:

● When the plugin is loaded, all Csound
(.csd) files which reside in the plugin
folder are parsed. This data is assigned to
the various members of the LADSPA
descriptor structure. This step generates a
series of plugins based on the Csound
source code files created by user.

● When a plugin is instantiated,
csLADSPA creates a Csound instance
and compiles the respective Csound
source code.

● This is followed by the connection of ports
to data locations and the assignment of
control values to an array of floats. This
can be assessed from inside the run
function, which is called by the host
application.

● When the host runs the plugin, blocks of
samples are processed in a ‘run’ function.
This accesses the Csound instance low-
level IO buffers, through calls to
Csound::Spin() and Csound::Spout(), in
order to route the selected audio to it.
Finally, inside a processing loop a call is
made to Csound::PerformKsmps(), which
does the actual signal processing.

A basic model of how the plugins work is
shown in below (fig.1). The host application loads
the csLADSPA plugin. When the user hits the
process button the csLADSPA library will route
the selected audio to an instance of Csound.
Csound will then process this audio and return it to
the csLADSPA plugin which will then pass that
audio to the host application.

2.1 Getting started

In order to get started writing csLADSPA
plugins the end-user must place the csLADSPA
library and all csd plugin files in the folder pointed
to by the LADSPA_PATH environment variable.

LADSPA_PATH must be set in order for
csLADSPA library to work. The csLADSPA
library will automatically detect all Csound files
and load them as separate plugins. In order to keep
things simple, csLADSPA only works with the
unified Csound file format.

2.2 csLADSPA tags

 In order for csLADSPA to load the Csound
files in the LADSPA_PATH the user must specify
some basic information about the plugin. This is
done by adding a section at the top of the Csound
file whereby the user can specify things like the
name of the plugin, the author, etc. It is in this
section that the user can also specify the control
ports they will need in order to interact with their
Csound code when running the plugin through a
host. Every csLADSPA plugin must specify the
following:

Tags Description
Name The name of the plugin as it

will appear in the host app-
lication

Maker Author of plugin
UniqueID ID given to plugin, each

plugin should use a unique ID.
Copyright Copyright/Licence notice

If users wish to add controls to their plugins they
can do so using the following tags:

Figure 1. The csLADSPA
model

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-61

LAC07-61

Tags Description
ControlPort The name of the control as it

appears when the plugin is ran
and the name of the channel
which Csound will retrieve
the data on. The two names
should be separated by a '|'
symbol.

Range Plugin max/min range. Again
the two values are separated
by a '|' symbol. If users wish to
controls to respond
logarithmically they can add a
'&log' after they specify the
range values.

Note that if a user uses the ControlPort tag
they must always place a Range tag underneath it.
Examples of how these tags are used can be seen
in the next section.

3 Examples
In the following section three csLADSPA

plugins will be presented. The first two plugins
will illustrate the mechanisms for communication
between the host and the csLADSPA plugin. The
third and final plugin will illustrate a more
complex process which makes use of some of the
more advanced opcodes included with Csound5,
i.e., the PVS[5] opcodes.

3.1 A basic gain plugin

 Given that most plugin SDKs come with a simple
'gain' example we'll start here too. Here is the full
code to a simple gain example.

<csLADSPA>
Name=Gain Plugin
Maker=John Doe
UniqueID=1049
Copyright=None
ControlPort=Gain|gain
Range=0|2
</csLADSPA>
<CsoundSynthesizer>
<CsInstruments>
sr = 44100
ksmps = 10
nchnls = 1
instr 1

kGain chnget "gain"
ain in
out ain*kGain

endin

</CsInstruments>
<CsScore>
i1 0 3600
</CsScore>

</CsoundSynthesizer>

As previously mentioned the means of
communication between the plugin and the
instance of Csound is provided by the named
software bus, in this case the name given to the
software channel is 'gain'. In Csound we can use
the chnget opcode to retrieve data from a
particular software bus. In the case above this data
is used to multiply the output signal by a value
between 0 and 2, as defined by the Range tag in
the <csLADSPA> section of the above code.

3.2 A simple flanging plugin

Flanging is a commonly used digital audio
effect. It's created by mixing a signal with a time-
varying delayed version of itself. In Csound this
can be done by using the vdelay opcode. To
control the amount of delay one can use a low
frequency oscillator or LFO. This plugin will need
two control ports, one for the flange depth and one
for the flange rate. Here is the full code for a
simple 'flanger' plugin.

<csLADSPA>
Name=Flanger
Maker=John Doe
UniqueID=1054
Copyright=None
ControlPort=Flange Depth|depth
Range=0|1
ControlPort=Flange Rate|rate
Range=0|10
</csLADSPA>
<CsoundSynthesizer>
<CsInstruments>
sr = 44100
ksmps = 10
nchnls = 1
instr 1

kdeltime chnget "depth"
krate chnget "rate"
ain in
a1 oscil kdeltime, 1, 1
ar vdelay3 ain, a1+kdeltime, 1000
out ar+ain

endin

</CsInstruments>
<CsScore>
f1 0 1024 10 1
i1 0 3600
</CsScore>
</CsoundSynthesizer>

3.3 A spectral manipulation plugin

Csound5 comes with a host of new Phase
Vocoder Streaming, PVS, opcodes. These opcodes
provide users with a means of manipulating
spectral components of a signal in realtime. In the
following example the opcodes pvsanal,
pvsblur and pvsynth are used to manipulate

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-62

LAC07-62

the spectrum of the selected audio. The plugin
averages the amp/freq time functions of each
analysis channel for a specified time.

 <csLADSPA>
Name=PVSBlur
Maker=John Doe
UniqueID=1056
Copyright=None
ControlPort=Max Delay|del
Range=0|1
ControlPort=Blur Time|blur
Range=0|10 &log
</csLADSPA>
<CsoundSynthesizer>
<CsInstruments>
sr = 44100
ksmps = 10
nchnls = 1

instr 1
imaxdel chnget "del"
iblurtime chnget "blur"
asig in
fsig pvsanal asig, 1024, 256, 1024, 1
ftps pvsblur fsig, 0.2, 0.2
atps pvsynth ftps
out atps
endin

</CsInstruments>
<CsScore>
f1 0 1024 10 1
i1 0 3600
</CsScore>
</CsoundSynthesizer>

4 Conclusion
The current version of csLADSPA performs

adequately and has been tested by students in the
National University of Ireland Maynooth and at
Dundalk Institute of Technology, Ireland. The
system has been used both as a creative tool and as
a pedagogical utility used in the teaching of DSP
techniques. It has been fully tested in real-time
using Jack-Rack[6] and in non-realtime mode
using Audacity[7]. With regards to future
developments the authors are currently working on
a better error-checking system and multichannel
support is also being investigated.

csLADSPA is Free Software, available for
download from www.ear.ie/csLADSPA.htm

References
[1] http://www.ladspa.org.

[2] John ffitch. 2004. On The Design of
Csound5. Proceeedings of the 3rd Linux

Audio Developers Conferencence. ZKM,
Karlsruhe, Germany.

[3] Dave Phillips, Linux Audio Plug-Ins: A
Look Into LADSPA:
http://www.linuxdevcenter.com/pub/a/linux/
2001/02/02/ladspa.html

[4] Bjarne Stroustrop. 1991. The C++
Programming Language, second edition.
Addison-Wesley, New York.

[5] Victor Lazzarini, Joseph Timoney and
Thomas Lysaght. 2006. Streaming
Frequency-Domain DAFX in Csound 5.
Proc. of the 9th Int. Conf. on Digital Audio
Effects (DAFX) 2006, Montreal, Canada.
pp.275-278.

[6] http://jack-rack.sourceforge.net/

[7] http://audacity.sourceforge.net/

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-63

LAC07-63

A Tetrahedral Microphone Processor for Ambisonic Recording

Fons ADRIAENSEN

Laboratorio di Acustica ed Elettroacustica, Parma, Italy
fons@kokkinizita.net

Abstract

This paper introduces a Linux audio application that
provides an integrated solution for making full 3-D
Ambisonics recordings by using a tetrahedral micro-
phone. Apart from the basic A to B format conver-
sion it performs a number of auxiliary functions such
as LF filtering, metering and monitoring, turning it
into a complete Ambisonics recording processor. It
also allows for calibration of an individual micro-
phone unit based on measured impulse responses. A
new JACK backend required to make use of a partic-
ular four-channel audio interface optimised for Am-
bisonic recording is also introduced.

Keywords

Ambisonics, tetrahedral microphone, recording.

1 Introduction

The standard first-order Ambisonics B-format
consist of four signals named W,X, Y and Z.
In acoustic field theory terms, W represents the
pressure signal at a given point in space, and
X, Y, Z the three components of the velocity vec-
tor at the same point, projected onto orthogo-
nal axes. Conventionally X points forward, Y
left, and Z up.

These four signals also correspond to the out-
puts of four real microphones - an omnidirec-
tional one for W , and three figure-of-eight ones
for X, Y and Z - provided one can find a way to
put these four microphones at exactly the same
point in space.

For horizontal-only surround recordings Z is
not used, and it is possible to mount the three
required mics close together in a vertical line
so they are effectively coincident for sounds ar-
riving from horizontal directions. But for full
3-D such a direct B-format setup is no longer
practical.

One solution, already developed by Michael
Gerzon e.a. in the early years of Ambisonics
[Gerzon, 1975], is to use a tetrahedral micro-
phone. This contains four cardioid or near-
cardioid capsules mounted very close together

X

Y

Z

LFU

RFD

RBU

LBD

Figure 1: Tetrahedral mic geometry.

at the vertices of a regular tetrahedron and
pointing outwards, as shown schematically in
fig. 1. Figure 2 shows an example of how this
may be realized in practice.

Given the four A-format microphone signals
LFU, RFD, RBU and LBD1, we can find the
B-format signals from

W ′ = LFU + RFD + RBU + LBD

X ′ = LFU + RFD −RBU − LBD

Y ′ = LFU −RFD −RBU + LBD

Z ′ = LFU −RFD + RBU − LBD

To find the correct W,X, Y, Z, we also need
to filter the outputs of this A-B matrix and
apply some gain factors. Two types of filter
are required, one for the zero order component
W , and a second one for each first order one,
X, Y, Z. These filters will be discussed in more
detail in section 3.

The first tetrahedral mics were manufactured
by Calrec Ltd. in the UK, and their technology

1LFU means left-front-up, etc.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-64

LAC07-64

Figure 2: A tetrahedral mic (ST250).

was later acquired by Soundfield Ltd.2 These
are quite expensive microphones, not only be-
cause of their high quality, but also because
they need a hardware processing unit to perform
the A to B-format conversion and filtering men-
tioned above, and in particular because for best
results each microphone needs to be calibrated
individually and provided with a matched A-B
matrix and/or filters.

The Danish microphone manufacturers DPA3

were the first to offer a tetrahedral mic without
a processing unit. It was a very high quality
mic, but it is unfortunately no longer available.
Soundfield Ltd. also produce such an A-format
microphone, the SPS200-A.

Recently, Core Sound4 has announced the rel-
atively inexpensive Tetramic. It should be avail-
able when this paper is presented, and its price
is expected to be below 1000 USD. It comes
without a controller, and relies on a software
solution for A to B-format conversion.

Given such an application, this mic provides
an affordable solution for Ambisonic recording.
While it was this announcement that triggered
the development of the Tetraproc software pre-
sented in this paper, it should be pointed out
that this software can be used with any tetra-
hedral microphone. It is published under the
GPL license, and in no way, either technically or
commercially, linked to products of Core Sound
or any other manufacturer.

2 Tetraproc processor architecture

Apart from the basic A to B format conversion,
Tetraproc also provides some convenient mon-

2<http://www.soundfield.com>
3<http://www.dpamicrophones.com>
4<http://www.core-sound.com>

itoring functionality. Ambisonic microphones
are often used for live recording, and in these
circumstances one wants a system that is easy
to set up and use, and that allows for verifi-
cation of the recording chain. In practice the
only other software needed should be the JACK
server and a recording application such as Ar-
dour.

Figure 3 (next page) shows the processing
chain implemented in Tetraproc. The high
pass filters, the mute and invert switches, and
the monitoring functions are controlled by the
graphical user interface. All other modules are
set up using a separate configuration window,
and these settings are saved into configuration
files. These config files are also generated by a
separate calibration program discussed in sec-
tion 4.

2.1 A to B format conversion
Going from the A-format microphone inputs to
the B-format output, the following processing
steps are performed:

• High pass filtering. This has an ad-
justable cutoff frequency and a slope of 24
dB/oct. This is really an essential feature.
Figure-of-eight microphones having a good
low frequency response are also excellent
detectors of earthquakes, passing under-
ground trains, waggling mic stands, slam-
ming doors and air currents. These can re-
sult in rather large amplitude signals, and
cutting off low frequencies is the only way
to get rid of them. Ideally this should be
done before AD-conversion, but not all au-
dio interfaces provide such filters.

• Mute switches. For testing connections
and verifying correct operation of the mi-
crophone it is convenient to be able to listen
to selected inputs, hence the mute switches
which are provided on the GUI.

• Low frequency parametric filtering.
This is provided to adjust the frequency re-
sponse of the microphones in this region.
The parameters provided are centre fre-
quency, bandwidth and gain. The same fil-
tering is applied to all four channels.

• A-format FIR filters. These are imple-
mented using fast FFT-based convolution
and can be used to correct the frequency
and phase response of the four microphones
using filters calculated from measured im-
pulse responses. This will be mainly im-

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-65

LAC07-65

B-format in

B-format monitoring

Stereo monitoring

Meters

Stereo decoder

B
A

LF parametric
filter

4th order HP
filter

Mute switches
A-format

convolution

A-B matrix
B-format

convolution
HF parametric

filters

A-format in

Invert switches

B

B-format out

A

Figure 3: The Tetraproc processing chain

portant in the medium and high frequency
regions.

• A-B matrixing. This performs the A-
B transformation already described in the
previous section. The actual matrix coeffi-
cients are modified to compensate for small
gain and directivity mismatches between
the four microphones. They are calculated
by the calibration program described in
section 4.

• B-format FIR filters. Again using fast
convolution, these may be inserted to im-
plement Angelo Farina’s method (see next
section) for obtaining the post-matrix fil-
tering. They can be used together with the
parametric sections that follow.

• HF parametric filtering. Two sections
are provided in each channel to realize the
required post-matrix filters. Parameters
for these filters will be preset to sensible de-
faults and can be tweaked for optimum per-
formance during the calibration of a tetra-
hedral microphone.

• X, Y, Z inversion switches. In some
cases it is required to invert some of the
first order signals, for example when the
microphone is used upside down, hanging
from its cable.

The output at this point is the B-format signal
that will be recorded.

2.2 Monitoring functions

Monitoring can be switched between the B-
format signal being recorded, or one being
played back. A virtual stereo microphone with
adjustable azimuth, elevation, microphone an-
gle and directivity is provided for stereo mon-
itoring. This module also provides a volume
control and optional low-frequency crosstalk for
headphone listening.

Four bargraph meters are provided on the
GUI. These show either the A-format signals,
or the B-format signal being monitored.

2.3 DSP implementation issues

None of the processing steps above present any
real difficulty, but some attention to detail is
required in order to obtain the highest quality.

The high pass filtering is implemented us-
ing a filter architecture optimised for low fre-
quency filters described in [Adriaensen, 2006].
It is used to avoid problems with filter coeffi-
cient and signal quantisation which may arise
with some standard digital filter structures.

When both the A-format and B-format FIR
filters are enabled, they are combined together
with the A-B matrix into a single four by four
convolution process. This doubles the number
of convolutions, but is both more efficient and
more accurate than using eight separate ones.

The parametric filter sections use the Mitra-
Regalia architecture.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-66

LAC07-66

3 Choice of the A-B matrix filters

During the study phase for the Tetraproc soft-
ware it became clear that the choice of the post
A-B matrix equalisation filters for a tetrahedral
mic is sort of a black art. Theoretical analysis is
possible, but due to conflicting requirements it
does not lead to an obvious best solution. The
problem gets more complicated again when the
non-ideal characteristics of real microphones, in
particular at high frequencies, and diffraction
effects are taken into account — assuming the
details of these are known at all.

The filters are necessary because at higher
frequencies the size of the microphone array be-
comes comparable to the wavelength, and the
microphones can no longer be considered to be
coincident. The result is that while a B-format
microphone has very good polar patterns at low
and medium frequencies (better than most real
omni or gradient mics), these will degrade at
higher frequencies and break down above about
10 kHz (as they do with real microphones, ex-
cept some of the very best). The frequency re-
sponse of the B-format signals at high frequen-
cies depends on the direction of the sound, and
a compromise has to be found.

A second reason why these filters are neces-
sary is to ensure that the B-format signals re-
main exactly in phase over the entire useful fre-
quency range — this phase relationship is an
essential feature of the Ambisonic system.

Considering just the theoretical response as-
suming perfect microphone capsules, there is al-
ready the choice between equalising for flat free
field response in some preferred directions (e.g.
the cardinal axes), or for flat diffuse field re-
sponse, considering signals arriving from all di-
rections.

In his famous paper [Gerzon, 1975] which
seems to be one of the few original and author-
itative publications on the subject,5 Michael
Gerzon notes that since the effective polar pat-
terns become quite complex at high frequencies,
it would be best to equalise for flat diffuse field
response, and also shows plots of the corrections
that would be required to do this. Gerzon pro-
vides design parameters for some analog filters,
but these do not match the diffuse field curves.
The filters actually used in one of the products
based on his work [Calrec Ltd., 1984] are again

5The PDF file of this paper as available from the AES
is a scanned version of the original typewritten document
and some parts of it are difficult to read. A typeset
version is available from this author on request.

different.
The theoretical curves depend on the radius

of the array, and even more strongly on the di-
rectivity of the microphone capsules used. The
latter will have some nominal value but it will in
practice not be constant over the full frequency
range. The actual values at high frequencies will
be unknown in most cases.

In the light of all this, it seems unwise to in-
clude only fixed post-matrix filters in an appli-
cation such as Tetraproc. It is for this reason
that the two sections of parametric filtering are
provided. The software package will contain a
number of parameter presets for these filters,
corresponding to the theoretical curves for a
range of array diameters and directivities, and
in many cases one of these may prove to be sat-
isfactory. But for best results the filter settings
should be derived from a calibration procedure,
as outlined in the next section.

While the parametric filter approach seems to
be the one preferred by some specialists in this
field [Lee, 2006], a rather different one was sug-
gested by Angelo Farina. He proposes to use
Kirkeby-inverted measured impulse responses
not only for equalising the individual micro-
phone capsules, but also for the the post-matrix
filters [Farina, 2006]. The Tetraproc software
also permits the use of this method by provid-
ing the post-matrix convolution step.

4 The calibration procedure

While it is possible to use Tetraproc with a de-
fault configuration for a given microphone type
(the available models are slightly different in
terms of geometry and polar patterns), best re-
sults will be obtained only if the A-B conversion
process is calibrated for each particular micro-
phone. This is because each mic capsule will
have its own small deviations from nominal sen-
sitivity, directivity and frequency response. For
a normal mic these don’t matter much, but they
become significant when the signals from a num-
ber of mics recording the same sound are com-
bined in a way that relies on cancellation, as is
the case for the first order outputs of the A-B
matrix.

The complete calibration procedure can be di-
vided into three parts.

• The most important part is the compensa-
tion for any mismatching in sensitivity and
directivity of the four capsules that make
up a tetrahedral microphone. Any errors
here will result in defective polar patterns

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-67

LAC07-67

of the virtual B-format microphones over
the entire frequency range. The compensa-
tion is done by adjusting the coefficients of
the A-B matrix.

• A second aspect is the adjustment of the
post-matrix equalisation. This EQ com-
pensates for the fact that at medium and
high frequencies the four capsules are no
longer coincident, as discussed in the pre-
vious section. In particular at higher fre-
quencies (above about 5 kHz), this involves
many unknown factors, and it will always
be a compromise between conflicting re-
quirements.

• Finally, the low frequency response of the
microphone can be adjusted. Almost all di-
rectional mics will show some sort of high-
pass response in this region. For some ap-
plications, e.g. orchestral recordings, this
should be equalised. In practice this will
vary little between mics of the same type,
so default equalisation parameters will do
in many cases.

A separate calibration application has been
developed to assist the user with this rather
complicated process. This program requires a
number of measurements as its input. For the
simplest case, when only the sensitivity and di-
rectivity compensation is performed, this in-
volves eight recordings of a test signal repro-
duced by a loudspeaker, made at intervals of 45
degrees in the horizontal plane. This is a rela-
tively simple operation that can be performed
by all users. Alternatively, it is possible to use
eight impulse responses measured using a pro-
gram such as Aliki. This procedure also re-
quires a separate omnidirectional measurement
microphone, to compensate for the frequency
response of the speaker used to reproduce the
sweep signals. If these IR are available it is
also possible to adjust the post-matrix equalis-
ers, or to use the B-format convolution. Using
the A-format convolution to equalise each cap-
sule separately requires another set of measured
impulse responses. For adjusting the low fre-
quency parametric equaliser, four recordings of
a special test signal reproduced using a small
point source speaker are required.

Some parts of the application program work
fully automatically, and others require interac-
tion with the user who is required to interpret
some results presented in a graphical format. It
is well beyond the scope of this paper to explain

the processing performed by the calibration pro-
gram in any detail. A complete description to-
gether with instructions on how to perform the
required measurements will be available in the
manual for this application.

5 Supporting the 4Mic interface

Together with the Tetramic, Core Sound also
introduces an audio interface optimised for use
with this microphone. The 4Mic interface offers
four phantom powered inputs, precisely track-
ing gain controls, and AD conversion up to 24
bit and 192 kHz. Output is via one or two
SPDIF streams. The unit can be configured
to multiplex the four channels onto one stereo
SPDIF stream at the double sample rate. The
purpose of this is to enable the use of existing
portable 2-channel recorders to capture the four
A-format signals. The resulting stereo WAVEX
file can then be converted to the required 4-
channel one by just modifying its header.

Since there seem to be few audio interfaces
offering two SPDIF inputs, it seems attractive
to use the multiplexed output format also when
recording via Tetraproc. This raises the ques-
tion of where to implement the demultiplexing.
The following have been considered:

• In the drivers. This would require
changes to the source code of all drivers
supporting and SPDIF interface, and is
therefore not a viable option.

• In libalsa. It would probably take a long
time to get this accepted into the ALSA
source tree, assuming it would be accepted
at all.6

• In a libalsa plug-in. This seems to be
impossible as the plug-in interface does not
allow for different input and output sample
rates.

• In an application. It would be possi-
ble to include the demultiplexing in e.g.
Tetraproc, but this would mean that the
entire JACK graph has to work at the
double sample rate, and the demultiplexed
channels would need to be up-sampled, re-
sulting in a useless doubling of the recorded
file sizes.

6The ALSA developers do not seem to be interested
in the problem. The author posted several requests for
information on the ALSA developers mailing list and did
not even receive a single reply.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-68

LAC07-68

• In a JACK backend. This is the solution
that was finally chosen.

The fourmic backend supplied with Tetraproc
opens the ALSA driver at twice the sample rate
and period size as seen by the JACK engine.
It demultiplexes a selected stereo pair to four
capture ports, and optionally also up-samples
up to four playback ports so they can be used
for monitoring.

There is one problem with this demultiplex-
ing. The first samples delivered by the ALSA
drivers seem to correspond to a random offset
into an SPDIF frame. So there is a one in two
chance that this is an odd offset, resulting in the
channels being swapped and two of them hav-
ing a one sample delay w.r.t. the others. The
ALSA API does not seem to provide any means
to find out the current position in an SPDIF
frame, so the only solution for this at the time
of writing is to check the channel assignments
and restart JACK if they are wrong.

6 Acknowledgements

The design of this software would not have been
possible without the generous help of the small
community of Ambisonic experts.

I would like to thank Richard Lee for shar-
ing his ideas on tetrahedral microphone align-
ment and equalisation. Also many thanks to
the members of the Sursound mailing list, in
particular Aaron Heller, Angelo Farina, Dave
Malham, David McGriffy and Eric Benjamin,
and to Len Moskowitz of Core Sound.

References

Fons Adriaensen. 2006. Near field filters
for higher order Ambisonics. Available from
<http://www.kokkinizita.net/linuxaudio>.

Calrec Ltd. 1984. Technical manual for the
Mk4 soundfield microphone.

Angelo Farina. 2006. A-format to B-format
conversion.
<http://pcfarina.eng.unipr.it/Public/B-
format/A2B-conversion/A2B.htm>.

Michael Gerzon. 1975. The design of precisely
coincident microphone arrays for stereo and
surround sound. 50th Audio Engineering So-
ciety Conference, (AES preprint 8083L20).

Richard Lee. 2006. Sound field alignment and
EQ. Private communication.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-69

LAC07-69

Audio Metering and Linux

Andrés CABRERA
Departamento de Música, Pontificia Universidad Javeriana de Colombia

Carrera 7 No. 40 - 62
Bogotá,

Colombia
andres@geminiflux.com

Abstract
This documents presents an overview of current au-
dio level and loudness measuring techniques and con-
cepts, in the context of musical and post-production
environments. It proposes a metering applica-
tion, which is currently in early development, which
should address metering needs currently unsatisfied
in Linux.

Keywords
Audio level metering, Peak Meter, RMS Meter,
PPM Meter,Equal loudness

1 Introduction

Sound is energy propagating as compression and
rarefaction through a medium, but when cap-
tured, or artificially generated it is represented
as a variation in voltage (or a representation
of this variation as digital samples, grooves on
a record or variations in tape magnetization).
The ear is a sound pressure sensor which to-
gether with the brain produce the experience of
hearing. There is a technical and practical need
to quantify sound pressure levels and perceived
loudness, which is done with sound level and
loudness meters. A particular setting for the
usage of audio metering presents itself in the
production of music and sound for audiovisual
productions.

1.1 Decibels
The ear senses sound pressure non-linearly, so
the unit developed to quantify audio level,
called decibel (dB), is logarithmic, and has been
defined as:

L1 = 10log10
W1

W2
(1)

Where the value in decibels of power W1 is L1.
Decibels are always expressed in relation to a
reference power W2. This definition can be used
to calculate decibels when the measurement is
in acoustic power or intensity, or electric power.
This is not practical, since most often we mea-
sure air pressure, voltages or current. From

their relation to power, we can express equation
(1) as:

Lp = 10log10
p2
1

p2
2

= 20log10
p1

p2
(2)

The standard reference pressure for sound is 20
µPa. If this reference level is used to measure
sound pressure level (SPL) in the air, the result
is expressed as dBSPL. Decibels in reference to
voltage level are also indicated with subscripts,
like dBu for a reference level of 0.775 V olts.
Equation (2) can be used to calculate decibels
in full scale (dBFS) for PCM digital systems,
where the absolute maximum sample value cor-
responds to 0dBFS , and amplitudes are ex-
pressed as negative numbers below it. When
signed integer samples (8-bit short, 16-bit int
or 24-bit long types) are used, the following for-
mula can be used to calculate full-scale decibels:

LFS = 20
lnAmax

ln10
− 20

ln | Ai |
ln10

= 20
ln(Amax/ | Ai |)

ln10
| Ai |> 0

= −∞ Ai = 0 (3)

Where the value in full-scale decibels LFS for
absolute amplitude Ai is calculated as the dif-
ference with the decibel value for the greatest
possible sample value Amax in a given bit preci-
sion. The reference value is the minimum sam-
ple value available (i.e. 1) and natural logarithm
is used since it is often more practical in com-
puter systems to use them to take advantage of
the exp() function from the standard math.h li-
brary, when calculating amplitude from dBFS

values.
The value of Amax is:

Amax = 2n−1 (4)

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-70

LAC07-70

Where n is the integer sample bit depth, and 1
is subtracted from the exponent because sam-
ples values oscillate around a center, so the to-
tal number of values must be divided by two
to represent positive and negative displacement
(when using signed data types).
When using floating point samples, there is no
set reference level, but when using the usual
range from 1 to -1, the following can be used
to calculate dBFS :

LFS = 20
ln(1/ | Af |)

ln10

LFS = −20
ln | Af |

ln10
| Af |> 0

= −∞ Af = 0 (5)

Note that the absolute value of the amplitude
must be used in both cases.

1.2 Root Mean Square
The previous method of calculating decibels
yields “instantaneous” values reflecting a tem-
porary state that doesn’t represent actual en-
ergy in an oscillation. For this reason, sound
volume (and voltage average) is sometimes cal-
culated using Root Mean Square (RMS), which
presents an average that better describes an os-
cillating signal’s level. The RMS value is always
calculated for a certain period of time between
T1 and T2 and is defined as:

frms =

√
1

T2 − T1

∫ T2

T1

[f(t)]2 dt (6)

For discrete values, like digital PCM samples, a
signal’s RMS value for a group of N samples is:

xrms =

√√√√ 1
N

n∑
k=1

x2
k (7)

1.3 Loudness
There is a fundamental difference between per-
ceived loudness and nominal audio levels. Audio
with a high level might sound softer than one
with lower levels. There are several reasons for
this.
It is well known that the human ear perceives
loudness as a function of amplitude and fre-
quency. The recent ISO 226:2003 standard [1]
presents a revision of the well known Robinson-
Dadson (in turn based on the Fletcher-Munson)
curves. It defines a set of equal loudness contour
lines on a frequency vs. sound-pressure level

graph, relating sound pressure level and fre-
quency to subjective human perception of loud-
ness. The curves show that the human ear is
most sensitive to frequencies between 3000 and
5000 Hz, and that at higher sound pressures,
the difference in sensitivity is reduced, making
the curves flatter.

It has also been shown that the ear perceives
short transients softer than a longer equivalent
sound [2]. Short transients might report a high
level on a peak meter, but not be perceived as
loud by a listener. This effect is significant for
sounds shorter than 100ms, and becomes more
evident for shorter sounds.

Another important concept is long-term loud-
ness . This is an average loudness over a longer
period of time (usually a complete program)
which quantifies perceived loudness, to be able
to compare and match with other material [3].

2 Uses of Level Metering

There are three uses for level metering:

• To keep levels within equipment limits

• To assist subjective judgement of levels

• To comply with delivery or industry stan-
dards

Controlling signal levels is important in all as-
pects of audio production and delivery, from
recording to mastering. Audio equipment,
whether analogue or digital, has a threshold
above which, audio isn’t accurately represented.
If this threshold is exceeded, distortion occurs.
This is sometimes used as an effect, but is un-
desirable in most cases. If a signal level is too
low it might be degraded by a device’s own
noise floor. Metering guarantees a clean sig-
nal path, helping the musician or engineer stay
within equipment limits. For this application,
the best suited meters are ones that can show
potential problems clearly. Meters with a fast
response, that can clearly show peaks, are the
most suited.

Meters can be helpful as an objective means
of measuring audio, when deciding relative mix
levels, or to help achieve consistent loudness be-
tween different sources. Even though the ear
should be the final judge, meters can help a tired
ear, or an operator in an unusual or inadequate
environment to better judge audio levels.

When delivering content for broadcast or
mastering, it is ideal and sometimes compul-
sory to comply with certain standards, which

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-71

LAC07-71

vary greatly depending on the situation and
destination. Adequate metering will help au-
dio material pass quality control standards and
delivery requirements. Adequate metering to-
gether with proper speaker calibration will as-
sist in producing adequately loud masters, while
respecting standard program loudness. Film
sound has had a “standard” calibration setting
of 85dBSPL(C) for 0V U [4]. This, though not re-
ally a standard, is a respected practice -mostly-
throughout the industry. This technique is
explored for other settings in Bob Katz’s K-
system [5], which is a combination of meter-
ing/calibration guidelines.

3 Techniques for measuring audio

Throughout the history of audio technology, dif-
ferent techniques have been used to measure au-
dio levels. Most of these techniques are deeply
related to the medium they measure, and vast
differences can be seen for instance in meters
targeted at analogue and digital systems. Sev-
eral techniques have been developed to imitate
subjective perception of loudness.

3.1 VU
Originally developed in 1939, the VU (Volume
unit) meter is the oldest type of metering still
in usage, and consists of power measurements
with time averaging (sometimes referred to as
the meter’s ballistics). This type of meter is
calibrated so that 0 Volume Units represent 1
milliwatt of sine-wave power at 1000 cycles per
second (a 1000 Hz tone at +4dBu) [6]. A VU
meter has rise and fall times of 300 ms, some-
times called the time integration constant. This
means that the VU should take 300ms to reach
99% of the target voltage value. The VU meter
is not particularly well suited to detect problem-
atic peaks, or to measure music loudness. Still,
it can be useful, as many analogue consoles (par-
ticularly low and mid-range studio consoles)
provide little headroom above 0VU and pro-
duce audible distortion even for slight peaks
above 0VU. Although today there are better
systems to measure speech loudness (See section
3.4) and detect problematic peaks, VU meters
are still ubiquitous, specially in analogue equip-
ment, and their measurements are still used for
delivery standards in certain cases.

3.2 PPM
To address some of the short-comings of VU me-
ters, Peak Programme Meters (PPM) were de-
veloped and standardized. These meters, some-

times called quasi-peak meters, are also time av-
eraged RMS meters, but have a much faster at-
tack than VU meters, therefore showing poten-
tial peak problems more accurately. They don’t
have instantaneous response, but they were de-
signed according to the ear’s ability to detect
short distortion. There are several types of
PPM meters1 [7] :

Nordic These meters have an attack time of
5ms (for 77.77% target level) and a decay
time of 1.5 seconds for 20dB. The scale
shows values from -36 to +9.

BBC/EBU These meters have an attack time
of 10± 2ms (for 77.77% target level) and a
decay time of 2.8±0.3 seconds in fast mode
and 3.8± 0.5 for 24 dB. The difference be-
tween the BBC and EBU standard resides
only in the scale used. The BBC uses a
scale from 1 to 7 where 4 equals 0dB u, 6
being considered the maximum acceptable
peak, and EBU uses a scale from -12 to
+12.

PPM meters usually report around 4dB higher
than VU meters. These meters are useful to
make sure equipment doesn’t generate any audi-
ble distortion, but still have a slow decay to ap-
proximate perceived loudness. They are widely
used (specially in Europe) for broadcast deliv-
ery standards. PPM meters are technical tools
and don’t seek to measure loudness. VU meters
are typically better loudness meters.

3.3 Sample Peak Meters

Digital audio equipment and software typically
implement sample peak meters which show the
maximum sample received. This type of me-
ter is simple to implement as you only need to
check if the new sample is greater than the cur-
rent meter position and if not, divide the me-
ter value by some factor to generate a smooth
movement. This “fall-off” improves the read-
ability of the meter (otherwise very short peaks
might be too short for the eye), while making
sure all the sample peaks are reported.

These meters can miss inter-sample peaks
that may appear on the digital-to-analog con-
version. Interpolated upsampling can increase
the precision of this meters [8].

1DIN 45406 specifies another type of fast PPM me-
tering.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-72

LAC07-72

3.4 Equivalent Continuous Sound Level
Measurement

Some studies [9] have identified Equivalent
Continuous Sound Level measurements (imple-
mented mostly on sound level meters rather
than audio equipment) as the most accurate
method to determine perceived loudness for
long term measurements2. Equivalent Continu-
ous Sound Level has been defined as [10]:

LAeqT = 20log10


√

(1/T)
∫ t
t−T p2

A(ξ)dξ

p0

 (8)

Equal Loudness is the value in decibels of the
RMS value for a time period T of an A-weighted
(see section 4) audio signal with pressure p, ref-
erenced to pressure p0

3. This can be expressed
for N number of samples in a digital system as:

LAeqT = 20log10


√

(1/N)
n∑

k=1
x2

k

p0

 (9)

LAeqT measurement with a few additions has
been adopted by Dolby for their flagship broad-
cast meter, the LM100 [11]. This device is
slowly gaining ground (at least in the USA) and
becoming a standard for audio delivery require-
ments 4.

3.5 Other loudness calculation
techniques

Different manufacturers and standards insti-
tutes have developed other loudness measure-
ment techniques. An interesting example is
the Zwicker Loudness model (DIN 45631/ISO
532B), which performs separate measurements
for different spectral bands. Also noteworthy
are the LARM and HEIMDAL algorithms from
TC electronics [12], which performed exception-
ally well in two separate studies. Neither of

2The study has been contested by both TC Electron-
ics and Dolby Labs according to the article “Real-time
loudness control for broadcast” by Thomas Lund, found
at: http://www.broadcastpapers.com/whitepapers/

Realtime-Loudness-Control-For-
Broadcast.cfm?objid=

32&pid=35&fromCategory=26.
3ξ is a dummy variable of time integration
4LAeqT measurements are suggested as the way to

set the dialnorm parameter in ATSC Digital Television
Standard A/53 Revision E. The DVB Project has not
set any audio standards yet, but also uses AC-3 for audio
encoding.

these has achieved widespread usage in broad-
cast or music production.

4 Weighting

To compensate for the variation in detected
loudness with respect to frequency and pres-
sure (See section 1.3), several “weighting” net-
works have been standardized. Weighting net-
works are filter networks that approximate ear
response characteristics in a simple and efficient
way. There are several filter networks in use and
study today in audio loudness metering:

A, B and C Weighting These weightings,
designed to be used for low, medium
and high pressure levels respectively,
implement low pass and high pass filters,
leaving a flat middle section [7]. They are
frequently found on SPL meters and A-
weighting is the basis for Equal Loudness
level calculations (LAeqT).

M Weighting This weighing, detailed in ITU-
R 468 (previously CCIR 468), has been
dubbed “M” for Movie, since it has been
used to compare loudness between differ-
ent sections of film, or with movie trailers.

RLB and R2LB Weighting The Revised
Low-frequency B-weightings [13] have
the closest approximation to subjective
loudness among the weightings according
to some studies [12]. This weighting has
been proposed in ITU-R BS.1770 as the
basis of an equal loudness measurement
(Leq(RLB)).

There’s still no concensus on the most ap-
propriate method or weighting to evaluate loud-
ness. Some techniques appear better than other
for certain material or listening conditions, and
experimental data is sometimes conflicting.

5 Software Metering

Metering, though traditionally implemented in
hardware devices, has seen PC software counter-
parts. Apart from meters available within audio
applications, there are many software packages
dedicated to level and loudness metering, how-
ever few of them are open source, even though
some are freeware. Worthy of notice are:

SpectraFoo This is one of the most complete
metering tools available. It is a standalone
application or TDM/MAS plugin for Pro-
Tools TDM and Digital Performer. Apart

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-73

LAC07-73

from a complete array of metering tools,
with logging, it includes spectral, phase
and other types of analysis. It can work
in real time or from a file. Only for Mac
OS [14].

Signal Tools A ProTools plugin capable of
long-term LAeqT measurements on the
TDM version [15].

Pinguin Audio Meter Pro Only for Win-
dows, provides K-system and PPM meter-
ing [16].

6 Metering on Linux

Audio software typically provides some form of
sample peak metering. Most Linux programs
follow this practice. Multitrack environments
like Ardour and Rosegarden, and audio editors
like Rezound and Audacity provide the usual
peak meter strips for each channel. Other soft-
ware like Pure Data, Csound or Ecasound can
provide text information about sample peaks.
Currently the most advanced option for audio
level metering on Linux is Steve Harris’ Meter-
bridge package [17]. This package contains sam-
ple peak, PPM and VU metering (apart from
other stereo metering tools). It is a simple but
effective and visually appealing package. How-
ever, it is designed to be used as a real-time
visual aid only.

6.1 What’s missing
The available metering options are probably ad-
equate for most music production projects, but
for serious post production work, particularly
with the advent of digital television standards,
and for audio quality control and analysis it be-
comes important to have other standard compli-
ant metering options like LAeqT and Leq(RLB),
and also options for logging and for calculating
long-term loudness.

Logging in this context can take two main
forms:

• Graphical or text log of the measured levels
for regular time periods

• Histogram of density of occurrence of levels

Implementing loudness measuring algorithms
as a library might prove useful for other pro-
grams like media players, to help achieve good
quality automatic loudness matching. Other
operating systems like Windows Vista have im-
plemented similar schemes [18], but no techni-
cal details are available, though it is likely, since

there is no mention of patented technology, that
some known algorithm is used.

7 PostQC

A graphical metering tool called PostQC is cur-
rently under development by the author, which
will support many of the standard metering op-
tions mentioned in this article, and will imple-
ment needed logging and long-term measure-
ments. It is still in early development, al-
though some features are already working. Fig-
ure 1 shows a screenshot of the current state
of PostQC. It can be seen that sample peak
and LAeqT metering has been implemented and
logging can be shown in a somewhat primitive
histogram form. Level threshold overshoot is
logged showing the channel in which the over-
shoot occurred, the duration and the amount
of overshoot. Most of the work has been done
and tested for file input, but the jack real-time
portion is almost ready, as all the jack engine
is done, and all that needs to be done is the
jack callback function, which is a slight varia-
tion to the file block process function. PostQC
has been programmed in C++ using QT 3.3
and currently depends on libsndfile 1.0.17 and
jack. It is to be publicly available soon under
the GPL.

Some of the goals of the project include:

• Real-time (Jack) and Offline Audio File
metering

• Support for many types of standard level
and loudness metering

• Real-time graphical meters

• Upsampled sample peak metering

• Written report of measured data

• Easy usage and useful in many contexts

• Lashified

• Emulation of LM100 dialogue detection by
using a clean dialogue/narration signal as
gate trigger to turn on and off long-term
averaging of loudness.

• Level threshold overshoot report with oc-
currence time

• Level histograms

• Graphical and text level and loudness logs

• Make sure all meters adhere to standards

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-74

LAC07-74

Figure 1: Screenshot of current development
version of PostQC

7.1 Other relevant audio measurements
Other aspects that might be useful to deter-
mine audio quality apart from metering, that
could be included, include real bit depth meter-
ing, phase correlation and distortion (clipping)
detection.

8 Conclusions

Level metering is an important part of the tech-
nical and subjective production of audio mate-
rial. Linux is not far behind from other plat-
forms in this respect, but an additional tool
like the one proposed will certainly make using
Linux for metering very appealing.

References

[1] International Organization for Standard-
ization. ISO/IEC 226:2003: Acoustics
- Normal equal-loudness-level contours,
2003.

[2] J. Alton Everest. The Master Handbook of
Acoustics, 3rd. Edition. TAB Books, 1994.

[3] Earl Vickers. Automatic long-term loud-
ness and dynamics matching. In Proc. of
the AES 111th Convention, 2001.

[4] Ioan Allen. Are movies too loud?
www.dolby.com/assets/pdf/tech library/
54 Moviestooloud.pdf.

[5] Bob Katz. Integrated approach to me-
tering, monitoring, and leveling practices,
part 1: Two-channel metering. Journal of
AES, 48(9):800–809, 2000.

[6] International Electrotechnical Commis-
sion. IEC 60268-17: Sound system equip-
ment. Part 17: Standard volume indica-
tors, 1990.

[7] International Electrotechnical Commis-
sion. IEC 60268-10: Sound system equip-
ment - Part 10: Peak programme level me-
ters, 1991.

[8] Audio Engineering Society. Standards
project report - Considerations for accu-
rate peak metering of digital audio signals.
AES-R7-2006, 2006.

[9] International Telecommunications Union.
Audio metering characteristics suit-
able for use in digital sound produc-
tion.Recommendation SG06.2. SRG-3
Status Report (2). Document 6P/145-E,
2002.

[10] International Electrotechnical Commis-
sion. IEC 60268-17: Electroacoustics -
Sound Level Meters - Part 1: Specifica-
tions, 2003.

[11] Dolby laboratories, inc. lm100 broadcast
level meter. www.dolby.com/professional/
pro audio engineering/lm100 01.html.

[12] E. Skovenborg and S. H. Nielsen. Evalua-
tion of different loudness models with music
and speech material. In Proc. of the AES
117th Convention, 2004.

[13] G.A. Soulodre and S.G. Norcross. Objec-
tive measures of loudness. In Proc. of the
AES 115th Convention, 2003.

[14] Metric Halo. Spectrafoo complete.
www.mhlabs.com/metric halo/
products/foo/.

[15] Digidesign. Signal tools.
www.digidesign.com.

[16] Pinguin audio meter - pro.
http://www.masterpinguin.de/.

[17] Steve Harris. Meterbridge.
www.plugin.co.uk/meterbridge.

[18] Nick White. Audio innovations in win-
dows vista. windowsvistablog.com/blogs/
windowsvista/articles/450038.aspx.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-75

LAC07-75

Renewed ar
hite
ture of the sWONDER software for Wave FieldSynthesis on large s
ale systemsMarije A.J. Baalman and Torben Hohn and Simon S
hampijer and Thilo Ko
hInstitute for Audio Communi
ation (Sekr. EN8)Einsteinufer 1710587 BerlinGermanybaalman�kgw.tu-berlin.de and torbenh�gmx.de and simon�s
hampijer.de and tiko�admin-box.
omAbstra
tFor large Wave Field Synthesis (WFS) systems mul-tiple
omputers are needed for rendering to managethe ne
essary amount of audio
hannels. To makethis possible with the sWONDER software, the soft-ware was
ompletely restru
tured and divided intoseveral separate programs whi
h
an run on multi-ple
omputers,
ommuni
ating with ea
h other viaOpenSoundControl. This paper des
ribes the newstru
ture of the program, as well as several imple-mentation details of the s
heduling unit and audiorendering unit.KeywordsAuralisation, Wave Field Synthesis, Convolution1 Introdu
tionWave Field Synthesis (WFS) is a method forsound spatialisation. Its main advantage is thatit has no sweet spot, but instead a large listen-ing area, making the te
hnology attra
tive for
on
ert situations.The main prin
iple of WFS is illustrated in�gure 1. A wave �eld
an be synthesized by asuperposition of wave �elds
aused by a lot ofsmall se
ondary sour
es, provided you
al
ulatethe right delays and amplitude fa
tors for thesour
e signal for ea
h se
ondary sour
e.For large WFS systems the
al
ulation ofthe audio signals for ea
h loudspeaker
annotbe done on just one
omputer, due to limita-tions of the CPU-power and hardware
onsider-ations, su
h as the number of output
hannels.Thus, a
luster of
omputers is ne
essary, andthere is a need to syn
hronise these
al
ulations.The previous versions of sWONDER [1; 2℄ weremonolithi
 programs, whi
h did not provide thisoption. This paper des
ribes a new stru
turefor the sWONDER program, whi
h enables thesoftware to
ontrol large s
ale WFS systems.2 Hardware setupIn 2006/2007, the TU Berlin laun
hed a proje
tto equip one of the le
ture halls with a large

(a) The Huygens'Prin
iple (b) Wave FieldSynthesisFigure 1: From the Huygen's Prin
iple to WaveField SynthesisWFS system[3; 4℄, of in total 840 loudspeaker
hannels, both for sound reinfor
ement duringthe regular le
tures, as well as to have a larges
ale WFS system for both s
ienti�
 and artisti
resear
h purposes. The loudspeakers are builtinto loudspeaker panels[5℄, ea
h providing 8 au-dio
hannels, whi
h are fed with an ADAT sig-nal. Ea
h panel additionally has 2 larger speak-ers whi
h emit the low-pass �ltered sum of the4
hannels above it.To drive these speakers a
luster of 15 Linux
omputers is used. Ea
h
omputer
omputesthe loudspeaker signals for 56 loudspeaker
han-nels. Ea
h
omputer is equipped with an RMEHDSP MADI[6℄ sound
ard. Ea
h MADI out-put is
onne
ted to an MADI to ADAT bridge(RME ADI648[6℄), whi
h is mounted inside thewall, so that the ADAT
ables
an be kept short(up to 10 meters). The input to the system ismultiplexed to ea
h MADI sound
ard with theuse of MADI bridges (RME MADI Bridge[6℄).The
luster has two networks, one for theOSC[7℄
ommuni
ation, and one for data-transfer. Separating these network fun
tions,

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-76

LAC07-76

User interfa
eControl PCethernet Mixing desk Mi
rophoneStereo inputDVD inputMADI bridgemadi
Render PC MADI to ADATmadi loudspeaker panelloudspeaker panelloudspeaker paneladatRender PC MADI to ADATmadi loudspeaker panelloudspeaker panelloudspeaker paneladat
Render PC

ethernet
MADI to ADATmadi loudspeaker panelloudspeaker panelloudspeaker paneladat

madi

luster

Figure 2: S
hemati
 overview of the hardware setup for the WFS system in the le
ture hall of theTU Berlin.ensures that the OSC
ommuni
ation is fast.The master ma
hine (Control PC) a
ts as abridge to the outside world and is the only
om-puter that is
onne
ted to an external network.A general overview of the hardware setup isgiven in �gure 2.The sWONDER software was adapted to
on-trol this system, in su
h a way, that it
an alsobe used by similar but not ne
essarily identi
alsystems.3 Software ar
hite
tureThe software is divided in several parts:
• a graphi
al user interfa
e,
• a s
ore player/re
order,
• a
ontrol unit,
• a real-time render unit,
• an o�ine render unit
• and a
ommon library for general fun
tions.Communi
ation between the di�erent parts ofthe program is based on the OSC proto
ol[7℄.Figure 3 gives an overview of the program partsand their
ommuni
ation.

3.1 Graphi
al User Interfa
eThe graphi
al user interfa
e (GUI) provides di-alogs for loudspeaker array
on�guration, gridpoint
on�guration (possible sour
e positionsand their
hara
teristi
s),
omposition and areal time
ontrol interfa
e. In the real time
ontrol interfa
e, it is possible to move sour
esaround with the mouse, as well as to store dif-ferent s
enes, between whi
h
an be swit
hed.The GUI is
urrently still in development, andwill be based on the
urrent GUI [1; 2℄. It willbe ported to Qt4 [8℄, its usability will be im-proved, and we are working on ways to visualisethe timeline of two-dimensional movement.3.2 S
ore player/re
orderThe system
an take any kind of audio in-put, so that the user
an use the audio player(s)he prefers to play the audio. The s
oreplayer/re
order is used to syn
hronise with anaudio player and re
ord and playba
k sour
emovements. Syn
hronisation is based on MTC(Midi Time Code), as this is a
lo
k formatwhi
h many DAW's support.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-77

LAC07-77

User interfa
e S
ore playerControl unitRender unit Render unit
N

O�ine render unit O�ine render unit
N

OSCOSC OSC OSC OSCOSC
Figure 3: S
hemati
 overview of the di�erent parts of the software sWONDER. The
ontrol unit
an
ommuni
ate with an arbitrary number (N) of realtime and o�ine renderers.3.3 O�ine rendererFor room simulations or for
omplex soundsour
es [9℄, the
al
ulations for the impulse re-sponses for ea
h speaker
an take quite long, and
annot be performed in realtime. For this pur-pose, there will be an o�ine render unit, whi
htakes
are of all these
al
ulations, utilising thebene�t from parallel exe
ution on a
luster.3.4 Control unitThe
ontrol unit a
ts as a bridge between theuser interfa
e and the audio renderers; it also
ommuni
ates with the s
ore player/re
order.Though the sWONDER suite of programs willalso supply a graphi
al user interfa
e, any otherprogram that
an send (and re
eive) OSC
anbe used to
ontrol the system. The user inter-fa
e only needs to
ommuni
ate with the
on-trol unit, and does not need to know anythingabout the audio rendering details; the
ontrolunit takes
are of that.3.5 Rendering engineThe real-time render unit is responsible for thea
tual audio signal pro
essing. It has severalways to deal with the audio streams: playba
kof dire
t sound, utilising weighted delay lines,
onvolution of the input sound for early re�e
-tions, and
onvolution of the input sound for re-verb followed by a weighted delay lines to
reateplane waves with the reverb tail. S
hemati
allythis is shown in �gure 4.The rendering engine
onsists of two parts:twonder for the delay line implementation, andfwonder for the
onvolution. Both programs are
ontrolled by OSC; audio input and output hasJACK as the audio ba
kend.

4 Dire
t sound4.1 Delay linesThe dire
t sound of a WFS synthesized sour
e,
onsists of the delayed and attenuated sour
esignal. This delay and attenuation is unique forea
h speaker. The dire
t sound of the sour
eis rendered in the time-domain by the twonderpart of the program.To initialise the delay lines, the length of thedelay lines need to be determined. The length isrelated to the largest distan
e a sour
e will haveto a speaker. Also, it needs to be de
ided howfar in front of the speakers we want to movea sour
e, as this determines the needed delayo�set. If no fo
used sour
es are needed, we
anset the delay o�set to a smaller number, thusintrodu
ing less laten
y in the system. Theseoptions
an be set per sour
e.4.2 Moving sour
esWhen a sour
e moves, the delay time will
hange
ontinuously, as well as the volume fa
tor. Intwonder the delay time for the start and theend of the blo
k is
al
ulated (thus these area kind of an
hor points), and the samples in-side the blo
k are resampled. This is
lari�edin �gure 5. If the delay time is 20 samples atthe start of the blo
k, and 30 samples at theend of the blo
k, we need to output 10 sam-ples less than the a
tual blo
k size N . Thus,we need to resample N − 10 to N samples. Be-
ause of the CPU restraints (we need to do thisfor a lot of delaylines in realtime), we need ane�
ient resampling algorithm. We
hose linearinterpolated resampling. The implementation isa modi�ed version of Bresenham's line drawing

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-78

LAC07-78

sound inputper sour
e dire
t soundweighted delay linestwonder +early re�e
tionsshort
onvolutionfwonderreverberationslong
onvolutionfwonder plane wavedelay linestwonder8×

outputper speaker

Figure 4: An overview of the audio signal pro
essing by the real-time render unit
N + m downN upN − lFigure 5: Illustration of the resampling problem:if the delay time gets longer within a
ertainblo
k, we need to output more samples than wehave available in our bu�er. Thus, we need toupsample the avaible samples. If the delay timegets shorter, we need to output less samples,than we have available in our bu�er and we needto downsample them.algorithm [10℄, whi
h eliminates the need to
asta �oat to an integer in the innner loop.Moving a sour
e in this way,
reates a Dopplere�e
t, whi
h will be audible if the movement isvery fast. In some
ases it is not desired to heara Doppler e�e
t, so another option for move-ment is provided, whi
h we have
alled a fadejump. Using this option, the illusion of move-ment is
reated by fading the sour
e out on oneposition, while fading it in on the next position.The update frequen
y for this
an be set by theuser.4.3 Plane wavesPlane waves are a
hieved by just varying the de-lay times for ea
h speaker, based on the anglethe wave front makes with the speaker array. Adelay o�set is
reated by giving the plane wavea point of origin in spa
e, in addition to its di-re
tion. This approa
h also makes it possible toswit
h from a point sour
e to a plane wave andvi
e versa.

Plane waves
an be used to simulate sour
esthat are very far away and only have a dire
tion,or to simulate re�e
tions, as will des
ribed in thenext se
tion.5 Room simulationRoom simulation is a
hieved by adding re�e
-tions to the dire
t sound. This
an be a
hievedin several ways: (1) in
lusion of a �rst re�e
tionin the delay line, (2) doing a short
onvolutionfor early re�e
tions for ea
h speaker with o�ine
al
ulated impulse responses (IRs) and (3) doinga
onvolution with a longer impulse response,the result of whi
h will be played ba
k usingplane waves.The �rst option is in development. In thisoption also a �lter on the re�e
ted sound
an bein
luded, provided the �lter
an be
reated with
a. 8 FIR taps.The se
ond and third option are possible al-ready, though the o�ine renderer to
al
ulatethe early re�e
tion impulse responses is notready yet. Alternately, other methods
ould beused to
al
ulate the early re�e
tion IRs, su
has an old version of sWONDER, or using anapproa
h based on measurements su
h as de-s
ribed in [11; 12; 13℄Ad 2: The impulse responses are unique toea
h sour
e position and speaker. Thus for ea
hspeaker a
onvolution needs to be made. Thisoption is CPU-intensive, and requires all of theimpulse responses to be loaded into memory. In[14℄ resear
h is presented from whi
h
an be
on-
luded how
losely gridpoints need to be spa
edto ensure per
eptual
onsisten
y of the wave�eld, for a spe
i�
 setup (depending on the di-mensions of the virtual room, as well as the size

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-79

LAC07-79

of the desired listening area).Ad 3: resear
h at the TU Delft has provedthat using 8 plane waves (at 45 degrees inter-val dire
tions) is su�
ient to
reate a realisti
reverberation[15℄.5.1 ConvolutionThe fwonder program implements a fast
onvo-lution from multiple inputs to (even more) mul-tiple outputs. It uses the same
omplex multi-pli
ation method as BruteFIR [16℄. Instead ofextending BruteFIR we rewrote a
onvolutionengine from s
rat
h, be
ause this was
onsid-ered faster than extending BruteFIR, due to thela
k of transparen
y and do
umentation of theBruteFIR
ode. The other available solutionswere not written in C++ or tied to SuperCol-lider [17; 18℄, whi
h would have slowed down de-velopment also. So we de
ided to reimplementthe algorithm, while learning from the others.5.2 IR
a
hingWhen a sour
e is moving, we need to
hange theimpulse responses being used. Be
ause the setof impulse responses does not �t into memory,a
a
he stru
ture needs to manage the loadingof the impulse responses from disk.This problem is solved as follows: when theposition of a sour
e
hanges the UI sends the ab-solute position in meter to the
ontrol unit. The
ontrol unit sends the new position to twonder,and simultaneously
al
ulates the
orresponding(
losest) grid position for whi
h an early re�e
-tion impulse response is available, and sends thisinformation to the render unit. The render unitthen swit
hes the impulse responses used in the
onvolution to the new ones. Crossfading is usedto redu
e the artefa
ts of this pro
ess.Be
ause the loading of new impulse responsesis a task that takes some time to
omplete, itshould happen before an event a
tually o

ursif possible. In real-time mode we do not knowin advan
e what parameters of whi
h sour
e will
hange next. As a solution the grid of points forwhi
h IRs are
al
ulated is divided in an
horpoints and normal points. An
hor points arepoints whose IRs are always stored in memory.When a sour
e moves to a new lo
ation, �rstthe IR of the an
hor point is used, and then thesurrounding points are loaded into memory, sothat
hanges to lo
ations nearby
an be made inreal-time (see �gure 6). When there is a s
ore,we do know whi
h IRs are needed in the future,and we
an determine the needed IRs in time,as shown in �gure 7.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Figure 6: Loading grid point impulse responsesinto
a
he. The bla
k points are the an
horpoints and
orrespond to impulse responses thatare always loaded in memory. The red (darkestgrey) point indi
ates the grid point used for the
urrent position, the orange (grey) points theone for whi
h the IRs are
urrently loaded inmemory. The light grey points are the availablepoints.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b b b b

b

b

bbb

b

b

b

b

b

b

Figure 7: Loading grid point impulse responsesinto
a
he while playing a s
ore. As we know thefuture lo
ations of the sour
e, we
an preloadthe IRs that
orrespond pre
isely to the soundpath.The
ontrol unit takes
are of this s
hedulingof loading and unloading of IRs and sends
om-mands to the render units to perform this (i.e.the render unit is 'stupid' and just follows theorders of the
ontrol unit).5.3 Cal
ulating the IRsThe IRs as des
ribed above, will need to be
al
ulated beforehand with the o�ine renderer.This is handled as follows: in the UI the user

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-80

LAC07-80

de�nes a grid of points and virtual room dimen-sions. Then he sends a message to the
ontrolunit to start the
al
ulation. The
ontrol unitthen
ommuni
ates with all the o�ine render-ers that are running, to perform this task, andsends a message ba
k to the UI when the taskis
ompleted. Then the
al
ulated IRs
an beused in realtime.6 Time and syn
hronisationThere are several
on
epts of time within thesystem: the user interfa
e
an send messages,whi
h have to be exe
uted now and have a
er-tain duration; or it
an send messages whi
hhave to be exe
uted at a
ertain time from nowand have a
ertain duration.The s
ore player/re
order has to deal withboth MTC and syn
hronise itself to that
lo
k,as well as
ommuni
ate to the
ontrol unit, justlike other user interfa
es.All
ommuni
ation from the user interfa
e tothe
ontrol unit about time, is in se
onds. Asthe renderers need to be syn
hronised with sam-ple a

ura
y, the
ontrol unit translates the timein se
onds to frame time. The audio
lo
k isused as the time referen
e. This
lo
k is reliable,has got the desired granularity and is present onea
h render unit and the
ontrol unit. The au-dio devi
es in the units are fed with a MADIsignal in
luding a word
lo
k signal. Be
ausethe audio links are digital, a sawtooth generatedat the
ontrol node, will be su�
ient to extra
tthe initial syn
hronisation position from the au-dio signal. When initial syn
hronisation is done,syn
 will be maintained by the word
lo
k syn
.This leads to a system with one
entral
lo
kand avoids the need for
lo
k skew
ompensationwhi
h is needed when having multiple
lo
ks.As an example we
onsider the task of
hang-ing the position of a sour
e. This informationis sent from the UI to the
ontrol unit wherea timestamp for this event is generated. Sin
ethe
ontrol unit has the information about thea
tual time in samples the messages will bestamped with this time referen
e and send tothe render unit.Both the
ontrol unit and the render unit
andeal with interpolation over time, i.e. it is pos-sible to send the
ontrol unit a message to movea sour
e from one position to another with a
ertain duration of the movement. The
ontrolunit will pass on this duration to twonder, whi
hthen interpolates the movement and
al
ulatesthe positions (and thus the delays) at the end

of ea
h blo
k, and
reates the movement. The
ontrol unit will also
al
ulate the intermediatepositions on the grid, and ensure that the IRs forthe intermediate points are preloaded by fwon-der and the IRs needed for the
urrent positionare swit
hed to in time.7 File formatsFor
on�guration of the system and
reating aproje
t with the system, several �les are neededto store the relevant data.It was
hosen to use XML for the format forstoring this data, as it is easily extendible in
aseof need.There are �les for:Con�guration This
ontains the data aboutthe rendering units: the network setup andthe speaker setup.Proje
t This
ontains the general settings fora proje
t, su
h as how many sour
es areused and the
hara
teristi
s of ea
h sour
es.It
an also
ontain a s
ore, and settingsfor di�erent s
enes (stati

onstellationsof sour
es, between whi
h the user
answit
h).Grid This
ontains the information about thegrid points used for early re�e
tion
al
ula-tion, as well as information about the im-pulse responses (path and format in whi
hthey are stored).As a basis for the proje
t �le format we usedthe XML-format for 3D audio as des
ribed in[19℄. Currently we are undertaking e�orts tostart a dis
ussion with other institutes that workon Wave Field Synthesis to agree upon a
om-mon XML-format to be able to ex
hange
on-tent.8 Working OSC
ommandsIn table 1 an overview is given of the
urrentlyworking OSC
ommands.8.1 Proje
tTo be able to store s
enes, you need to
reate a new proje
t with the
ommand:/WONDER/proje
t/
reate, with one string asargument: the proje
t name.You
an save the proje
t with the
ommand:/WONDER/proje
t/save, and later load it againwith the
ommand /WONDER/proje
t/load.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-81

LAC07-81

ommand types arguments/WONDER/proje
t/
reate s proje
tname/WONDER/proje
t/load s proje
tname/WONDER/proje
t/save s proje
tname/WONDER/s
ene/add i s
ene no./WONDER/s
ene/sele
t i� s
ene no., time, duration/WONDER/s
ene/remove i s
ene no./WONDER/s
ene/set i s
ene no./WONDER/sour
e/position i��f sr
id, pos x, pos y, pos z, time, duration/WONDER/sour
e/angle i�f sr
id, angle, time, duration/WONDER/sour
e/type ii� sr
id, type, angle, timeTable 1: Working OSC
ommands8.2 S
enesYou
an
reate a snapshot of the
urrentsour
e positions (
alled a �s
ene�) and storethem in the proje
t, using the
ommand/WONDER/s
ene/add with an integer as argu-ment for the slot number under whi
h you wantto store the s
ene.Later you
an re
all the s
ene with the
om-mand /WONDER/s
ene/sele
t, with as argu-ments the s
ene number, the time at whi
h the
hange to the s
ene should start, and the dura-tion in whi
h it should fade to the new s
ene.With /WONDER/s
ene/remove a s
ene isdeleted (and thus the slot is freed again). With/WONDER/s
ene/set you
an overwrite an exist-ing s
ene. Note the subtle di�eren
e betweenadding a s
ene and setting a s
ene: adding
re-ates a new s
ene and stores the
urrent sour
epositions to it. It gives an error ba
k when thes
ene number already exists. �Set� stores the
urrent sour
e positions to an existing s
ene andgives an error ba
k if the s
ene slot does not ex-ist.8.3 Sour
e
ontrolThere are two types of sour
es: point sour
e (see�g. 8a) and plane wave (see �g. 8b).With the
ommand: /WONDER/sour
e/typeyou
an set the type for one sour
e. Plane waveis �0�, point sour
e is �1�. The angle argumentis the start angle for the plane wave. When-ever the type is
hanged you should also senda /WONDER/sour
e/position
ommand, to setthe position of the sour
e. In the
ase of a pointsour
e, this will be the a
tual position of thesour
e. In the
ase of a plane wave, this is areferen
e point for the
al
ulation; it should be
hosen to be a position somewhere behind thearray in the dire
tion where the plane wave is
oming from. This point determines the basi

(a) Point sour
e (b) Plane waveFigure 8: Sour
e typeslaten
y of the plane wave./WONDER/sour
e/position takes as argu-ments the sour
e id, the x and y position (inmeters), the z position (whi
h should be 1.0 fornow), the time at whi
h the
hange should start(in se
onds from �now�), and the duration forthe
hange to take pla
e (also in se
onds)./WONDER/sour
e/angle takes as argumentsthe sour
e id, the angle, the time at whi
h the
hange should start, and the duration for the
hange to take pla
e.9 Con
lusionsWe have presented the new ar
hite
ture of thesWONDER software, with a fo
us on the
entral
ontrol unit and the audio rendering unit. Theuser interfa
e of sWONDER, a s
ore player ando�ine render unit are in development, to pro-vide a full suite of open sour
e tools for doingWFS.Parts of the software may also be useful forother purposes, su
h as the OSC-
ontrollable de-

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-82

LAC07-82

laylines and
onvolution engine.We plan to extend the software with optionsfor other spatial reprodu
tion te
hniques, su
has binaural headphone reprodu
tion and am-bisoni
s.10 A
knowledgementsOur thanks go to the Bauabteilung of the TUBerlin for funding, and espe
ially to ChristophMoldrzyk for initiating the proje
t.The software is released under the GPL li-
ense at http://swonder.sour
eforge.net.Referen
es[1℄ M.A.J. Baalman. Appli
ation of wave �eldsynthesis in ele
troni
 musi
 and sound in-stallations. In 2nd International Linux Au-dio Conferen
e, 29 april - 2 Mai 2004,ZKM, Karlsruhe, 2004.[2℄ M.A.J. Baalman. Updates of the wondersoftware interfa
e for using wave �eld syn-thesis. In 3rd International Linux AudioConferen
e, April 21-24, 2005, ZKM, Karl-sruhe, 2005.[3℄ C. Moldrzyk, A. Goertz, M. Makarski,W. Ahnert, S. Feistel, and S. Weinzierl.Wellenfeldsynthese für einen groÿen hör-saal. In DAGA 2007, Stuttgart, Germany,2007.[4℄ T. Behrens, W. Ahnert, and C. Mol-drzyk. Raumakustis
he konzeption vonwiedergaberäumen für wellenfeldsyntheseam beispiel eines hörsaals der tu berlin. InDAGA 2007, Stuttgart, Germany, 2007.[5℄ A. Goertz, M. Makarski, C. Moldrzyk, andS. Weinzierl. Entwi
klung eines a
htkanali-gen lautspre
hermoduls für die wellen-feldsynthese. In DAGA 2007, Stuttgart,Germany, 2007.[6℄ Rme - intelligent audio solutions. http://www.rme-audio.
om/.[7℄ M. Wright, A. Freed, and A. Momeni.Opensound
ontrol: State of the art 2003.In 2003 International Conferen
e on NewInterfa
es for Musi
al Expression, M
GillUniversity, Montreal, Canada 22-24 May2003, Pro
eedings, pages 153�160, 2003.[8℄ Trollte
h. Qt library. http://www.trollte
h.
om/produ
ts/qt/index.html,1996-2005.

[9℄ M.A.J. Baalman. swonder3dq: Auralisa-tion of 3d obje
ts with wave �eld synthesis.In 4th International Linux Audio Confer-en
e, April 27-30, 2006, ZKM, Karlsruhe,2006.[10℄ Wikipedia. Bresenhams line algo-rithm. http://en.wikipedia.org/wiki/Bresenham's_line_algorithm, 2007.[11℄ Frank Mel
hior and Diemer de Vries. Dete
-tion and visualization of early re�e
tions forwave �eld synthesis sound design appli
a-tions. In Tonmeistertagung 2006, Leipzip,Germany, November 16-19 2006.[12℄ Diemer de Vries, Jan Langhammer, andFrank Mel
hior. A new approa
h for di-re
t intera
tion with graphi
al representa-tions of room impulse responses for theuse in wave �eld synthesis reprodu
tion.In 120th AES Convention, Paris, Preprint6657, May 2006.[13℄ Edo Hulsebos and Diemer de Vries. Spa-tial de
omposition and data redu
tion ofsound �elds measured using mi
rophone ar-ray te
hnology. In 17th ICA, Rome, 2001,2001.[14℄ Hiske Helleman. Sensitivity of the humanauditory system to spatial variations in sin-gle early re�e
tions. Master's thesis, DelftUniversity of Te
hnology, The Netherlands,2003.[15℄ J.-J.Sonke and D. de Vries. Generation ofdi�use reverberation by plane wave syn-thesis. In 102nd AES Convention, Mar
h1997, Preprint 4455, 1997.[16℄ A. Torger. Brute�r. http://www.ludd.luth.se/~torger/brutefir.html, 2001-2005.[17℄ J. M
Cartney. Super
ollider. http://www.audiosynth.
om.[18℄ Stefan Kersten. A fast
onvolution en-gine for the virtual ele
troni
 poem proje
t.Master's thesis, Te
hnis
he UniversitätBerlin, 2006.[19℄ Guillaume Potard. 3D-Audio Obje
t Ori-ented Coding. PhD thesis, University ofWollongong, Australia, September 2006.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-83

LAC07-83

Offener Schaltkreis. An Interactive Sound Installation

Christoph HAAG
Martin RUMORI

Franziska WINDISCH
Ludwig ZELLER

Klanglabor, Academy of Media Arts Cologne (KHM)
Peter-Welter-Platz 2

50676 Cologne,
Germany,

osk@khm-lists.rumori.de

Abstract

Offener Schaltkreis (Open Circuit) [1] is an interac-
tive sound installation developed by students at the
Academy of Media Arts, Cologne. It mainly focuses
on openness, which applies to all facets such as op-
tical appearance, the interface given to the user, the
technical tools being used and the collaborative style
in which the installation has been developed. In this
paper, we will discuss the aesthetical and technical
issues of our sound installation Offener Schaltkreis.

Keywords

sound installation, interaction, interface design, tan-
gible, pd

Figure 1: user interacting with Offener Schaltkreis

1 Introduction

“At the Academy of Media Arts, art, technol-
ogy, and science work together for mutual en-
hancement. Different ways of thinking meet:
theory encounters practical design, technologi-
cal programmes and artistic imagination com-
bine.”1

The interactive sound installation Offener
Schaltkreis is actually a result of such a meeting
of two different programmes within the KHM:
Hybrid Space and OSFA.

1from the information flyer KHM 2006/2007

The Hybrid Space was founded by Prof. Frans
Vogelaar within the media design department.
“A new interdisciplinary field of design, re-
searching the transformations of architectural,
urban/regional space of the emerging ‘informa-
tion age’, explores the dynamic interaction of
architecture/urbanism and the space of mass
media and communication networks. It devel-
ops scenarios for the interplay of public urban
and public media space.” [2]

The OSFA series of workshops introduced
by Martin Rumori is connected to Klanglabor
within the department of arts and media stud-
ies. OSFA translates to “open source for arts”
and emphasizes on all aspects for using open
source technology for artistic purposes.

Offener Schaltkreis is experienced by putting
freely placeable speaker-cylinders on a labyrinth
created out of open copper tracks. Since these
tracks carry electrical audio signals, correspond-
ing sound layers become audible. This sim-
ple principle of operation is derived from an-
other project, created at about the same time at
KHM: Talking Cities Radio [3]. While Talking
Cities Radio is an interface for the audible con-
tent of an exhibition, Offener Schaltkreis aims
at being a sound installation whose aesthetical
criteria were entirely developed collaboratively
from scratch.

2 Aesthetical Approach

2.1 Model of a city

According to Foucault [4], the city is consid-
ered as a heterotopia: an agglomeration of di-
verse spaces, not least on an aural level. The
acoustic impressions differ from place to place,
just like inhabitants and surroundings are dif-
ferent. Every neighbourhood has its character-
istics and on the way through a city, not only
the visual, but also the acoustic environment is

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-84

LAC07-84

Figure 2: design sketch for Offener Schaltkreis

constantly changing. The experience of moving
through an urban environment gets downscaled
and transferred into a room. Through putting
the speaker-cylinder on the tracks a concrete
place of sound is created, which uses the copper
as a source for its emission and therefore for its
sensual manifestation. But this concrete place
of sensual manifestation is not connected to a
special place on the map. It is not static but in a
permanent shift, just like its audio source. Free
positioning of the speaker-cylinder allows the
visitor to create her own soundscapes. Sound-
scapes, which open themselves only through
time and movement in space.

2.2 Transporting audio
The copper tracks on the ground resemble a
map, recalling the transportation networks of
a city. This fact made it evident from the be-
ginning, to work with sounds and noises of a
city, including their transformations and syn-
thetic imitations. For every copper track an in-
dividual piece of sound has been created from
collected sound material.

The installation is constantly playing. For
every track a virtual read head loops in various
speeds through a given sound piece. Every track
includes four parts, which create, while playing
all tracks together, changing auditory scenes.

2.3 The visitor as an author
A silent labyrinth created out of open copper
trails on the floor carries the electrical signals
of a multichannel sound repository. By putting
freely placeable speaker-cylinders on them, the
carried sound layer becomes audible. Offener

Schaltkreis reacts depending on the manner in
which the speaker-cylinders are used: if noth-
ing is moved, the sounds stay calm and soft,
but if cylinders are repositioned, the currently
played sound material is modulated by increas-
ing speed, pitch and velocity.

If nothing happens during a few minutes, the
installation starts cooling down, back to the qui-
etest, lowest level, where it remains sleeping:
just like every acoustic space sleeps while no-
body is there. As soon as a single cylinder is
moved during this state, the sounds of all speak-
ers suddenly jump to a higher level of activity.
Thus, they give the impression of a social struc-
ture: a sensitive, pulsating, constantly shifting
body, built with sound.

Recordings

Puredata

Linux machine

AD-DA interfaces /

Amplifiers

Copper floor installation

Speaker-cylinders

f

10

t b b

pd bounds

1

f

s likiSave

r likiSave

r likiEvent

s likiEvent

-1

f

t f f f

r lb

putremove

rohrWatcher 1

10

r lb

init

rack 1 rack 2

0

10 to 50

line~

snapshot~

metro 30

0.00110901

r lb

current

e!ective slided

e!ective

s spMul

expr ($f1 - 10) / 40 normalized to 0 - 1

s volMul

0.100

eg. globalSpeed

take more if less visitors

metro 2000

expr $f1 * 0.6 + 0.1

pd decrementor

+ 15 - 4

moses 11

0.030

expr $f1 * 0.3 + 0.03

+ 15

moses 11

+ 6

$1 2500

rohrWatcher 2

rohrWatcher 3

rohrWatcher 4

rohrWatcher 5

rohrWatcher 6

rohrWatcher 9

rohrWatcher 10

rohrWatcher 11

rohrWatcher 12

rohrWatcher 13

rohrWatcher 14

rohrWatcher 15

rohrWatcher 16

Figure 3: technical flow chart

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-85

LAC07-85

3 Technical Description

A Linux PC with a multichannel audio inter-
face drives the openly installed copper tracks
(mass and signals). The freely movable speaker-
cylinders also have open copper contacts at the
bottom so that placing them on the tracks con-
nects the amplified audio signals to the speak-
ers.

3.1 Software

The audio recordings described in chapter 2
are played back by a pd patch [5]. The patch
is freely available at [1]. It reads the mate-
rials in progressing loops, playing repeatingly
with forward-moving loop markers. That kind
of “macro-granular synthesis/sequencing” cre-
ates a diffuse sound, that morphs between dif-
ferent areas of the recordings, presenting ever-
changing sound facets.

The interactive mapping of the visitor’s ac-
tivity to sound shaping parameters like volume,
“loop” length (or “macro grain length”) and
thus pitch and speed is done directly in each
track’s player instance.

The more the system is stimulated (up to
a certain point), the less the actions of the
visitors are taken into account. This kind of
damping makes it hard to reach the defined
maximum value, allowing for soft boundaries
of the dynamic range. The lower end of the
dynamic range represents the abovementioned
“sleeping”. In this state, the least activity on
the speaker leads to a sudden high increase.

In order to accomplish the interactive map-
ping, it is necessary to track the visitors’ ac-
tions. Therefore discrete “put” and “remove”
events are generated based on electrical mea-
surements on the copper tracks.

3.2 Hardware

Besides the actual audio content signals, all
tracks carry an inaudible 20 kHz sine signal at
constant amplitude. This is used as a reference
signal for counting the amount of speakers that
are placed properly on the copper tracks. The
sum of the audio and the reference signals is fed
back into the corresponding adc~ inputs of pd
where the 20 kHz sine is isolated.

When no speaker is placed on a specific track,
the feedback signal of that track will be at
−∞ db in amplitude, since the electrical circuit
is simply not closed. In the arrangement, we
avoided adjacent tracks of the same kind, thus
making sure that masses and signals are always

reference signal content signal sum signal

+ =

Figure 4: signal composition

alternating. As a result, a proper speaker con-
nection is guaranteed at any arbitrary position
of the installation.

With the first speaker placed, the amplitude
of the isolated feedback signal jumps to a cer-
tain value well above zero. Due to electrical
laws, this level Usens converges logarithmically
towards the amplitude of the fed-in signal when
more speakers are added to the same track, be-
cause all speakers will be situated in a parallel
connection (Usens = 1 − 1

1+n).2 This exponen-
tial graph can be transformed in order to get
the discrete integer value of placed speakers.

The tracking of the visitors’ activity is ac-
complished by interpreting this number on a
per track basis. The change of this quantity
can be interpreted either as addition (“put”) or
removal of speakers. As described above, this
information is then used as a parameter for the
sound generation within pd.

 DAC OUTADC IN

R

R T R
sens

Figure 5: circuit diagram

2The more speakers are placed in that parallel con-
nection, the more the equivalent resistance of the floor
installation is decreased resulting in an increase of Usens

on that voltage divider.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-86

LAC07-86

4 Open Source and Open Circuit

Since this work originated out of the seminar
series OSFA workshop series, the use of open
sourced software was indeed one of the few fixed
preconditions for developing this project.

The installation tries to empower the visitors
or listeners to act on their own. We try to give
them the freedom to use the installation in any
way they wish. This attempt finds its coun-
terpart in the use of free software, within the
empowerment of using and modifying software
in any way we choose.

Of course, also the economic aspect of using
open source software is important to its use in
the context of media art. Free software some-
times simply also means: “free as in beer”.

Open Source is generally available on more
platforms than proprietary software, since ev-
erybody can hack a port to her favorite system,
thus complying more easily to her predefined
constants.

Works that are developed in an academic con-
text, like the Offener Schaltkreis, are also of-
ten intended to be presented as a publication
that documents more than just the result – but
also the path that was taken during the design
process. Obviously, presenting code as open
source is an almost obligatory requirement for
this way of highlighting processes besides the
result itself. The open source community pro-
vides proven systems for licensing and sharing
the author’s work.

5 Conclusions

Several artistic and technical aspects of the in-
teractive sound installation Offener Schaltkreis
have been presented. The initially mentioned
openness as a main focus of Offener Schaltkreis
had the effect of a constantly changing experi-
ence of artistic creation. While watching the
visitors of the installation it turned out, that
further changes to the user interface towards an
even more direct feedback might be desirable.

6 Acknowledgements

Our thanks go to Martin Nawrath, techni-
cal staff of the KHM, Prof. Anthony Moore,
Head of Klanglabor at KHM, Tobias Beck and
Michael Thies and the entire Talking Cities Ra-
dio team.

References

[1] Christoph Haag, Martin Rumori, Franziska
Windisch, and Ludwig Zeller. Homepage of

Offener Schaltkreis. http://osk.openkhm.de,
2006.

[2] Frans Vogelaar et al. Wiki
of the Hybrid Space Project.
http://hybridspace.openkhm.de, 2006.

[3] Frans Vogelaar, Ina Krebs, Christoph
Haag, Andreas Muxel, Therese
Schuleit, and Isabelle Niehssen.
Homepage of Talking Citites Radio.
http://hybridspace.openkhm.de/2006/
talkingcities/, 2006.

[4] Michel Foucault. Of
Other Spaces, Heterotopias.
http://www.foucault.info/documents/
heteroTopia/foucault.heteroTopia.en.html,
1967.

[5] Miller Puckette. About Pure Data. The
Pure Data Portal. http://puredata.org, 2006.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-87

LAC07-87

Visual prototyping of audio applications

David Garcia and Pau Arumi
IUA, Universitat Pompeu Fabra

Psg. de Circumval.lacio, 8. 08003 Barcelona, Spain
{dgarcia,parumi}@iua.upf.edu

Xavier Amatrinain
CREATE, Univ. of California Santa Barbara

Santa Barbara, CA, USA
xavier@create.ucsb.edu

Abstract

This article describes an architecture that enables vi-
sual prototyping of real-time audio applications and
plugins. Visual prototyping means that a developer
can build a working application, including user in-
terface and processing core, just by assembling el-
ements together and changing their properties in a
visual way. The article addresses the problem of hav-
ing to bind interactive user interface to a real-time
processing core, when both are defined dynamically
with an extensible set of components, allowing bidi-
rectional communication of arbitrary types of data
and still fulfiling real-time requirements of audio ap-
plications. It also introduces some design patterns
that have enabled its implementation.

Keywords

Audio applications, Visual prototyping, interfaces,
GUI, Frameworks

1 Introduction

Having a proper development environment is
something that may increase development pro-
ductivity. Development frameworks offer sys-
tem models that enables system development
dealing with concepts of the target domain.
Eventually, they provide visual building tools
which also boost the development productivity.
In the audio and music domain, the approach
of modeling systems using visual data-flow tools
has been widely and successfully used in system
such as PD [1], Marsyas [2], Open Sound World
[3] and CLAM [4]. But, such environments are
used to build just processing algorithms, not full
applications ready for the public. A full applica-
tion would need further development work ad-
dressing the user interface and the application
work-flow.

User interface design is supported by existing
toolboxes and visual prototyping tools. They
provide a similar flexibility than the one data-
flow tools provide to build the processing core.
Examples of such environments which are freely
available are Qt Designer [5], Fltk Fluid [6] or

Gtk’s Glade [7]. But such tools just solve the
composition of graphical components into a lay-
out and limited reactivity. They still do not
address a lot of low level programming that is
needed to solve the typical problems that an au-
dio application has. Those problems are mostly
related to the communication between the pro-
cessing core and the user interface.

This article describes an architecture that ad-
dresses this gap and enables fully visual build-
ing of real-time audio processing applications by
combining visual data-flow tools and visual GUI
design tools.

Section 2 describes the target applications to
be built with the architecture. Section 3 de-
scribes the development work flow that the ar-
chitecture offers and the main tools involved.
Section 4 goes deeper on the key part of the ar-
chitecture, the run-time engine, and describes
how it solves different problems it faces. Sec-
tion 5 describes some audio related design pat-
ters that enable the actual implementation of
the architecture. Those patterns are part of a
bigger pattern catalog which is briefly described
on section 6. And, finally, section 7 explains the
current status and achievements and the future
lines both for the architecture implementation
and the pattern catalog.

2 Target applications

The set of applications the architecture is able
to visually build includes real-time audio pro-
cessing applications, which have a relatively
simple application logic. That is synthesizers,
real-time music analyzers (figure 1) and audio
effects and plugins (figure 2).

So application logic should support just start-
ing and stopping the processing algorithm, con-
figuring it, connecting it to the system streams
(audio from devices, audio servers, plugin hosts,
MIDI, files, OSC...), visualizing the inner pro-
cessing data and controlling some algorithm pa-
rameters while running.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-88

LAC07-88

Figure 1: A sample of audio analysis applica-
tion: Tonal analysis with chord extraction

Figure 2: A sample of audio effect application:
JACK enabled SMS transposition

Given those limitations, the defined architec-
ture does not claim to visually build every kind
of audio application. For example, audio au-
thoring tools, which have a more complex appli-
cation logic, would be out of the scope, although
the architecture would help to build important
parts of such applications.

The architecture will provide the following
features:

• Communication of any kind of data and
control objects between GUI and process-
ing core (not just audio buffers)

• The prototype could be embedded in a
wider application with a minimal effort

• Plugin extensibility for processing units,
for graphical elements which provide data
visualization and control sending, and

for system connectivity backends (JACK,
ALSA, PORTAUDIO, LADSPA, VST, Au-
dioUnit...)

3 The big picture

The proposed architecture (figure 3) has three
main components: A visual tool to define the
audio processing core, a visual tool to define
the user interface and a third element, the run-
time engine, that dynamically builds definitions
coming from both tools, relates them and man-
ages the application logic. We implemented this
architecture using some existing tools. We are
using CLAM NetworkEditor as the audio pro-
cessing visual builder, and Trolltech’s Qt1 De-
signer as the user interface definition tool. Both
Qt Designer and CLAM NetworkEditor provide
similar capabilities in each domain, user inter-
face and audio processing, which can be ex-
ploited by the run-time engine.

Qt Designer can be used to define user in-
terfaces by combining several widgets. The set
of widget is not limited; developers may define
new ones that can be added to the visual tool as
plugins. Figure 4 shows a Qt Designer session
designing the interface for an audio application,
which uses some audio related widgets provided
by CLAM as a widgets plugin. Note that other
audio related widgets are available on the left
panel list.

Figure 4: Qt Designer tool editing the interface
of an audio application.

Interface definitions are stored as XML files
with the “.ui” extension. Ui files can be ren-
dered as source code or directly loaded by the
application at run-time. Applications may, also,
discover the structure of a run-time instatiated
user interface by using introspection capabili-
ties.

1We are using Qt version 4.2

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-89

LAC07-89

Figure 3: Visual prototyping architecture

Figure 5: The processing core of an application
built with the CLAM Network Editor

Analogously, CLAM Network Editor allows
to visually combine several processing modules
into a processing network definition. The set of
processing modules in the CLAM framework is
also extensible with plugin libraries. Processing
network definitions can be stored as XML files
that can be loaded later by applications in run-
time. And, finally the CLAM framework also
provides introspection so a loader application
may discover the structure of a run-time loaded
network.

4 Run-time engine

Just by having a data flow visual tool and a vi-
sual interface designer, we should still do some
programming to glue it all and launch the ap-

plication. The purpose of the run-time engine,
which is called Prototyper in our implementa-
tion, is to figure out which should be that code
and supply it. Next, we enumerate the prob-
lems that the run-time engine faces and how it
solves them.

4.1 Dynamic building

Both component structures, the audio process-
ing network and the user interface, have to be
built up dynamically in run-time from an XML
definition. CLAM and Qt frameworks supports
dynamic building mostly because they provide
object factories. Object factories provide ob-
jects given a type identifier. Object factories
are a very well known general design pattern
and it is covered better by E. Gamma et al. [8]
and implementation details are further covered
by Alexandrescu [9].

Because we want interface and processing
components to be expandable, the factories
should be able to incorporate new objects de-
fined by plugin libraries. To enable the creation
of a certain type of object, the class provider
must register it on the factory at plugin initial-
ization.

4.2 Relating objects

The run-time engine must relate components
of both structures. For example, the spectrum
view on the SMS Transposition application (sec-
ond panel on figure 2) needs to periodically ac-
cess spectrum data flowing by a given port of
the processing network. The run-time engine
firstly has to identify which components, ac-
cording to the developer’s intent. Then guess

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-90

LAC07-90

whether the connection is able to be done: spec-
trum data can not be viewed by an spectral
peaks view. And then, perform the connection,
all that without the run-time engine knowing
nothing about spectra and spectral peaks.

The proposed architecture uses properties
such the component name to relate components
on each side. Then components are located
by using introspection capabilities on each side
framework.

Once located, the run-time engine must as-
sure that the components are compatible and
connect them. The run-time engine is not aware
of the types of data that connected objects will
handle, we deal that by applying the Typed Con-
nections design pattern explained in section 5.1.
In short, this design pattern allows to establish
a type dependant connection construct between
two components without the connector maker
knowing the types and still be type safe.

4.3 Thread safe communication in
real-time

One of the main issues that typically need ex-
tra effort while programming is multi-threading.
In real-time audio applications based on a data-
flow graph, the processing core is executed in a
high priority thread while the rest of the ap-
plication is executed in a normal priority one
following the Out-of-band and In-band partition
pattern [10]. Being in different threads, safe
communication is needed, but traditional mech-
anisms for concurrent access are blocking and
the processing thread can not be blocked. Thus,
new solutions, as the one proposed by the Port
Monitor pattern in section 5.2, are needed.

4.4 System back-end

Target applications, being real-time processing,
have smaller application logic than others but
it still has application logic to define. Most of
the application logic is coupled to the sink and
sources for audio data and control events. Au-
dio sources and sinks depend on the context of
the application: JACK, ALSA, ASIO, Direct-
Sound, LADSPA... So the way of dealing with
threading, callbacks, and assigning input and
outputs is different in each case. The architec-
tural solution for that has been providing back-
end plugins to deal with this issues.

This also transcends to the user interface as
sometimes the application may let the user to
choose the concrete audio sink or source, and
even choose the audio backend.

5 Enabling design patterns

Probably the two most complex technical prob-
lems involved in implementing this visual proto-
typing architecture are the following: Managing
connections when port types are not limited but
extensible; and monitoring data being processed
in the high-priority thread from a UI thread. In-
terestingly, similar problems to these are often
found in other contexts. However, their solu-
tions are very similar, so they can be generalized
and formalized as a design pattern.

A software pattern is a proved solution to a
recurring problem. It pays special attention to
the context in which is applicable, to the com-
peting “forces” it needs to balance, and the
teaching component on the implications of its
application. Patterns provide a convenient way
to formalize and reuse design experience. How-
ever, neither data-flow systems nor other audio
audio-related areas have yet received many at-
tention on domain specific patterns.

The next sections describes Port Monitor and
Typed Connections two patterns for those men-
tioned problems.

5.1 PATTERN: Typed Connections
Context
Most simple audio applications have a single
type of token: the sample or the sample buffer.
But more elaborated processing applications
must manage some other kinds of tokens such as
spectra, spectral peaks, MFCC’s, MIDI... You
may not even want to limit the supported types.
The same applies to events channels, we could
limit them to floating point types but we may
use structured events controls like the ones OSC
[11] allows.

Heterogeneous data could be handled in a
generic way (common abstract class, void point-
ers...) but this adds a dynamic type handling
overhead to modules. Module programmers
should have to deal with this complexity and
this is not desirable. It is better to directly
provide them the proper token type. Besides
that, coupling the communication channel be-
tween modules with the actual token type is
good because this eases the channel internal
buffers management.

But using typed connections may imply that
the entity that handles the connections should
deal with all the possible types. This could im-
ply, at least, that the connection entity would
have a maintainability problem. And it could
even be unfeasible to manage when the set of

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-91

LAC07-91

those token types is not known at compilation
time, but at run-time, for example, when we use
plugins.
Problem
Connectable entities communicate typed tokens
but token types are not limited. Thus, how can
a connection maker do typed connections with-
out knowing the types?
Forces

• Process needs to be very efficient and avoid
dynamic type checking and handling.

• Connections are done in run-time by the
user, so they can mismatch the token type.

• Dynamic type handling is a complex and
error prone programming task, thus, plac-
ing it on the connection infrastructure is
preferable than placing it on concrete mod-
ules implementation.

• Token buffering among modules can be im-
plemented in a wiser way by knowing the
concrete token type rather than just know-
ing an abstract base class.

• The set of token types evolves and grows.
• A connection maker coupled to the evolving

set of types is a maintenance workhorse.
• A type could be added in run time.

Solution

AbstractFemale

+bind(AbstractMale)

+isCompatible(AbstractMale)

#doTypedBinding(AbstractMale)

 AbstractMale

+TokenType()()

Connection Maker

<<Token>>
Female

+isCompatible(AbstractMale)

+doTypedBinding(AbstractMale)

Token:

 Male

+tokenType()

Token:

Figure 6: Class diagram of a cannonical solution
of Typed Connections

Split complementary ports interfaces into an
abstract level, which is independent of the
token-type, and a derived level that is coupled
to the token-type. The class diagram of this
solution is shown in figure 6.

Let the connection maker set the connections
throught the generic interface, while the con-
nected entities use the token-type coupled in-
terface to communicate each other. Access to

typed tokens from the concrete module imple-
mentations using the typed interface.

Use run-time type checks when modules get
connected (binding time) to get sure that con-
nected ports types are compatible, and, once
they are correctly connected (processing time),
rely just on compile-time type checks.

To do that, the generic connection method
on the abstract interface (bind) should delegate
the dynamic type checking to abstract meth-
ods (isCompatible, typeId) implemented on
token-type coupled classes.

Consequences
By applying the solution, the connection maker
is not coupled to token types. Just concrete
modules are coupled to the token types they
use.

Type safety is assured by checking the dy-
namic type on binding time and relying on com-
pile time type checks during processing time. So
this is both efficient and safe.

Because both sides on the connection know
the token type, buffering structures can deal
with tokens in a wiser way when doing alloca-
tions, initializations, copies, etc.

Concrete modules just access to the static
typed tokens. So, no dynamic type handling
is needed.

Besides the static type, connection checking
gives the ability to do extra checks on the con-
necting entities such as semantic type informa-
tion. For example, implementations of the bind
method could check that the size and scale of
audio spectra match.

Related Patterns
This pattern enriches Multi-rate Stream Ports
and Event Ports, and can be also useful for the
binding of the visualization and the Port Moni-
tor.

The proposed implementation of Typed Con-
nections uses the Template Method [8] to call the
concrete binding method from the generic inter-
face.

Examples
OSW [3] uses Typed Connections to allow incor-
porating custom data types.

The CLAM framework uses this pattern no-
tably on several pluggable pairs such as in and
out ports and in and out controls, which are,
in addition, examples of the Multi-rate Stream
Ports and Event Ports patterns.

But the Typed connection pattern in CLAM
is not limited to port like pairs. For example,

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-92

LAC07-92

CLAM implements sound descriptors extractor
modules which have ports directly connected to
a descriptor container which stores them. The
extractor and the container are type coupled
but the connections are done as described in
a configuration file, so handling generic typed
connections is needed.

The Music Annotator [12] is a recent appli-
cation which provides another example of non-
port-like use of Typed Connections. Most of its
views are type coupled and they are mostly plu-
gins. Data to be visualized is read from an
storage like the one before. A design based on
the Typed Connection pattern is used in order to
know which data on the schema is available to
be viewed with each vista so that users can at-
tach any view to any type compatible attribute
on the storage.

5.2 PATTERN: Port Monitors
Context
Some audio applications need to show a graphi-
cal representation of tokens that are being pro-
duced by some module out-port. While the vi-
sualization needs just to be fluid, the processing
has real-time requirements. This normally re-
quires splitting visualization and processing into
different threads, where the processing thread
has real-time requirements and is a high prior-
ity scheduled thread. But because the non real-
time monitoring should access to the process-
ing thread tokens some concurrency handling is
needed and this often implies locking.
Problem
We need to graphically monitor tokens being
processed. How to do it without locking the
real-time processing while keeping the visual-
ization fluid?
Forces

• The processing has real-time requirements
(ie. audio)

• Visualizations must be fluid; that means
that it should visualize on time and often
but it may skip tokens

• Just the processing is not filling all the com-
putation time

Solution
The solution is to encapsulate concurrency in a
special kind of process module, the Port moni-
tor, that is connected to the monitored out-port.
Port monitors offers the visualization thread an
special interface to access tokens in a thread safe
way.

In order to manage the concurrency avoid-
ing the processing to stall, the Port monitor
uses two alternated buffers to copy tokens. In a
given time, one of them is the writing one and
the other is the reading one. The Port monitor
state includes a flag that indicates which buffer
is the writing one. The Port monitor execution
starts by switching the writing buffer and copy-
ing the current token there. Any access from
the visualization thread locks the buffer switch-
ing flag. Port execution uses a try lock to switch
the buffer, so, the process thread is not being
blocked, it is just writing on the same buffer
while the visualization holds the lock.

Writing
buffer

In-Band Process
(high-priority)

Out-of-Band Process
(low-priority)

(Graphical) Monitor
Monitored port

Flag with mutex
(thread boundary)

Figure 7: A port monitor with its switching two
buffers

Consequences
Applying this pattern we minimize the blocking
effect of concurrent access on two fronts. On
one side, the processing thread never blocks. On
the other, the blocking time of the visualization
thread is very reduced, due that it only lasts a
single flag switching.

Any way, the visualization thread may suffer
starvation risk. Not because the visualization
thread will be blocked but because it may be
reading always the same buffer. That may hap-
pen when every time the processing thread tries
to switch the buffers, the visualization is block-
ing. This effect is not that critical and can be
avoided by minimizing the time the visualiza-
tion thread is accessing tokens, for example, by
copying them and release.

Another issue with this pattern is how to
monitor not a single token but a window of
tokens. For example, if we want to visualize
a sonogram (a color map representing spectra
along the time) where each token is a single
spectrum. The simplest solution, without any
modification on the previous monitor is to do
the buffering on the visualizer and pick samples

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-93

LAC07-93

at monitoring time. This implies that some to-
kens will be skipped on the visualization, but,
for some uses, this is a valid solution.

Related Patterns
Port Monitor is a refinement of Out-of-band and
In-band Partition pattern [10]. Data flowing out
of a port belongs to the In-band partition, while
the monitoring entity (for example a graphical
widget) is located in the out-of-band partition.

It is very similar to the Ordered Locking real-
time pattern [13]. Ordered Locking ensures
that deadlock can not occur, preventing cir-
cular waiting. The main difference is in their
purpose: Port Monitor allows communicate two
band partitions with different requirements.

Examples
The CLAM Network Editor [14] is a visual
builder for CLAM that uses Port Monitor to vi-
sualize stream data in patch boxes. The same
approach is used for the companion utility, the
Prototyper, which dynamically binds defined
networks with a QT designer interface.

The Music Annotator also uses the concur-
rency handling aspect of Port Monitor although
it is not based on modules and ports but in slid-
ing window storage.

6 Growing a data-flow pattern
language for audio

Typed Connections and Port Monitor patterns
are part of a broader catalog [15], with 10 pat-
terns that address recurrent problems in data-
flow audio systems and which is expected to
grow with new patterns.

Some patterns of this catalog are very high-
level, like Semantic Ports and Driver Ports, while
other are much focused on implementation is-
sues, like Phantom Buffer). Although the cat-
alog is not domain complete, it could be con-
sidered a pattern language because each pattern
references higher-level patterns describing the
context in which it can be applied, and lower-
level patterns that could be used after the cur-
rent one, to further refine the solution. These
relations form a hierarchical structure drawn in
figure 8. The arcs between patterns mean “en-
ables” relations: introducing a pattern in the
system enables other patterns to be used.

This pattern catalog shows how to approach
the development of a complete data-flow system
in an evolutionary fashion without the need to
do big up-front design. The patterns at the top
of the hierarchy suggest that you start with high

Semantic Ports

Driver Ports Stream and Event Ports

Typed Connections

Cascading Event Ports
Multi-rate Stream Ports

Multiple Window Circular Buffer

Phantom Buffer

Recursive Networks

Port Monitor

A B A enables B

A B A uses B

General Data-flow Patterns

Flow Implementation Patterns

Network Usability Patterns

Data-flow Architecture

Figure 8: The audio data-flow pattern language.
High-level patterns are on the top.

level decisions, driven by questions like: “do all
ports drive the module execution or not?” and
“do you have to deal only with stream flow or
also with event flow?” It might also happen
that at some point you will need different token
types. Then you’ll have to decide “does ports
need to be strongly typed while connectable by
the user?”, or “does the stream ports needs to
consume and produce different block sizes?”,
and so on. On each decision that introduces
more features and complexity you face a recur-
rent problem that is addressed by one pattern
in the language.

The main limitation of this pattern language
is that do not cover all the typical problems
in its domain. Some features of existing data-
flow systems proposes recurring problems that
should be incorporate into the language. Those
include: communication of modules running in
different processes, module firing scheduling, in-
tegration of heterogeneous (push based vs pull
based) systems, ports hand-shacking for meta-
data propagation, etc.

The architecture for visual prototyping pre-

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-94

LAC07-94

sented in this article also contains many recur-
ring problems that could be generalized as pat-
terns. However, our opinion is that more appli-
cation examples are needed for those patterns
to mature.

7 Conclusions

The presented architecture has been already im-
plemented as free software within the CLAM
framework and it is available for download as
source code or as binary for several platforms.
Several already built applications are provided
such the ones shown on the screen captures in
this article.

Using this architecture, one can build audio
applications in few minutes, and developers may
concentrate on the development of novel compo-
nents. Still some work is needed on the imple-
mentation of connection classes and back-ends
so that they could be provided also as plug-ins.

This article presents some ideas that we hope
could help on improving the audio software de-
velopment by offering an architecture that en-
ables visual development of full applications, a
ready to use implementation of such architec-
ture within the CLAM framework, and two re-
lated design patterns for a further reuse of de-
sign experience.

8 Acknowledgements

Authors of this paper would like to thank Diet-
mar Schuetz for being our mentor in pattern
writing, encouraging us to improve the pat-
terns again and again. We are very grateful to
Ralph Johnson, a member of the Gang of Four,
who provided insightful feedback and courage
to keep our effort on data-flow patterns, during
the PLoP workshops. We also thank contribu-
tions from past developers and signal-processing
experts at the MTG lab. Josep Blat, from
the UPF, have provided great support for the
CLAM project. This work has been funded
by UPF scholarships and by a grant from the
STSI division of the Catalan Government. We
are also indebted with the Trolltech crew and
the Linux Audio Community for giving us the
chance to build upon their work.

References

[1] M. Puckette, “Pure Data: Another In-
tegrated Computer Music Environment,”
in Proceedings of the Second Intercol-
lege Computer Music Concerts, Tachikawa,
1996, pp. 37–41.

[2] G. Tzanetakis and P. Cook, Audio Infor-
mation Retrieval using Marsyas. Kluewe
Academic Publisher, 2002.

[3] A. Chaudhary, A. Freed, and M. Wright,
“An Open Architecture for Real-Time Au-
dio Processing Software,” in Proceedings of
the Audio Engineering Society 107th Con-
vention, 1999.

[4] Clam website. [Online]. Available:
http://www.iua.upf.es/mtg/clam

[5] J. Blanchette and M. Summerfield, C++
GUI Programming with QT 3. Pearson
Education, 2004.

[6] (2006, Dec.) The fast light toolkit
(fltk) homepage. [Online]. Available:
http://www.fltk.org

[7] Glade home page. [Online]. Available:
http://glade.gnome.org

[8] E. Gamma, R. Helm, R. Johnson, and
J. Vlissides, Design Patterns - Ele-
ments of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1995.

[9] A. Alexandrescu, Modern C++ Design.
Addison-Wesley, Pearson Education, 2001.

[10] D. A. Manolescu, “A Dataflow Pattern
Language,” in Proceedings of the 4th Pat-
tern Languages of Programming Confer-
ence, 1997.

[11] M. Wright, “Implementation and Perfor-
mance Issues with Open Sound Control,”
in Proceedings of the 1998 International
Computer Music Conference (ICMC ’98).
Computer Music Association, 1998.

[12] X. Amatriain, J. Massaguer, D. Garcia,
and I. Mosquera, “The clam annotator:
A cross-platform audio descriptors edit-
ing tool,” in Proceedings of 6th Interna-
tional Conference on Music Information
Retrieval, London, UK, 2005.

[13] B. P. Doublass, Real-Time Design Pat-
terns. Addison-Wesley, 2003.

[14] X. Amatriain and A. P., “Developing cross-
platform audio and music applications with
the clam framework,” in Proceedings of the
2005 International Computer Music Con-
ferenc (ICMC’05), 2005, in press.

[15] P. Arumı́, D. Garcia, and X. Amatrian,
“A data-flow pattern catalog for sound and
music computing,” in Pattern Language of
Programming PLoP 2006, Oct. 2006.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-95

LAC07-95

Model-Driven Software Development

with SuperCollider and the UML

Jens GULDEN

Formal Models, Logic and Programming (FLP),

Technical University Berlin

jgulden@cs.tu-berlin.de

Abstract

The SuperCollider programming language is

widely perceived as a script-like interface to

the corresponding SuperCollider audio server.

However, the language has grown to a serious

object-oriented programming language by

now, and hence allows applying visual

modeling techniques for model-driven

development of object-oriented software

systems. This article shows how diagram-

based visual modeling with the Unified

Modeling Language (UML) can be used for

creating SuperCollider software.

Keywords

Modeling, Model-Driven, Object-Oriented,

SuperCollider, Unified Modeling Language

(UML)

1 Introduction

While the SuperCollider programming language

([1]) is most commonly used just as a scripting

language for passing commands to a SuperCollider

audio server, it also provides all basic language

constructs for developing (small or medium-sized)

object-oriented software systems. Such language

constructs are e. g. the declaration of classes,

instantiation of objects, polymorphism (method-

overwriting), class- and instance-variables, object-

references etc., which are all available in

SuperCollider.

Because of its support for object-orientation,

visual modeling techniques can be used together

with the SuperCollider language, such as class-

diagrams of the Unified Modeling Language

(UML) which provide a visual description of the

declarations that make up an object-oriented

software system.

The present article describes how the UML can

be applied for model-driven development of

SuperCollider software. The upcoming chapter two

introduces UML class-diagrams and how they are

used for modeling object-oriented software

systems. The third chapter shows how code in the

SuperCollider language is integrated to implement

a model's declarations, and in chapter four

runnable code is generated from a model. Chapter

five then demonstrates how a specific UML-tool is

configured to generate executable code in the

SuperCollider language. The sixth chapter

summarizes the relevant mappings between visual

class-diagram elements of the UML on the one

hand, and language constructs of the SuperCollider

language on the other hand. In chapter seven, an

example is presented of how model-driven

development with the UML has been applied to

create a SuperCollider implementation of the XML

Document Object Model (DOM). Chapter eight

finally gives information on how to download the

presented work, chapter nine sketches possible

future plans, and the closing tenth chapter contains

a short conclusion.

2 The Unified Modeling Language (UML)

The Unified Modeling Language (UML, [2]) is

not a programming language. The word “language“

denotes a set of visual elements used in diagrams

that describe the architecture of object-oriented

software systems.

UML class-diagrams express which classes are

part of the software system, which operations and

variable-members they have, and how the classes

are related to each other. Class-diagrams thus

provide an overview on the declarative structure of

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-96

LAC07-96

an object-oriented software system. Figure 1 shows

a small example class-diagram.

Fig. 1: Class-diagram example

Class-diagrams describe all declarations in an

object-oriented software system, but they do not

contain any programming language code (editing

code is discussed in the following section).

When developing software, the UML does not

replace a programming language like the

SuperCollider language. Instead, it embeds the

overall structure of the language into a visual

diagram.

Consequently, any UML class-diagram can be

transformed into program code of an object-

oriented programming language. The above

example diagram could e. g. result in program

code as shown in example 1.

/*
 * SuperCollider3 source file "MusicalElement.sc"
 * Licensed under the GNU General Public License (GPL).
 */

// --- class MusicalElement ---
//
MusicalElement {

 // --- attributes

 var time; // type int
 var duration; // type int

 // --- play() : void ---
 //
 play {
 "ABSTRACT".die; // simulate abstract method
 }

} // end MusicalElement

/*
 * SuperCollider3 source file "Note.sc"
 * Licensed under the GNU General Public License (GPL).
 */

// --- class Note ---
//
Note : MusicalElement {

 // --- attributes

 var midiChannel; // type int
 var midiNr; // type int
 var velocity; // type float

 // --- play() : void ---
 //
 play {
 // ... do something to play the midi note ...
 } // end play

} // end Note

/*
 * SuperCollider3 source file "Sample.sc"
 * Licensed under the GNU General Public License (GPL).
 */

// --- class Sample ---
//
Sample : MusicalElement {

 // --- attributes

 var sourceFile; // type String
 var velocity; // type float

 // --- play() : void ---
 //
 play {
 // ... do something to play the sample ...
 } // end play

} // end Sample

/*
 * SuperCollider3 source file "Sequence.sc"
 * Licensed under the GNU General Public License (GPL).
 */

// --- class Sequence ---
//
Sequence : MusicalElement {

 // --- relationships

 var <>sequencedElements; // 0..*-relation to type
MusicalElement

 // --- play() : void ---
 //
 play {
 sequencedElements.do({ // play elements in sequence
 arg element;
 waitUntilTime(element.time); // ...pseudo-code...
 element.play();
 });
 } // end play

} // end Sequence

Example 1: Generated code from the example

diagram

UML class-diagrams are also called models of

the software. Graphical models can help to express

the core ideas behind a software system on a

conceptually higher level than it is possible with

raw program code. This is why this kind of visual

software development is called model-driven

development.

There are several advantages which motivate the

use of model-driven development. An individual

programmer can benefit from better navigable

code and more efficient access to elements of the

software system, compared to plain files. Also,

���������	
	��

����� ����

��	
����� ����

����� ���	
��

����

�����
������ ����

������
 ����

��������� ������

����� �������

����	�

���	
������ ���
���

��������� ������

����� �������

��
���
�

����� �������

���	��������������

�

�������� ����
��

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-97

LAC07-97

tasks that otherwise would require stereotype

typing work can be automated using visual editing,

e. g. the creation of new classes or the declaration

of relationships among classes.

When communicating about software in a group

of people, visual diagrams help to enrich the

semantics of the formalized software system and

allow to express complex domains of discourse

using geometric means and spatial constellations.

UML class-diagrams are thus especially helpful for

sharing ideas about the architecture of a software

system among several people.

3 SuperCollider method bodies in the UML-

model

As the UML is not a programming language

itself, but provides graphical elements for

declaring the structure of object-oriented software,

the actual implementation of methods is still done

by conventional programming using a traditional

programming language.1 Thus, the method bodies

declared in the visual diagram are to be 'filled out'

by textual programming. Some UML-tools provide

their own source-code editor that allows editing a

method-body inside the modeling application.2

Fig. 2 shows a screenshot of how this can look

like within a specific UML-tool. The source-code

editor at the bottom contains the code of the

method highlighted in the diagram above.

4 Generating executable SuperCollider code

In order to get executable software from the model,

a complete set of source-files is generated from it.

These files contain traditional source-code in the

target programming language and can then be

compiled or interpreted to finally make up an

executable program. It depends on the UML-tool

1There are approaches which also allow to derive

dynamic behaviour of software systems, thus the code

of method-bodies, from graphical diagram modeling.

This is, however, beyond the scope of this article.

2An alternative approach is using external code-

editors (usually within integrated development

environments) for code-editing, and letting the

modeling-tool take care for synchronizing between the

model and the code. This approach is called “round-

trip-engineering”, while the process described in this

article (editing code inside the modelig-tool and then

generating source-files) is called “forward-

engineering”.

which target programming languages are available

to generate code for. In an ideal case, a UML-tool

can be configured freely to generate code for any

object-oriented language. This is the case with the

tool used for demonstration in this article,

Poseidon for UML ([4]). This tool uses editable

code-generation templates for configuring the

target programming language, which allows

generating code not only for well-known standard

object-oriented languages such as Java or C++, but

also for SuperCollider.

Fig. 2: Editing the source code of a method-body

5 Configuring a UML-tool to generate

SuperCollider code

There is no standard on how UML-tools are to

be configured for a new target programming

language. As a consequence, this section is

restricted to the use of the UML-tool Poseidon for

UML ([4]), which is used for demonstration

throughout this article.

In Poseidon, the code generation process is

controlled by file templates into which variable

code fragments from the model are inserted while

evaluating the template. By evaluating properties

from the model via variables and simple case-

distinctions (if-branches, etc.), the desired

SuperCollider code is generated. Example 2 shows

a sample of the code-generation template for the

SuperCollider language, as it has been used to

configure the tool Poseidon.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-98

LAC07-98

--- Render a single attribute. ---
#macro (renderOneAttribute $preparedAttr)
...
#set ($SCvisibility = "")
#if ($static.indexOf("static")!=-1)
#set ($SCvar = "classvar")
#else
#set ($SCvar = "var")
#end
#if ($visibility.indexOf("public")!=-1)
#set ($SCvisibility = "<>")
#end
 ${SCvar} ${SCvisibility}${name}${initialValueExpr};
 // type #stripPkg($preparedAttr.getTypeAsString())
#end

--- Render attributes from associations/relationships. ---
#macro (renderAttributesForAssociationEnds $prepAssocEnds)

#foreach ($preparedAssocEnd in $prepAssocEnds)
...
#set ($SCvisibility = "")
#if ($visibility.indexOf("public")!=-1)
#set ($SCvisibility = "<>")
#end
 ${SCvar} ${SCvisibility}${name}${SCinitialValueExpr};
 //${typeCommentMulti}relation to type #stripPkg(
$preparedAssocEnd.getTypeAsString())

#end
#end
#end

Example 2: Part of the code-generation template

for SuperCollider, as used with Poseidon for UML

Although the use of templates of this kind is

specific to Poseidon for UML, other UML-tools

can also be configured for non-standard target

programming languages. The principles

demonstrated in this article are portable to other

modeling-tools.

6 Mapping between UML and SuperCollider

This section summarizes the mappings between

UML model elements and the corresponding

SuperCollider language constructs. These

mappings have already been implicitly encoded in

the configuration templates discussed in the

previous section.

Table 1 lists the mappings between the UML

model elements and the SuperCollider language

constructs as they are used in the code-generation

process. This list can be used as a basis for

configuring further UML-tools to use

SuperCollider as the target programming language.

UML SuperCollider

Class Class

Package None, UML-packages

are ignored for

SuperCollider code-

generation. They can

however be useful

inside the UML model

to organize classes.3

Attribute (Instance-) Variable

Static Attribute

(underlinedIdentifier)

Class-Variable

Method

('operation')

Method

('message'/'function')

Static Method

(underlinedIdentifier)

Class-Method

Abstract Method

(italicIdentifier)

Method which always

throws a runtime error

(thus must be over-

written to be used)4

0..1/1..1-Relationships Variable, reference to

single instance

0..*/1..*-Relationships Variable, list

containing references

to multiple instances

Types of attributes,

function-arguments

and return-values.

None, but comments.

The SuperCollider

language is untyped,

but including type

declarations in the

UML model will

generate comments in

the source code which

increases readability

of the code.

Public (+) visibility of

attributes

Variable, with getter

and setter declaration

(“<>”).

3This implies that class names must be chosen to be

unique all over the whole set of classes available for

SuperCollider. A possible convention is to use a

package-like prefix, e. g. DOMNode, DOMElement,

DOMText etc.

4This is currently implemented by calling

"ABSTRACT".die but might more elegantly be done

using this.subclassResponsibility().

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-99

LAC07-99

Package (~), Protected

(#), Private (-)

visibility of attributes

None, normal variable

is used. Besides

getter/setter access,

visbility is not

reflected in the

SuperCollider

language.

Public (+), Package

(~), Protected (#),

Private (-) visibility of

methods

None. Method

visibility is not

reflected in the

SuperCollider

language.

Table 1: Mapping between UML model

elements and SuperCollider language constructs

Distinguishing between different levels of

visibility is not reflected explicitly in the

SuperCollider language, however, it may be useful

to use visibility-modifiers in the model in order to

express additional semantics about the declared

elements (e. g., use 'private' visibility (-) for

members that are only used internally by the same

class, and 'protected' visibility (#) for methods that

are intended to be used by subclasses only).

7 Example: XML-DOM implementation for

SuperCollider

The Document Object Model (DOM, [5]) is a

standardized set of interfaces for representing

XML documents in an object-oriented structure,

making them handable for processing with an

object-oriented programming language. [6] is an

implementation of the DOM API version 1.0 for

SuperCollider. The library has been completely

developed using a model-driven development

environment as described above, and thus serves as

a real-world example for model-driven, UML-

based software development with SuperCollider.

The library has already proven its usefulness in

music-related software-projects such as the

emulation of the signal-noise of the ENIAC

computer (ENIAC NOMOI, [7]), or creating a

prototype implementation for an XML-format

describing parts, positions and time in audio

waveforms ([8]).

The DOM API version 1.0 is an early revision of

the DOM standard, however already useful for

most common XML-related tasks. It defines a

minimum set of 10 interfaces which have been

modeled using the class-diagram shown in Fig. 3.

Fig. 3: Class-diagram of the XML DOM API

implementation

The corresponding classes for implementing

these interfaces in the SuperCollider language have

also been developed entirely using a UML class-

diagram, see appendix A.

The source code shown in the following example

3 gives an insight into the code as generated from

the XML DOM API model.

// --- class DOMNode ---
//
// Attributes of the node are stored via Dictionary-entries.
//
DOMNode {

 // --- attributes

 classvar <>node_ELEMENT = 1; // type int
 classvar <>node_ATTRIBUTE = 2; // type int
 classvar <>node_TEXT = 3; // type int
 classvar <>node_CDATA_SECTION = 4; // type int
 (...)
 var nodeValue; // type String
 var nodeName; // type String
 var nodeType; // type int
 (...)
 var attributes = nil; // type Dictionary

 // --- relationships

 var ownerDocument; // 0..1-relation to type DOMDocument
 var parent; // 0..1-relation to type DOMNode
 var children; // 0..*-relation to type DOMNode

 // --- getNodeName() : String ---
 //
 getNodeName {
 ^nodeName;
 } // end getNodeName

 // --- setNodeName(name) : void ---
 //
 setNodeName { arg name; // type String
 nodeName = name;
 } // end setNodeName
 (...)

Example 3: SuperCollider code generated from

the XML DOM API model, class DOMNode.sc

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-100

LAC07-100

An additional example directly related to

musical applications is shown in appendix B. The

diagram contains an early sketch of a synthesizer

class library, as it could be developed with

SuperCollider.

8 Downloads

All technical details about the presented

approach can be found at http://swiki.hfbk-

hamburg.de:8888/MusicTechnology/751.

The UML integration is done on top of the UML

modeling tool Poseidon for UML ([4]). The code-

generation templates for SuperCollider can be

downloaded at http://swiki.hfbk-
hamburg.de:8888/MusicTechnology/uploads/7

51/sc-templates.zip. They are freely available

and licensed under the GPL ([9]).

Poseidon is a commercial product. A free-of-

charge “Community Edition” of Poseidon was

available for non-commercial use until version 4.x.

Since version 5.x, only an evaluation version

limited to use in time is available free of charge

any longer.

The XML DOM API example is available both

as model-file for Poseidon and as generated

SuperCollider source code at
http://swiki.hfbk-hamburg.de:8888/

MusicTechnology/747. The XML DOM API

implementation is also free and licensed under the

GPL.

9 Future Plans

As the product Poseidon for UML is no longer

available as a free-of-charge Community Edition, it

has become necessary to migrate to a free UML

modeling tool. One possible candidate to migrate

to might be Fujaba ([10]).

10 Conclusion

Applying visual modeling techniques is not

restricted to wide-spread mainstream programming

languages. Since the SuperCollider programming

language is equipped with all necessary constructs

for object-oriented software development, it

becomes possible to adopt existing UML-tools to

SuperCollider as their target programming

language. The article has shown that visual

modeling of software is no longer an exotic issue

of theory and science only, but has reached a

degree of practical usefulness that allows its

application also in non-mainstream development

contexts.

The SuperCollider language, on the other hand,

has proven to be mature enough for being involved

in a state-of-the-art model-driven development

process.

References

[1] Gulden, J., Developing with [SuperCollider

and] the Unified Modeling Language (UML),

software, http://swiki.hfbk-
hamburg.de:8888/MusicTechnology/751

[2] McCartney, J. et al, SuperCollider3 - A real

time audio synthesis programming language,

software, http://supercollider.sf.net/

[3] Booch, G., Jacobson, I., Rumbaugh, J., The

Unified Modeling Language Reference Manual,

Addison-Wesley, Reading (Mass.), 1999

[4] Gentleware AG, Poseidon for UML, software,
http://www.gentleware.com/products.html

[5] World Wide Web Consortium (W3C),

Document Object Model (DOM),
http://www.w3.org/DOM/

[6] Gulden, J., XML parsing and formatting [for

SuperCollider], software, http://swiki.hfbk-
hamburg.de:8888/MusicTechnology/747

[7] Carlé, M. et al, ENIAC NOMOI, media project,
http://www.medienwissenschaft.hu-
berlin.de/~mc/ENIAC_NOMOI_eng.php

[8] Gulden, J., Rutz, H., Proposal for an XML

format representing Time, Positions and Parts

of Audio Waveforms, this conference

[9] GNU Software Foundation, GNU General

Public License (GPL), legal license,
http://www.gnu.org/licenses/gpl.txt

[10] University of Paderborn, Software Engineer-

ing Group, Fujaba Tool Suite, software,
http://www.fujaba.de/

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-101

LAC07-101

Appendix A

Full-scale UML class-diagram of the XML DOM API implementation (see section 7).

�������

���������	�
��
�� � �

����������������
�� � �

�����������
�� ��

������������������
�
�� � �

��������������
���
��������
�
�� �

��������		�
� �
�� � !

����������	�
� �
�� � "

����������	�
��#���	�
��
�� � ��

$����%&'(� ���)
�*

$����
&+� ���)
�*

$�����,-� �
��

$.�&)�����/ �
��

$.-'
�����/ �
��

$�������/ �
��

$&��)
0(��. ��
1�
��&), � �
'

� *��
���
&+� 23���)
�*

� .��
���
&+� 2�&+� ���)
�* 3�4�
�

�*��
���%&'(� 23���)
�*

� .��
���%&'(� 24&'(� ���)
�* 3�4�
�

�*��
����,-� 23�
��

� .��
����,-� 2�,-� �
�� 3�4�
�

�*���&)���
��� 23��������

�.���&)���
��� 2-�������� 3�

� *���5
'�
���. 2���-�0��'�&� 3��
.�

� *��#
).��5
'� 23��������

�*���&.��5
'� 23��������

�*���)�4
�(.�
0'
�* 23��������

�*��
�/��
0'
�* 23��������

�*�����)
0(��. 23��
1�
��&),

�*���6��)��1(+��� 23���	��1(+���

�
�.�)���7�)� 2��6�5
'� �������� 8)�7�5
'� �������� 3��������

�)�-'&1��5
'� 2��6�5
'� �������� 8�'��5
'� �������� 3��������

�)�+�4��5
'� 2�'��5
'� �������� 3��������

�&--����5
'� 2���� �������� 3�4�
�

�5&.�5
'�
���. 23�0��'�&�

�1'���
��� 2���-�0��'�&� 3��������

95&.���)
0(��. 23�0��'�&�

9�� 2&1�
�� �#(�1�
�� 3�4�
�

91�''�1� 2&1�
�� �#(�1�
�� 3��
.�

9.�'�1� 2&1�
�� �#(�1�
�� 3��
.�

9)�:�1� 2&1�
�� �#(�1�
�� 3��
.�

9����1� 2&1�
�� �#(�1�
�� 3��������

$
�
� 2�6��) ���	��1(+��� 8�,-� �
�� 8�&+� ���)
�* 84&'(� ���)
�* 8.�&)� �
�� 8.-'
� �
�� 8����
�� 3�

$*��
�/��
0'
�*�7�5
'� 215
'� �������� 3��������

$*���)�4
�(.�
0'
�*�7�5
'� 215
'� �������� 3��������

�	
���
	
���� �������� �	������ �� ���

�����
�
����������� ���� ��������

���������	

9��62�6��) ���	��1(+��� 8�&*�&+� ���)
�* 3���	�'�+���

�*���&*
&+� 23���)
�*

�*�����)
0(�� 2�&+� ���)
�* 3���)
�*

� .�����)
0(�� 2�&+� ���)
�* 84&'(� ���)
�* 3�

�)�+�4����)
0(�� 2�&+� ���)
�* 3�4�
�

�*�����)
0(��
��� 2�&+� ���)
�* 3���	���)

� *���'�+���.�,�&*
&+� 2�&*�&+� ���)
�* 3��
.�

� ��)+&'
;� 23�4�
�

9*����/� 23���)
�*

9*���'�+��� 2�&*�&+� ���)
�* 3���	�'�+���

95&.���)
0(��. 23�0��'�&�

95&.���)
0(�� 2�&+� ���)
�* 3�0��'�&�

$-&).� 2-&)���
��� �������� 8-�.�
�� 3�4�
�

$7�)+&� 2
�������4�' �
�� 3���)
�*

$-&).����)
0(��. 23�4�
�

$
�
����)
0(��. 2&��). ��
1�
��&), 3�

� *��
���
&+� 23���)
�*

�*�����)
0(��. 23��
1�
��&),

����
�����	

� 7
'��&+� ���)
�* � <=����><

�-&).���++���. �0��'�&� � 7&'.�

�-)�.�)4�?5
��.-&1� �0��'�&� � 7&'.�

�
����� �
�� � �

$.�&��&)����
�
�. ��6�?&,�
1�
��&),

���627
'��&+� ���)
�* 3�4�
�

�*����1�,-� 23��������

�*���+-'�+���&�
�� 23���	�+-'�+���&�
��

�*����1(+����'�+��� 23���	�'�+���

� 1)�&���'�+��� 2�&*�&+� ���)
�* 3���	�'�+���

� 1)�&����1(+���#)&*+��� 23���	��1(+���#)&*+���

� 1)�&����/�
��� 2��/� ���)
�* 3���	��/�

� 1)�&����++��� 21�++��� ���)
�* 3���	��++���

� 1)�&���������1�
�� 21�&�& ���)
�* 3���	�������1�
��

� 1)�&���)�1�..
�*��.�)(1�
�� 2�&)*�� ���)
�* 8�&�&���)
�* 3���	�)�1�..
�*��.�)(1�
��

�*���'�+���.�,�&*
&+� 2�&*�&+� ���)
�* 3��
.�

9)�&� 27
'� �#
'�3�4�
�

96)
�� 27
'� �#
'�3�4�
�

9-&).��	� 2/+' ���)
�* 3�4�
�

97�)+&� 23���)
�*

9
+-�)�
��� 2������������ 3��������

$
�
�#)�+#
'� 27
'��&+� ���)
�* 3�

$-&).� 2-&)���
��� �������� 8-�.�
�� 3�
��

$-&).�@(���� 2-�.�
�� 8)�.('� ���73�
��

$'
���) 2-�.�
�� 3�
��

$.A
-���
' 2-�.�
�� 8��'
+ ���)
�* 3�
��

$-&).��))�) 2+�..&*� ���)
�* 8-�.�
�� 3�

$
�
���&��&)����
�
�. 23�4�
�

$��1�����&��&)����
�
�. 2.���)
�* 3���)
�*

$��1�����&��&)����
�
�. 2.���)
�* 3���)
�*

�6��)��1(+���$ ��1(+����'�+���$

15
'�)��$
B

-&)���$

����	
�
�
���

$(��
' ���)
�*

$.�&)� ���)
�*

$��� ���)
�*

�*���&�& 23���)
�*

� .���&�& 2�&�& ���)
�* 3�4�
�

�*�����*�5 23�
��

� .(0.�)
�*�&�& 2�77.�� �
�� 81�(�� �
�� 3���)
�*

�&--����&�& 2�&�& ���)
�* 3���)
�*

�
�.�)��&�& 2�77.�� �
�� 8�&�& ���)
�* 3�4�
�

���'����&�& 2�77.�� �
�� 81�(�� �
�� 3�4�
�

�)�-'&1��&�& 2�77.�� �
�� 81�(�� �
�� 8�&�&���)
�* 3�

$
�
� 2�6��) ���	��1(+��� 8�,-� �
�� 8�&+� ���)
�* 84&'(� ���)
�* 8.���)
�* 8����)
�* 8(���)
�* 3�4�
�

$-&).� 2-&)���
��� �������� 8-�.�
�� 3�
��

$7�)+&� 2
�������4�' �
�� 3���)
�*

$*���&�&#�)+&���� 23���)
�*

�*��
���%&'(� 23���)
�*

���
��	

$��/�%&'(� ���)
�*

9��62�6��) ���	��1(+��� 8��/� ���)
�* 3���	��/�

� .-'
���/� 2�77.�� �
�� 3���	��/�

9*����/� 23���)
�*

9.����/� 2��/� ���)
�* 3�

$*���&�&#�)+&���� 23���)
�*

� .���&�& 2�&�&���)
�* 3�

����
����	

9��62�6��) ���	��1(+��� 81�++��� ���)
�* 3���	��++���

9*����++��� 23���)
�*

9.����++��� 2��/� ���)
�* 3�

$+&)A�(++,��1�,-� 23�4�
�

������
����	�
�

9��62�6��) ���	��1(+��� 81�&�& ���)
�* 3���	�������1�
��

����		�

$-&).� 2-&)���
��� �������� 8-�.�
�� 8�������/ �
�� 3�4�
�

$7�)+&� 2
�������4�' �
�� 3���)
�*

$
�
� 2-&)���
��� �������� 3�

�����
����������	���	�
�

���62�6��) ���	��1(+��� 8�&)*�� ���)
�* 8�&�& ���)
�* 3�

� *���&)*�� 23���)
�*

�*���&�& 23���)
�*

� .���&�& 2�&�& ���)
�* 3�

$-&).� 2-&)���
��� �������� 8-�.�
�� 3�
��

$7�)+&� 2
�������4�' �
�� 3���)
�*

�*��
���
&+� 23���)
�*

�*��
���%&'(� 23���)
�*

&��).$

B

��
�

����� ���� �

��)
+��7� 2.���)
�* 3���)
�*

��)
+�
*5� 2.���)
�* 3���)
�*

��)
+ 2.���)
�* 3���)
�*

�)�-�&� 2.���)
�* 8��
�� 3���)
�*

�
.	('�
'
�� 2.���)
�* 3�0��'�&�

�.-'
� 2.���)
�* 8��'
+ ���)
�* 3��
.�

�.-'
��
��. 2.���)
�* 3��
.�

� :�
� 2'��
.�8��'
+ ���)
�* 3���)
�*

� :�
��
��. 2'��
.� 3���)
�*

�
����� 2.���)
�* 8.5
7� �
�� 3���)
�*

�(�
����� 2.���)
�* 8.5
7� �
�� 3���)
�*

�
������0. 2.���)
�* 8.5
7� �
�� 3���)
�*

�5&.��.�&�1�%&) 2���0:�1� 84&)�&+� ���)
�* 3�0��'�&�

�5&.�'&..%&) 2���0:�1� 84&)�&+� ���)
�* 3�0��'�&�

�5&.%&) 2���0:�1� 84&)�&+� ���)
�* 3�0��'�&�

�*��%&) 2���0:�1� 84&)�&+� ���)
�* 3��0:�1�

�.��%&) 2���0:�1� 84&)�&+� ���)
�* 84&'(� ��0:�1� 3�4�
�

��(+0�)#�)+&� 2�(+ ��
+-'�
(+0�) 8+&/��1 �
�� 8+
���1 �
�� 8+
�?5�'� �
�� 8'�&�#
'' ���)
�* 3���)
�*

�1�(���
*
�. 2�(+ �
�� 3�
��

�0'&�A. 2��
�� 3���)
�*

�
������	�
����

����� ���� �

$)�4�).� ��
1�
��&),

�&��2&..�1
&�
�� ��..�1
&�
�� 3�4�
�

�&�%&'(� 24&'(� ��0:�1� 3��0:�1�

���	�
����

����� ����
�� �

����
�����	�������	

9��62�6��) ���	��1(+��� 3���	��1(+���#)&*+���

97�)+&� 2
�������4�' �
�� 3���)
�*

== �
�*'���� >>

�����������	�	�
�

$
�.�&�1� ���	�+-'�+���&�
��

�
�.�&�1� 23���	�+-'�+���&�
��

�5&.#�&�()�27�&�()� ���)
�* 84�).
�� ���)
�* 3�0��'�&�

��	C1'&..�.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-102

LAC07-102

Appendix B

Early sketch of a synthesizer class library for SuperCollider (partial, for demonstration only).

==
���)7&1� >>

�!��	�
������

�
� 2���4���3�4�
�

==
���)7&1� >>

�!��	��
"����

��(� 2���4���3�4�
�

==
���)7&1� >>

�!��	��
����
�

���
�
�
����
���������

��&+� ���)
�*

���6 23�� ���
��"����#��������

$ ��
��"���� ������

��(� 2���4���3�4�
�

�
.����&
��) 23�0��'�&�

$
�
� 23�4�
�

$
�
�����&
��) 215
'�)� ���''�1�
�� 815
'����-�
��&' � ��-(���)� 815
'��(��-�
��&' ��(�-(���)� 3�4�
�

����	�
�	

���62�6��) ��4������.(+�) 8-�)��&+� ���)
�* 3� ��-(���)�

�
�2���4���3�4�
�

��	��	�
�	

� ��62�6��) ��4����)��(1�) 8-�)��&+� ���)
�* 3��(�-(���)�

� �(� 2���4���3�4�
�

== ��'�*&�� >>

== ��'�*&�� >>

���
�
�
���
���
����
���������

$�(�-(���)�.�,
&+� ��
1�
��&),

���62�(�-(���(���)
&+�.�))&, ��0:�1� 3�� ���
����������"����#��������

$ ��
��"���� ������

��(�-(���)� 2�)�)
&+� ��0:�1� 3��(�-(���)�

$
�
� 23�4�
�

�(�-(���)�.�

�DDB

����&
����

$7 �#(�1�
��

���62�)&�.7�)+#(�1�
�� �#(�1�
�� 3�4�
�

�
� 2���4���3�4�
�

$��
������
��"���� ��"����

���
�
�
�
�������
�����

$-'&,
�*
���. ��))&,

�4�'(+� �7'�&� �ED!

���6 23�� ���
��������!���������

$
�
� 23�4�
�

�������	�����	

���62�
)�&+��-�
��&' ���)
�* 8.�&)�
����)
����&+��-�
��&' �
�� 8-&).�#
'��&+�.�-�
��&' �0��'�&� 3��)(+��.�)(+���

��)(+ 2�����)
����&+� ��0:�1� 8�&+� ���)
�* 8 7
'��&+� ���)
�* 87)�F�-�
��&' �7'�&� 84�'(+��-�
��&' �7'�&� 8-&��
�*�-�
��&' �7'�&� 3�4�
�

� '�&��
) 2�
)�&+� ���)
�* 8.�&)�
����)
����&+��-�
��&' �
�� 8-&).�#
'��&+�.�-�
��&' �0��'�&� 3�4�
�

�
� 2���4���3�4�
�

G .-'
� 2.���)
�* 8��'
+ ���)
�* 3��
.�

���������	�����	

$7
'��&+� ���)
�*

$0(7 ��(77�)

� �(���#)�F �7'�&�

�-'&,#)�F �7'�&�

� '��- �0��'�&� � 7&'.�

���627
'��&+��)�(77�) ��0:�1� 87)�F �7'�&� 8'��- �0��'�&� 8�)
**�) �0��'�&� 3��&+-'���.�)(+���

$-'&,�,��5 2������ �
�� 8 7)�F � 7'�&� 84�'�1
�, �7'�&� 3�4�
�

$
�
��&+-'� 27
'��&+��)�(77�) ��0:�1� 87)�F�-�
��&' � 7'�&� 8 '��-�-�
��&' �0��'�&� 3�4�
�

$'�&��(77�) 23�4�
�

�.,��5�.
;�)� 2.��,��5�.
;�) 3�4�
�

���	�"�&���	�����	

$7 �#(�1�
��

$�&+� ���)
�*

� �)
**�) �0��'�&� �7&'.�

�)��)
**�) �0��'�&� � 7&'.�

����77�)
**�) �0��'�&� � 7&'.�

���6 2.,��5��7
&+� ���)
�* 8.,��5��7#(�1�
���-�
��&' �#(�1�
�� 8�)
**�) �0��'�&� 3��,��5��7��.�)(+���

�
� 2���4���3�4�
�

$-'&,�,��5 2������ �
�� 87)�F �7'�&� 84�'�1
�, �7'�&� 3�4�
�

$1)�&���,��5��7 23�4�
�

$
�
� 2.,��5��7
&+� ���)
�* 8.,��5��7#(�1�
���-�
��&' �#(�1�
�� 8�)
**�)�-�
��&' �0��'�&� 3�4�
�

�.,��5�.
;�)� 2.��,��5�.
;�) 3�4�
�

�.�)�

�DDB

������&&��	

���
�
�
���

$�&+� ���)
�*

���62-�)��&+� ���)
�* 3�� ���
��#���

�
�
� 2-�)��&+� ���)
�* 3�4�
�

�*�������1�����)�. 23���''�1�
��

�1����1� 2-�� ���
��#��� 3�4�
�

��
.1����1� 2-�� ���
��#��� 3�4�
�

1����1������
B

1����1���#)�+�

B

�����

-&)����

15
'�)���

B

���
�
�
���
�����

���	�����	(��)

$-*+ �
�� � E

���620&�A�-�
��&' ��))&,3���.�)(+����&�A

�
�.�)(+��� 2-*+
) �
�� 8
�. �� ���
��!��������� 3�4�
�

�
� 2���4���3�4�
�

���
�
�
����������
�����

���6 215
'�)�� ���''�1�
�� 815
'����-�
��&' � ��-(���)� 815
'��(��-�
��&' ��(�-(���)� 3�� ���
��%��	��&!���������

�.,��5�.
;�)� 2.��,��5�.
;�) 3�4�
�

�	��)�"���	�����	

$�&+�. ��
.�

���62.�&1A���-�
��&' ���''�1�
�� 3���&1A����.�)(+���

�&��2
�.�)(+��� �� ���
��!��������� 8�&+��-�
��&' ���)
�* 3�4�
�

�&���'' 21���''�1�
�� 3�4�
�

�
� 2���4���3�4�
�

�*��2�)�)
&+� ��0:�1� 3�� ���
��!���������

��&+�����/ 2�)�)
&+� ��0:�1� 3�
��

$��	
����	�����	

�+��
7
�)#(�1�
��. ��
.�

���62.�&1A�� ���''�1�
�� 8+��
7
�). ���''�1�
�� 3�%�1��)��.�)(+���

=�&+�>

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-103

LAC07-103

pure:dyne

Aymeric Mansoux and Antonios Galanopoulos and Chun Lee
Goto10

12, rue Charles Gide
86 000 Poitiers

France
contact@goto10.org

Abstract

pure:dyne is a live GNU/Linux distribution optimized
for the purpose of real-time audio and visual perfor-
mance. As its name suggests, pure:dyne is built upon the
dyne:II platform and originally optimized for PureData.
However, pure:dyne now also contains several other in-
teresting and useful creative software, and is becoming
evermore practical to be used as a complete GNU/Linux
distribution for both media art and daily tasks. This
paper therefore aims to introduce and discuss several as-
pects surrounding pure:dyne thus encouraging the usage
and feedback of this project.

Keywords

goto10 dyne live-distribution PureData Supercollider
Csound media-art FLOSS

1 Introduction

The development of pure:dyne 1 can be traced back
to the inclusion of PureData in the dyne:bolic liveCD
distribution 2. As this addition later became increas-
ingly popular, there was suddenly a demand to in-
crease its support for PureData in a more serious
production context. Meanwhile, the dyne:II 3 core
that Denis Rojo 4 had been developing for the forth-
coming version of dyne:bolic provided the necessary
development tools needed to make such customized
distribution for PureData. As a result, a collabora-
tive effort had begun between dyne.org and Goto10
in early 2005 to work towards a distribution based
on the dyne:II core.

After a year of development, pure:dyne started to
take shape and began its beta testing. In late 2006,
pure:dyne officially left beta to have its first pub-
lic release. Today, pure:dyne gathers a growing user
community and has been used in numerous work-
shops and performances.

Although many multimedia oriented live
GNU/Linux distributions can be found nowa-
days, many aspects of pure:dyne still remain unique
amongst them. This paper hopefully will introduce

1http://puredyne.goto10.org
2The first inclusion of PureData can be found in

dyne:bolic1.4
3dyne:II is platform in which a fully functional system can

be built upon it. for more detail, please refer to section of
this paper.

4founder of Rasta Software and the key maintainer of
dyne:bolic

and demonstrate such features and design, and
ultimately encourage its usage.

2 Design principles

Throughout the process of making pure:dyne, sev-
eral design principles were clearly outlined from the
beginning. They can be briefly listed as below:

• pure:dyne is made by practitioners for practi-
tioners

• pure:dyne should be accessible to non technical
users

• pure:dyne will be optimized and kept minimal

One of the most important aspects of pure:dyne
is that it attempts to offer both “practical” and
“portable” solutions for the practitioners in the
fields of FLOSS based digital art. Although there
are many portable distributions available, they are
mostly used for demonstration purposes. pure:dyne,
on the other hand, allows artists to build extensive
works upon it while keeping the entire system, in-
cluding artists’ works, very portable. This makes it
an attractive alternative for artists who wish to de-
velop projects but do not have access to a dedicated
environment.

Moreover, accessibility is also an important part
of pure:dyne. pure:dyne recognizes artists who in-
tend to take advantage of the innovations in creative
FLOSS but do not have the resources and abilities
to walk through the lengthy installation, configura-
tion and even compilation of such software. Because
of this, pure:dyne aims to provide a working envi-
ronment that requires a minimal learning curve to
be productive with it.

Lastly, pure:dyne follows a minimalist approach in
system setup. This enables it to be more streamlined
and “clutter free”. For example, the default desktop
environment is FluxBox as window manager and ap-
plications such as Rox-Filer and Xfe can be used for
handling the conventional representation and navi-
gation of directories. pure:dyne also includes win-
dow managers such as ratpoison, evilwm and dwm.
Such an approach enables users to achieve greater
productivity when using the system.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-104

LAC07-104

3 Usage

Before this paper proceeds further, there are two im-
portant concepts in pure:dyne that should be clari-
fied.

• Dock - A dock refers to an “installation” of
pure:dyne onto the host system. A dock con-
tains all necessary components that are required
to boot pure:dyne entirely from the storage
device. The process of docking is extremely
straightforward, it only requires copying the
/dyne directory from the CD or ISO image onto
a partition readable 5 by pure:dyne.

• Nest - A nest (.nst) is a file that a user can
create once pure:dyne has successfully booted.
This file contains a user’s home directory and
configuration files 6. The nest file can be stored
either on the hard disk or on a portable stor-
age device such as a usb key. During the boot
process, pure:dyne will look for the nest in any
of the partitions it finds and mounts the nest
at the appropriate location. Through the inte-
gration of UnionFS 7, users can easily save and
store any modifications made on the system.

With further development of the dock and the nest
in dyne:II 8, pure:dyne can be used with a great deal
of flexibility. For example, a system running from a
CD or hard disk, in combination with a portable
storage device will result in a complete functional
system. Once the system is successfully booted, a
user can simply write to his or her own home di-
rectory and continue working the same way no mat-
ter which storage device is being used. One other
obvious advantage of the docking system is that
pure:dyne can co-exist with other operating systems
in a very straight forward manner, as everything
is contained in one single directory. Updating to
a newer version of pure:dyne only requires to over-
write the content of the dyne directory. Lastly, by
simply creating new users following the conventional
GNU/Linux method, a nest can also support a mul-
tiple user system.

dyne:II also contains a modular system in which
applications can be packaged and distributed.
Each package is a compressed 9 .dyne file in the
/dyne/modules directory. For instance, the applica-
tions contained in pure:dyne are simply a pure.dyne
module of dyne:II. This means that users and de-
velopers can simply package their favorite applica-

5current supported filesystems are: fat vfat msdos ntfs ufs
befs xfs reiserfs hfsplus ext2 ext3

6A nest contains the /home, /root, /var, /tmp and
/usr/local

7UnionFS allows transparent overlay of files and directory
from different filesystems. http://www.unionfs.org

8Both dock and nest existed in dyne:I. However, these two
elements were significantly further developed in dyne:II

9.dyne modules use the squashfs read-only filesystem.
http://squashfs.sourceforge.net

tions 10 and exchange between them. To include
a new module, simply copy the .dyne file into the
/dyne/modules directory and either reboot or mount
the module directly.

To summarize, pure:dyne can be used/installed in
the following ways:

• Used with the CD alone, without saving user
data

• Used with the CD in conjunction with a
portable storage device that contains the nest

• Used with a dock on the hard disk plus a nest
either on the hard disk or portable storage de-
vice

• Used with both the dock and the nest on the
portable storage device. for example, running
pure:dyne entirely from solid state memory.

4 Optimization

As mentioned previously, pure:dyne’s main emphasis
is in the context of real-time applications. Because
of this, pure:dyne consists of several optimizations
that are different from dyne:bolic 2.x.

Firstly, the optimization is targeted at the i686 ar-
chitecture. This is because pure:dyne aims to sup-
port more modern hardware, as the real-time au-
dio/visual applications are typically more demand-
ing on cpu cycles. pure:dyne employs the kernel
based on Ingo Molnars’s real-time patch.

Secondly, pure:dyne makes the installation of nec-
essary drivers to take advantage of the hardware pos-
sible and straightforward. For example, one can eas-
ily install the ATI and NVIDIA graphics driver to
take advantage of the modern graphics cards in order
to obtain the acceleration required by video/visual
applications. Furthermore, it also includes support
for various firewire sound cards through the FreeBoB
driver.

Lastly, the gcc compilation flags used in pure:dyne
are typically more aggressive than those used in
dyne:bolic or usual binary based GNU/Linux dis-
tributions. Currently, relevant applications in
pure:dyne are compiled with the following flags: -
O3 -ffast-math -fomit-frame-pointer -mmmx -msse
-pipe.

5 Applications

Applications that are optimized in pure:dyne can be
briefly listed below 11 consult the pure:dyne website:

• PureData

– PureData

– Gem, PDP, PiDiP, GridFlow of the exter-
nals and abstractions from the PureData
cvs

10currently there are modules for Ardour, network tools,
Gimp, OpenOffice, BitTorrent, dvd authoring and more

11For the complete listing, please

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-105

LAC07-105

• Audio

– SuperCollider

– Chuck

– Csound

• Visual

– Fluxus

– Packet forth

Besides the pure.dyne module, the pure:dyne dis-
tribution also comes with the audio.dyne module
from dyne:bolic 2.x which provides the applications
for hard disk recording, sequencing, and sound edit-
ing. Furthermore, Jack is provided by the dyne:II
core. As a result, the combination of pure:dyne with
the audio module would result in a fairly comprehen-
sive digital audio workstation.

6 dyne:II and pure:dyne

As mentioned previously, pure:dyne is built using
the dyne:II platform. There are, however, some sub-
tle differences that should be pointed out.

dyne:II is a system derived from LFS12 and initi-
ated by Denis Rojo and Alex Gnoli. It provides the
core functionalities such as booting, nesting, dock-
ing and the modular system. In other words, dyne:II
offers a platform on which a complete live distribu-
tion can be built. For example, dyne:bolic 2.x is
developped using the dyne:II core system.

pure:dyne, on the other hand, is not only a live
distribution built using the generic dyne:II, but also
contains several customized core components. Be-
cause of this, pure:dyne can be said to be using a cus-
tomized dyne:II system developed by Goto10. For
example, pure:dyne contains its own kernel and has
a different optimization policy. Moreover, pure:dyne
also provides some developers’ tool that are unique
to it. In short, pure:dyne not only consists of a
pure.dyne module but also its own branch of the
dyne:II core system.

The relationship between the two cores is by no
means independent of each other. That is to say, the
development remains very close between them. As
a result, changes can be merged. For example, new
features introduced in the modified pure:dyne core
could potentially be merged into the generic dyne:II
core after they are tested and have proven to be
stable. Similarly, new components in generic dyne:II
core can be adopted by pure:dyne’s customized core.
Last but not least, any dyne modules are universal
whichs allows applications to be used and shared
between the users of these different systems.

7 Which Dyne?

Because of the differences between dyne:bolic 2.x
and pure:dyne, it can sometimes be ambiguous as
to which of the two should be used. In gen-
eral, dyne:bolic 2.x offers more stability across a

12Linux From Scratch. http://www.linuxfromscratch.org/

wider range of legacy hardware and pure:dyne is
somehow more “bleeding-edge”, it adopts the latest
drivers and patches to gain performance. Moreover,
pure:dyne is created for a very specific context, while
dyne:bolic 2.x can be seen as more generic.

pure:dyne dyne:bolic 2.x
Type live-distribution live-distribution
Core dyneII dyneII

customized generic
Module policy .dyne .dyne

Target i686 i586
hardware

Optimization aggressive generic

Table 1: comparison of pure:dyne and dyne:bolic
2.x. note that only the audio related modules are
listed in the table

8 Current status

Currently, pure:dyne is at its first official release
(version 2.3.6). It has already proved to be usable
and stable enough to be employed in real world sce-
narios. For example, pure:dyne has been used in
many workshops where participants are able to learn
the software and have a complete and functional sys-
tem to carry on their learning after workshops ended.
Furthermore, pure:dyne has also been seen used in
live performances and even installations for a period
of weeks without problems.

9 To do

Efforts will be aimed towards the development of the
following parts of pure:dyne at this moment.

9.1 Documentation

Apart from the actual live distribution, pure:dyne
would also like to provide documentation for the nec-
essary components surrounding its usage and devel-
opment. For example, there should be a knowledge
base for users to learn more about the software it
includes and also on more advanced configurations.
Developers should also be able to find necessary in-
formation to further customize it to suit their needs
and ultimately take part in producing the future re-
leases.

9.2 Hardware support

pure:dyne would also like to provide more stable sup-
port for hardware that is commonly used by prac-
titioners in the digital art scene. For example, the
support for the MacIntel machines is currently be-
ing tested and will hopefully be included in the next
stable release.

9.3 Software package

pure:dyne is always keen to discover interesting and
innovative creative software to include in its package.
This is a constant reminder for the pure:dyne devel-
opers. After the release of the second stable version,

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-106

LAC07-106

a particular attention will be given to a compilation
of interesting FLOSS based software art.

10 Conclusion

The collaboration between dyne.org and goto10.org
has led to the successful production of pure:dyne.
More importantly, many of its current users find
pure:dyne useful and it has proven to fulfill its orig-
inal goals. pure:dyne hopes to continue the fruitful
relationship with dyne.org to achieve a higher stan-
dard in the future. This would hopefully contribute
to raising the awareness of FLOSS culture and tools
in the digital arts scene.

11 Acknowledgment

Goto10 would like to thank Denis Rojo and Alex
Gnoli for developing dyne:II and their valuable help
and advices throughout the making of pure:dyne.
Goto10 would also like to thank the digital research
unit of Huddersfield in UK for their support during
the start of the project. Goto10 would also like to
thank BEK in Bergen and Waag Society in Amster-
dam for providing the hosting solution for pure:dyne.
Lastly, Goto10 would like to thank everyone who
contributed to pure:dyne by developing it, using it
and disseminating it.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-107

LAC07-107

The One Laptop Per Child (OLPC) Audio Subsystem

Jaya Kumar
Independent Developer,

Gurgaon, India — KL, Malaysia
jayakumar.alsa@gmail.com

Abstract

The OLPC is a Linux based laptop-like device in-
tended as an educational tool targeted at develop-
ing countries. The audio subsystem of the OLPC
faces typical challenges such as minimizing power
consumption, performance/quality and component
cost pressures and tradeoffs, as well as less common
challenges such as the need to repurpose audio input
as an oscilloscope or analog input system. This pa-
per explains issues encountered during support and
development of ALSA and low level audio support
on the OLPC. It will also touch on possible future
plans for the low level audio software side of the
OLPC.

Keywords

OLPC audio, Analog Input, Speaker-Microphone
feedback, Power Management

1 Introduction

From a hardware perspective, the OLPC is a
fairly full featured embedded device. It has
strong multimedia capabilities. This includes
a decent audio subsystem, decent video subsys-
tem and even a video input subsystem. Table 1
provides an overview of the hardware features.
Figure 1 is a picture of the beta test (B-Test1)
unit of the OLPC courtesy of the OLPC team1.

The OLPC kernel is currently based on a
2.6.19 kernel, thus incorporating ALSA 1.0.13.
The operating system for the OLPC is based
on a stripped down and heavily customized ver-
sion of Fedora. The userspace audio engine
is the csound server. Current audio applica-
tions incorporated in the OLPC operating sys-
tem are TamTam and Squeak eToys. Lots of
other multimedia applications have been run
on this system including Quake, mplayer, Col-
labra’s Telepathy among others.

1The image is Copyright (C) OLPC, used with per-
mission under Creative Commons Attribution2.5 License

Figure 1: OLPC B-Test1 Unit

2 Hardware Architecture

The OLPC board currently uses an embedded
x86 architecture. The audio controller for this
architecture is a core within the cs5536 ASIC as
shown in Figure 2. The cs5536 is the integrated
southbridge for this architecture. This con-
troller interfaces with an AD1888 AC97 codec
from Analog Devices.

The communication between the Geode GX2
cpu and the cs5536 is PCI [1]. However, nei-
ther device implements a fully traditional PCI
bus controller [2]. For example, the AC97
Controller (ACC) in the cs5536 is not actu-
ally a PCI core but rather communicates via
GeodeLink with the GeodeLink PCI South-
Bridge which then handles communication with
the Geode to stream to/from host memory.
The important PCI command types such as
Memory Read/Write, I/O Read/Write and oth-
ers are fully implemented by the GeodeLink
PCI SouthBridge. But PCI Configuration
Read/Write support is not implemented by ei-
ther the Geode GX2 or the CS5536. This affects
system software, including audio software, in a

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-108

LAC07-108

Figure 2: GX-CS-AC97 Architecture

unique way when contrasted with other x86 sys-
tems.

In typical Geode systems including the cur-
rent version of the OLPC, the BIOS (Lin-
uxBIOS on the OLPC) utilizes a legacy module
called VSA (Virtual System Architecture) that
identifies GeodeLink devices and virtualizes the
PCI configuration space registers. This means
that when a driver attempts to access a PCI
configuration register, a SMI (system manage-
ment interrupt) is generated. The SMI is then
handled by software, in this case, the VSA code
within the BIOS that performs MSR (machine
specific register) based reads/writes to perform
the appropriate task.

2.1 Mechanical Architecture

The OLPC exposes on-board audio via left and
right speakers grill-mounted on both sides of the
front fascia as pictured in Figure 3. On-board
audio input is exposed via a ported microphone
mounted on the front fascia. External audio
output and input is enabled via two standard
red and green 3.5mm jacks on the left side of
the display head. The audio input jack is dual
purposed for analog input as well. A general
picture of the OLPC B-Test1 unit is provided
in Figure 1.

3 ALSA on OLPC

The lowest level of the ALSA subsystem on the
OLPC is the two hardware drivers. These are
the cs5535audio driver and the AD1888 AC97
driver. Both have been part of the ALSA tree
prior to initiation of the OLPC project. The
cs5535audio driver prior to OLPC was a fairly

Hardware Features

CPU AMD Geode GX2
(2 Watts @ 366 MHz)

Memory 128 MB
DDR400 SDRAM

Storage 512 MB
NAND Flash

Audio CS5536 ACC
AD1888 AC97

Camera VGA CMOS
Video 200dpi 7” LCD

1200x900 (BW reflective)
640x480 (Color transmissive)
250 nits

Wifi Marvell 88W8388
802.11b/g/s

USB 3 x USB2.0 ports
SD 1 x SD slot
Battery 2 hour NiMH
Input Keyboard, touchpad

Table 1: Hardware Features

Figure 3: OLPC Front Fascia
A - Left Speaker
B - Right Speaker
C - CMOS Video Camera
D - Microphone

standard ALSA PCI driver. The same is true
of the AD1888 AC97 driver.

3.1 cs5535audio OLPC support

Prior to OLPC, the cs5535audio driver was typ-
ically utilized in always-on devices in indus-
trial control systems. In those environments,
power management was not an attribute that
was sought after. The introduction of the OLPC
project gave rise to the motivation to add power
management functionality to cs5535audio. This
support was fairly straightforward in combina-
tion with the AC97 suspend/resume support

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-109

LAC07-109

that is part of ALSA. From the ACC perspec-
tive, the task to be done by the driver is very
typical. It utilizes ALSA to suspend PCMs, to
take the AC97 codec through the suspend se-
quence and finally to turn off the AC Link and
to take the ACC to D3 state. Further additions
to cs5535audio to support OLPC were related
to the analog input which is covered in Section
4.5.

3.2 AD1888 OLPC support

There is broad support for almost all of the
AD1xxx series AC97 codecs from Analog De-
vices in ALSA. Testing with the OLPC found a
minor issue related to duplicate controls. Fur-
ther additions to support OLPC were bug fixes
associated with power management, new mixer
controls and analog input support.

3.3 AC97 Power Management

One of the important changes to ALSA that is
very relevant to the OLPC is the addition of ag-
gressive power-saving support of AC97 codecs.
This addition was done by Takashi Iwai. The
way that it works is that when all PCMs are
closed and a reasonable delay has passed sug-
gesting that audio activity has ceased, ALSA
proceeds with switching capable AC97 codecs
into suspend mode. Upon opening of a PCM,
ALSA resumes the AC97 codec. This allows for
reduced power consumption without noticeable
loss of functionality.

4 Problems

Several interesting problems were identified as
part of the bringup of audio on the OLPC. Some
of these issues remain open.

4.1 AC97 read failure

One of the first problems identified with ALSA
on the OLPC was two failed reads of the AC97
codec. Specifically, ALSA’s AC97 support code
attempts to read the AC97 VENDOR ID2 on
the AD1888 codec. This AC97 read fails even
with a large timeout. The failure is derived
from the ACC not asserting a bit in its status
register called STS NEW. However, the value
that is read back from the AC97 register despite
the lack of status bit assertion is 0x7E805368.
Thus, the 0x5368 which is returned is correct,
as per the AD1888 datasheet thereby allowing
everything else to proceed as normal despite
the apparent read failure. This issue was ob-
served only with the OLPC board. Other sys-
tems such as cs5535/realtek combinations and

cs5536/wolfson combinations have not exhib-
ited this symptom. The cause of this read fail-
ure has not yet been identified and remains an
open issue.

4.2 AD1888 duplicate controls

Marcelo Tosatti was the first to identify this
issue on the OLPC. This problem had to
do with the fact that ALSA creates the
majority of controls in snd ac97 mixer build.
For example, one of those controls was
the ”Surround Playback” control. On
the AD1888, this mixer creation conflicted
with the same control being provided by
the snd ac97 controls ad18xx surround table
thereby resulting in a fail out. The solution
was trivial which was to precondition the ini-
tial mixer creation with the AC97 AD MULTI
flag that represents that set of Analog Device
codecs.

4.3 AD1888 magic resume register

As with many hardware designs, the AD1888
contains its share of magic registers that are
not formally documented[3]. An unusual sus-
pend/resume bug triggered the discovery of one
such register. The observed symptom is best
described by the test sequence:

insmod snd-cs5535audio.ko

amixer set PCM 100 on
amixer set Master 100 on

aplay /tree/test.wav
playback works fine

now suspend to D3

echo -n 3 > /sys/devices/pci0000
\:00/0000\:00\:0f.3/power/state

try to play
aplay /tree/test.wav

playback is blocked as expected

now resume to D0
echo -n 0 > /sys/devices/pci0000

\:00/0000\:00\:0f.3/power/state

now try to playback
aplay /tree/test.wav

playback proceeds at normal rate
but no sound is heard on the output

After some debug, a register was found that
made things work after resume which is AC97
register 0x60, or AC97 CODEC CLASS REV.
The AD1888 datasheet does not refer to this
register. The AC’97 2.3 spec says:

Extended Codec Registers Page
Structure Definition Page 00 of the

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-110

LAC07-110

Extended Codec Registers is reserved
for vendor specific use. Driver writers
should not access these registers un-
less the Vendor ID register has been
checked first to ensure that the ven-
dor of the AC ’97 component has been
identified and the usage of the vendor
defined registers is understood.

Tweaking that register on resume allowed
things to work correctly. The reason why this
is the case is still unknown.

4.4 Uniqueness of PCI IDs

As was mentioned in Section 2, the BIOS cur-
rently provides the virtualized PCI configura-
tion registers. This implies that the BIOS
software loaded on to the SPI flash (PROM
equivalent) is what determines the PCI Ven-
dor/Subvendor and Device/Subdevice ID for
the system. Almost all Geode systems use either
the BIOS from Insyde Systems (a BIOS vendor)
or LinuxBIOS. In the latter case, LinuxBIOS on
the OLPC currently has a legacy build of the
VSA included within it. This perpetuates the
situation where almost all cs5536 based boards
have exactly the same PCI Vendor/Subvendor
and Device/Subdevice IDs. This makes it
rather hard for the ALSA driver to identify
which board it is being used on in order to apply
board specific quirks.

In the case of the OLPC, it is sufficiently
different that it warranted having a CON-
FIG OLPC config entry. This enables the var-
ious associated drivers to apply OLPC specific
quirks using that flag.

4.5 Analog Input support

An interesting feature on the OLPC is that it
can repurpose the microphone input jack as an
analog input. This capability can be used to
interface the OLPC with analog input devices
such as a photodiode. This was demonstrated
by Barry Vercoe at WorldComp ’06, where a
spoon with a photodiode connected to the ana-
log input was used as a conductor’s baton to
control audio.

The method by which the analog input ca-
pability is implemented is by having the trace
from the input jack split to two separate paths.
One path is a standard resistive-capacitive path
to the microphone input pin on the AD1888.
The other path is an unbiased direct path to
the same pin. The selection of these paths is
done via a standard analog switch controlled by

an 8051 based embedded controller (EC). The
EC is then interfaced to the host via GPIO pins.
From an audio software perspective, communi-
cation with the EC is currently via x86 port
IO. The B2 model of the OLPC will move this
analog switch control over to a Geode GPIO,
thereby avoiding the communication with the
EC.

There are therefore several aspects to ana-
log input support. The first set are features of
the AC97 codec. These are the ability to dis-
able the VRef bias that is normally internally
applied to the microphone input and the abil-
ity to disable the high pass filter that is inter-
nally applied to limit input to typical audio fre-
quency ranges. The second set is the need for
the host to instruct the EC to toggle the analog
switch. The current implementation for ana-
log input support on OLPC is done by adding
an OLPC specific quirk to cs5535audio. This
quirk adds a new mixer control named ”Ana-
log Input”. This function performs the task of
toggling both the EC bits and the AC97 bits in
order to achieve the desired functionality. This
therefore exposes the analog input mode deci-
sion to userspace through the standard ALSA
mixer API and can be controlled via amixer and
other regular tools as well.

4.6 Speaker-Microphone Feedback

As can be seen from Figure 3, the right speaker
and the microphone are physically very close.
One of the effects of this industrial design deci-
sion is that there is significant amounts of feed-
back when both the speaker and microphone are
active at the same time. This has a negative
effect on telephony (voice/video over IP) type
applications. This problem is not yet solved.
Several proposals have been put forth including
one suggesting that the right speaker be dis-
abled when the microphone is active.

5 Future Enhancements/Issues

5.1 ASoC/DAPM

One of the most interesting future issues is
continued improvement of power management.
With this in mind, the ALSA System On Chip
and Dynamic Audio Power Management sup-
port contributed by Liam Girdwood and oth-
ers is very relevant to the OLPC. In particu-
lar, the ability to dynamically switch on and
off DAI capabilities, tune AC97 clock rates,
and performing switch-level power management
on the AC97 codec while completely transpar-

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-111

LAC07-111

ent to applications is very attractive for mini-
mized power consumption on portable devices
like the OLPC. Work is in progress to add
ASoC/DAPM support for OLPC.

5.2 Speaker-Microphone Feedback

As was mentioned before in Section 4.6, this
feedback issue is a challenging problem. One of
the approaches that may be of interest from the
ALSA software perspective is to use a dmix type
plugin to downmix stereo streams and redirect
to only the left channel when it is detected that
the on-board microphone is enabled.

5.3 VSA elimination

The virtualization of PCI configuration regis-
ters by the VSA can be removed. This is pos-
sible if the kernel’s generic PCI configuration
dependent code was replaced by OLPC specific
rd/wr-msr code. That code would handle the
GeodeLink support. This would also aid boot
performance. This work is in progress and is be-
ing done by Mitch Bradley of the OLPC team.

5.4 Preempt and Tickless

There are two kernel features being actively
tested and developed on the OLPC. These are
the tickless kernel and realtime preemption sup-
port. Realtime preemption is clearly of benefit
to the audio subsystem [4]. Tickless should not
be detrimental to audio. Tickless will serve to
reduce power consumption on OLPC and also
improve timer resolution.

6 Conclusions

The OLPC provides good audio quality and per-
formance for a device of it’s type. It provides
a fully featured environment for application de-
velopers, as can be seen from the wide range
of audio-enabled applications that are running
on it such as TamTam, eToys, and others. It
presents an interesting environment for ALSA
and Linux Audio in general. It has aspects of a
typical embedded system. That is, it has very
tightly constrained and hard-wired resources in
terms of cpu, audio controller, audio codec,
memory and storage. But it also has aspects of
a high end system. It has a wide set of multime-
dia capabilities thus requiring full broad ALSA
and other audio functionality. This combination
will be likely to continue to provide unusual and
challenging problems to be solved by the Linux
Audio community.

In the event that the OLPC project is success-
ful, ALSA and Linux Audio in general will be

contributing something directly positive to the
daily lives of a large number of human beings
through out the planet. Further, if the commer-
cial aspects of the OLPC project are similarly
successful, then this will encourage more hard-
ware manufacturers to become more involved in
the ALSA and Linux Audio community in gen-
eral. This will help ALSA and Linux Audio in
general to thrive.

7 Acknowledgements

My thanks go especially to Takashi Iwai and
Jaroslav Kysela for their advice on many of the
OLPC audio issues and reviewing all the code
for the OLPC audio changes. Special thanks to
Liam Girdwood of Wolfson Micro for coming to
FOSS.IN in Bangalore to present ASoC/DAPM
and improve ALSA development here. Thanks
to the OLPC organization for kindly supplying
the board for driver testing and development.
Also my sincere thanks to all the members of
the ALSA community for much help over many
years.

References

[1] AMD. AMD Geode CS5536 Companion De-

vice Data Book. AMD, USA, 3/14/2006.

[2] AMD. Amd geode gx and lx processor based
systems virtualized pci configuration space.
AMD, 1(32663C):3–20, 2006.

[3] Analog Devices. AC ’97 SoundMAX
AD1888 Codec Data Book. Analog Devices,
USA, 2005.

[4] Lee Revell. Realtime audio vs. linux 2.6.
Proceedings of Linux Audio Conference

2006, 2006(1):21–24, 2006.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-112

LAC07-112

FireWire (Pro-)Audio for Linux

Pieter PALMERS

pieterpalmers@users.sourceforge.net

Abstract

FireWire audio devices are flooding the (semi-)pro

audio interface market. At LAC2005, the FreeBoB

project has been presented, aiming to implement

support for devices built on top of the BridgeCo

BeBoB platform.

This paper discusses the evolution of the FreeBoB

project towards a framework generic enough to

support a virtually any FireWire based audio

device, BeBoB based or not, conforming to the

'official' standards or not. An overview of the

design and implementation of the library is

presented, and some key issues and their solutions

are described.

Keywords

FireWire, IEEE1394, driver, FreeBoB

1 Introduction

Since the presentation of the FreeBoB project's

proof-of-concept code at LAC2005, a lot of

progress has been made. An extensive number of

changes and complete rewrites, followed by a 6

month beta testing stage, resulted in the release of

FreeBoB-1.0, mid october 2006.

Meanwhile the interest of developers, users and

vendors in FireWire audio on Linux was steadily

increasing. This can be illustrated by a meeting

held at LAC06 to discuss Linux support for non-

BeBoB based devices. It became clear that the

FreeBoB project could be a starting point to

provide generalized FireWire audio support on

Linux.

It was however obvious that the existing

codebase was not easily extensible to provide

support for the various options that exist for device

discovery and data transport. The code had to be

rewritten from scratch, marking the birth of

FreeBoB-2.0, around may 2006.

Section 2 describes the FireWire system from a

FreeBoB point of view. The design and

implementation of the FreeBoB-2 library is

described in sections 3 and 4. Finally section 5

provides some concluding remarks and briefly

summarizes the end-user functionality.

2 System overview

This section discusses the different components

in a FireWire audio setup on Linux. It starts with a

description of the hardware bus topology and the

way FireWire works from a FreeBoB perspective
1
,

based upon [1]. Next, the current linux1394 driver

stack and userspace interface will be discussed [2].

To conclude this section, the FreeBoB-2 library

structure will be presented.

1 The FireWire bus is designed for a multitude of

functions. Aside from media related transport such as

audio and video, common applications are storage

access (SBP-2), networking (eth1394) and device

control (e.g. Agilent ParBERT 81250). All of these

applications use different subsets of the FireWire

standard(s).

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-113

LAC07-113

2.1 FireWire from an audio point of view

2.1.1 Bus topology

In summary, the FireWire
2

bus is a high-speed,

peer-to-peer, self-configurating bus supporting true

hot-plugging and plug-and-play. Whenever a

device is (dis)connected, the bus is reset and

reconfigured. The interfaces and protocols are

designed such that a bus reset does not influence

the functional behavior of a device, meaning that

devices can be added or removed while all others

remain fully operational.

A FireWire topology appears as one 64-bit

memory mapped space, of which the first 10 bit

specify the bus the device is connected to, and the

next 6 bits specify the node ID of the device. This

makes that a single bus can support 63 nodes (one

broadcast ID) and that there can be 1023 busses

(there is one 'local bus' ID) in a FireWire topology.

Note however that the capability to address

multiple busses is not used yet. The case where

one computer contains more than one host

controller doesn't qualift as one of multiple busses,

as the different host controllers don't share the

same address space. In such a case the system

consists of multiple “topology's”
3
.

The remaining 48 bits of the address provide a

256 terrabyte address space inside the device. Parts

of this space are standardized (e.g. Configuration

ROM), but most of it can be freely used.

2.1.2 Data transfer

The FireWire specification defines two main

types of data transport: Isochronous and

Asynchronous, both being packet based.

Isochronous traffic has the following properties:

� Broadcast one-to-one or one-to-many on a

specific 'channel'

� A node can send only one packet per cycle

2 The FireWire bus was developed by Apple, and is

standardized by the IEEE as IEEE1394. It is also called

i.Link by Sony.

3 There is no official terminology for this

� Up to 80% of the total bandwidth can be

reserved and guaranteed for it

� It occurs at time intervals (cycles) that are

regularly spaced in time (125us).

� No error correction or retransmission

The remaining part of the total bandwidth can be

used by Asynchronous traffic, exibiting the

following properties:

� Between two specific nodes

� No guaranteed bandwidth

� Nodes can send multiple packets per cycle

� An async packet is acknowledged and

optionally responded to by the receiving

node, enabling error detection and/or

correction

Isochronous traffic should be used for time-

critical, error tolerant data transfer, while

asynchronous transfers are intended for non error

tolerant data or non time-critical transfers.

FireWire audio devices always use isochronous

traffic to transport the audio and midi data, and

Figure 1: FreeBoB-2 system overview

1394
host controller

1394
host controller

Linux1394 kernel stack
/dev/raw1394

libraw1394
ASYNC

Read/Write
ISOCHRONOUS

Receive
ISOCHRONOUS

Receive (multichannel)
ISOCHRONOUS

Transmit

port 0 port 1

node 1

node 0

node 0

node 1

node 2

node 3

libfreebob
Device

discovery,
configuration

&
stream setup

Audio, MIDI & control info
streaming

libfreebob API

configuration & control API Audio & MIDI API

audio client
e.g. JACK, ALSA, ...

control client
e.g. Mixer application

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-114

LAC07-114

usually use asynchronous transfers for device

configuration and control
4
.

2.1.3 Bus management roles

During the configuration phase, some special bus

management tasks are assigned to nodes capable of

executing them. For this description, the most

relevant ones are the isochronous resource

manager (IRM) and the cycle master.

The IRM keeps track of the isochronous

channels that are in use, and the remaining

bandwidth available for isochronous traffic. It

provides the bandwidth guarantees that come with

isochronous traffic.

The cycle master determines the timing for the

isochronous traffic. At the start of every

isochronous cycle, being a time slice with a

nominal 125us period, the cycle master transmits a

'cycle start' packet. This packet contains the value

of the cycle timer register (CTR) of the cycle

master at the start of the cycle. This CTR is

updated by the cycle master's clock source at

24.576MHz. The other nodes synchronize their

CTR to this cycle start packet. The cycle master

hence defines the concept of “time” on the bus.

2.2 The linux1394 stack

The linux1394 stack consists of a set of kernel

modules and a userspace library that provides a

clean interface to kernel space. The relevant parts

of the stack are the ohci1394, ieee1394 and

raw1394 kernel modules, and the libraw1394

library.

2.2.1 Kernel modules

The linux1394 kernel stack was designed such

that a multitude of host controllers could be

supported. In order to accomplish this, a separation

between the generic IEEE1394 bus functions and

the driver for the hardware implementing them was

introduced. The generic part is implemented in the

ieee1394 kernel module, while the host-controller

4 Some devices (e.g. MOTU) make use of the

isochronous transport channel to transport their status

changes, e.g. due to front-panel operations by the user.

specific code
5

is in modules like ohci1394 and

pcilynx.

The raw1394 module together with libraw1394

provides the kernel-user space interface. The

raw1394 module is not intended to be used

separately.

2.2.2 Userspace API: libraw1394

When applications want to use the linux1394

subsystem, they should use libraw1394 instead of

directly addressing /dev/raw1394.

It supports asynchronous traffic through

blocking api calls that encapsulate the complete

request-ack-respond process. It also enables

applications to act as a target for async transactions

by having them register handlers for specific

FireWire address ranges.

Isochronous transfer is implemented by

registering a callback function to process incoming

packets or provide outgoing packets, together with

some stream setup and management functions (init,

start, stop, ...).

2.2.3 Next-generation FireWire stack

Very recently a new FireWire kernel stack has

been proposed to replace the current one. It

simplifies the stack by only supporting OHCI cards

and eliminating the obese layers. It will also

support some more advanced methods to handle

isochronous traffic. These should result in lower

CPU usage and lower latency due to less

intermediate buffering.

The development of this new stack gives is an

opportunity to make sure that the specific

requirements of pro-audio clients are served. The

modular architecture of FreeBoB-2 should allow

5In reality there is only one type of host controllers

available on the general market, being the OHCI1394

compliant ones. OHCI1394 [3] is a specification for a

PCI host controller designed mainly by Intel [XX: and

Microsoft?]. It enables the use of a unified driver for all

compliant host controllers, and is the reason why

FireWire extension cards come without a device driver

CD.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-115

LAC07-115

for an easy transition to the new stack, resulting in

early adoption.

2.3 LibFreeBoB-2

LibFreeBoB-2 is a C++ library that provides the

translation between the FireWire packet based and

the audio API's frame/buffer based environments.

It can be split into two main parts, being the

discovery & configuration part and the streaming

part.

The discovery & configuration part is

responsible for enumerating the devices that are

available and supported. It also provides device-

specific configuration functions such as setting the

samplerate or controlling the hardware mixer. The

streaming part translates the isochronous packet

streams into audio and MIDI
6

streams and vice

versa.

Although there are standards both for device

discovery (AV/C) and audio transport (IEC61883-

6), a one-implementation-fits-all approach has few

chances to work. The device discovery standards

are rather vague, making it possible to implement

two different subsets with the same functionality,

being equally compliant. On top of that, not all

manufacturers care about the standards (e.g.

MOTU). This is why support for multiple

detection & configuration methods and multiple

stream processors is needed. Device support is

then achieved by combining a specific detection &

configuration method with a specific stream

processing method. This allows to re-use the

common parts between devices.

One example are the BeBoB and DICE-II

devices. Both are standards compliant, but the

BeBoB discovery cannot be used for the DICE-II

devices due to another interpretation of the

standards. On the other hand, the stream processor

for both devices can be the same, as the standard

doesn't leave any room for interpretation there.

The FreeBoB library provides an external C API

that can be used to implement audio clients (JACK

6 There is also support for 'control data' streams that

give feedback on the device status.

backend, ALSA plugin) and control clients (mixer

application, device control panel, ...).

3 Device Discovery and Configuration Layer

The device discovery and configuration layer

performs the following tasks:

� Enumeration of the supported devices

present on the bus

� Enumeration of the capabilities of a device

� Configure the device, providing a

generalized interface for configuration

This layer has very tight coupling with the

device implementation. It is therefore less

generalized, and will not be discussed further.

4 The Streaming Layer

The core function of the streaming layer is to

(de)multiplex the isochronous streams (iso

streams) into audio, MIDI and control streams

having the appropriate format for the client. It

should also recover the timing information.

First, the design of the streaming layer is

described, presenting the general concepts. Then

the implementation is described in more detail.

4.1 Design

Figure 2 shows a conceptual overview of the

FreeBoB library. On the client side it exposes a set

of “ports” that represent the different types of

streams provided to the client.

On the FireWire side there are incoming or

outgoing “iso streams”. Inbetween these two

interfaces there is a “stream processor” doing the

actual work.

Figure 2: Conceptual overview

of the data flow

Client Side FireWire side

AudioPort

AudioPort

AudioPort

AudioPort

MidiPort

MidiPort

ControlPort

ControlPort

AudioPort

AudioPort

AudioPort

MidiPort

IsoStream

IsoStream

IsoStream

Stream
Processor

Stream
Processor

Stream
Processor

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-116

LAC07-116

4.1.1 Client side port interface

Ports define the data transport from and to the

clients. They have a type (audio, midi or control)

that defines the nature of the data flowing through

them, and a datatype property that defines the

format of this data (float, uint24, ...). A port also

has a direction property (playback or capture).

They can support multiple signalling types,

depending on the time granularity required by the

data. Two signalling types are currently supported:

period and packet signalling.

Period signalled ports transfer the data in

'periods' as they are defined by the client. This

allows for period-at-once (de)multiplexing of the

isochronous streams, increasing efficiency. This

signalling type is used for audio buffers.

For packet signalled ports the demultiplexing is

done at the moment a packet is received, making

the data is available at the port as soon as it

arrives
7
. For playback ports, the data is multiplexed

into the stream as soon as it is available at the port.

This allows for the high time-granularity as needed

by MIDI data.

Another property of a port is the data transfer

method. Currently we provide two data transfer

methods: blocking read from/write to a ringbuffer,

and a direct to memory decode method into client

supplied buffers.

4.1.2 FireWire side streaming interface

An 'iso stream' is an abstraction for a sequence

of isochronous packets over time. It is linked to a

specific isochronous channel in a specific FireWire

'topology' (or port in the libraw1394

nomenclature). It's type can be 'receive' or

'transmit'.

The actual packet handling for an iso stream is

performed by an 'iso handler' that interfaces with

libraw1394, as indicated in figure 3. The reason for

this intermediate iso handler is that one iso handler

can serve multiple iso streams. libraw1394

7 « as soon as it is available » in this context should

be regarded as « as soon as the timestamp of the data

expires ».

supports a multichannel isochronous receive mode,

that allows to receive multiple channels at once.

This mode can become important when a lot of

devices are present, because it needs less hardware

resources (only DMA engine, instead of one per

channel).

4.1.3 The Stream Processor

A 'stream processor' is responsible for the

(de)multiplexing of the ports into/from iso streams,

i.e. for the conversion between audio/midi frames

and isochronous packets. Every different data

transport protocol requires a different stream

processor.

The information provided by the detection

process is used to construct a set of ports

corresponding to the composition of the expected

iso stream. It is also used to configure the

(de)multiplexing code.

The last important function of the stream

processor is recovering timing information (when

to signal that a buffer is ready) from the incoming

streams, as well as encoding this timing

information into the outgoing streams.

4.1.4 Making it work

The presented concepts (ports, stream

processors, iso streams and iso handlers) are not

'active' entities. In order to have them perform their

task, two 'active' entities are introduced: the

'processor manager' and the 'handler manager'.

The processor manager is responsible for

managing and executing the stream processors in

the correct manner. This encompasses their

Figure 3: iso streams are fed or

consumed by iso handlers

Stream
Processor

Stream
Processor

Stream
Processor

IsoHandler

IsoHandler

lib
ra

w
13

94

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-117

LAC07-117

initialization, the detection of period boundaries,

the initiation of data transfers, etc...

The handler manager iterates the iso handlers,

meaning that it will make sure that the isochronous

packets are transfered from the kernel to the iso

handlers and vice versa.

4.2 Implementation

The FreeBoB-2.0 streaming layer is written in

C++, in order to facilitate abstraction and code

reuse. This subsection will present the classes used

to implement the design described previously.

4.2.1 The client side port interface

Figure 4 shows a class hierarchy for the client

side port interface. It starts with a Port base class,

containing all functionallity needed to implement

the operations and properties described in the

previous section. This Port class is subclassed for

every port type.

A generic Port does not contain any information

on the location of its data in the isochronous

packets, as this information is specific to the

streaming protocol used for the isochronous traffic.

We provide this information by subclassing from a

[*]PortInfo class. The details of these [*]PortInfo's

are protocol dependant, therefore there is no

common base class for them. The

StreamProcessor for a protocol is aware of the

details of its corresponding [*]PortInfo class.

In order to facilitate the management of a

collection of Ports, a PortManager class has been

implemented.

4.2.2 FireWire side streaming interface

The basic entities on the FireWire side, as shown

in figure 5, are the IsoStream and IsoHandler

classes. The IsoStream class implement the

operations nescessary for processing a single

isochronous stream. This can be either consuming

a sequence of packets provided by an IsoHandler

of the receive type (IsoRecvHandler or

IsoMultiRecvHandler), or producing a sequence

for the IsoXmitHandler.

To manage IsoHandler's, an

IsoHandlerManager class is implemented. This

class creates and destroys IsoHandlers whenever

they are needed. In order to link an IsoStream with

an IsoHandler, the IsoStream has to be registered

with the IsoHandlerManager. This class will

decide wether to create a new IsoHandler or re-use

an existing one (in case of multichannel receive). It

will also determine the type of handler the

IsoStream needs (receive or transmit), and its

optimal settings. Finally it allows unregistering

IsoStreams, destroying IsoHandlers that are not

used anymore.

4.2.3 The StreamProcessor

The StreamProcessor classes are the workhorses

in the FreeBoB library. They perform the actual

operations to translate the client side data to/from

isochronous streams.

Figure 5: Class diagram for the

FireWire side streaming interface

Figure 4: Class diagram for the client

side Port interface, showing support for

AMDTP (IEC61883-6) and MOTU

streaming

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-118

LAC07-118

Figure 7 shows that at one side, the

StreamProcessor is a PortManager, as it presents a

set of Ports to the client side. At the other side, it is

an IsoStream, as it processes a sequence of

isochronous packets.

Leveraging the power of C++, we leave all

common functionallity in the StreamProcessor

base class, and only implement the protocol-

specific parts in the child classes.

In order to manage and 'activate' the collection

of StreamProcessors, a StreamProcessorManager

class is implemented. This class will be discussed

in more detail in the next subsection.

4.2.4 Making it all happen

The two basic 'active' operations of the library

are the reception/transmission of packets, and the

translation of these packets into audio/midi/control

frames. These operations are implemented by the

classes shown in Figure 7.

Isochronous reception and transmission is

executed by the IsoHandlerManager's

workfunction, that keeps running while the library

is started. The StreamProcessors should decide if

they want to process incoming packets and should

always be able to generate valid packets (albeit no-

data or empty packets).

On the client side, a wait() function is provided by

the StreamProcessorManager to have the client

wait for a period boundary. Once a period

boundary is detected, the client wait() function

returns. It should then call a transfer() function to

have the StreamProcessorManager instruct it's

StreamProcessors to demultiplex and decode the

queued packets (in bulk), and to transfer their

contents to the Ports.

For the playback direction the inverse operations

are performed, i.e. Port contents are encoded,

packets are dequeued.

5 Issues and gory details

This section will talk about some

implementation issues that were met when

implementing libFreeBoB-2.

5.1 Embedding and using time information

The IEC61883-6 standard defines a method to

embed the timing information of the frames in the

packet. Most other streaming protocols (i.e. Motu)

use variants of this technique. Therefore it is

interesting to discuss this techique.

The idea behind the method is that every packet

contains a timestamp that indicates the time at

which the sample is to be 'presented'. The sender

thus determines the time instant at which the

receiver should process the sample. Calculation of

the timestamp should be done by recording the

FireWire cycle timer at the instant the sample is

captured, adding the senders processing delay to

this, and then adding some extra time to allow for

transfer delays. Receivers are allowed to add some

extra time to the received timestamp, as long as

this extra time is constant.

The FreeBoB library handles timestamp

synchronization by introducing a timestamp aware

buffer. The basic idea is that every time one or

Figure 6: Class diagram for the

StreamProcessor class

Figure 7: Class diagram for the

active part of FreeBoB

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-119

LAC07-119

more frames are added to the buffer, the

corresponding timestamp is passed along. The

buffer uses these timestamps to calculate the

timestamp of any other frame in the buffer. In

order to cope with jitter issues it uses a delay

locked loop as described in [4].

Since the timestamped buffer is able to predict

the timestamp of any frame in the buffer, it is also

able to predict the time instant at which one period

of frames will be 'presentable'. This prediction is

used by the processor manager to determine the

time to wait for the next period. At initialization,

one stream processor is elected as synchronization

source, and this stream processor will be used to

prediction the buffer transfer time instant.

5.2 Synchronization across topologies

Having the timestamp expressed with respect to

the FireWire cycle timer poses a significant

synchronization challenge. It is not nescessarily

true that this cycle timer is related to the sample

clock of the device. It can also happen that there

are multiple cycle timers in a system, e.g. when

two devices are connected to different host

controllers (hence different busses). This scenario

is currently unsupported, but will be in the future.

Supporting it will require that one global time

reference is elected, and all other time domains get

synchronized to it. This will probably come down

to electing the system timer as the global time

reference, and implementing a cycle-timer to

system time mapping for all domains.

5.3 IPC and multiplexing

There are some unresolved issues regarding IPC

and the fact that different data is multiplexed upon

the same stream.

The first issue is that capture isn't easily

decoupled from playback due to them having to be

synchronized. This prevents the use of playback

and capture by different applications.

The fact that midi is transmitted along with the

audio frames in the same stream poses some issues

when interfacing to clients that don't have a midi

API. Providing midi to a different application as

the audio is also a problem.

In some cases, feedback regarding the device's

status is multiplexed into the isochronous streams.

This can be for example a notification of a mixer

volume change due to a front panel control.

Usually the application needing this kind of

information (e.g. a mixer application) is different

from the one consuming the remainder of the

stream (e.g. jack).

5.4 FireWire based processing units

The FireWire bus is not only used for audio

interfaces, but also for processing units (e.g. TC

PowerCore, SSL Duende). As these devices use the

same concepts and protocols as audio interfaces,

they fit the FreeBoB framework. It is not clear how

they fit in the 'bigger' picture on Linux. In the

Mac/Windows world, these devices present

themselves e.g. as VST plugins. It is currently

unclear to what extent the Linux alternatives

provide support for this.

6 Conclusion

This paper presents the FreeBoB-2 library as

(part of) a solution for FireWire Audio on Linux. It

described the design and implementation of the

library, along with some solved and some

remaining issues.

References

[1] J. Canosa, Fundamentals of FireWire, Questra

Consulting, http://public.rz.fh-

wolfenbuettel.de/~bermbach/research/FireWire/fi

les/basics.pdf

[2] www.linux1394.org

[3] The OCHI1394 specification

http://developer.intel.com/technology/1394/down

load/ohci_11.htm

[4] “Using a DLL to filter time”, Fons Adriaensen

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-120

LAC07-120

Beyond open source music software:
extending open source philosophy to the music with CODES

Evandro Manara MILETTO,
Luciano Vargas FLORES,
Daniel Eugênio KUCK and
Marcelo Soares PIMENTA

Instituto de Informática
Universidade Federal do Rio Grande do Sul

Caixa Postal: 15064
91501-970 Porto Alegre, Brazil,

{miletto,lvflores,dekuck,mpimenta}@inf.ufrgs.br

Jérôme RUTILY
Institut Nat. Polytechnique de Grenoble

Domaine Universitaire
38402 St Martin D’Heres, France,

jerome.rutily@ensimag.imag.fr

Abstract

This paper presents CODES – COoperative Music
Prototype DESign – a Web-based cooperative
music composition environment. This means it
allows any person to connect with other users,
through the Web, and cooperate with them to draft
simple musical pieces, in a prototyping way.
Besides describing our main design decisions and
overall implementation solutions, we will also
briefly discuss our belief that CODES is not just
open source music software, but extends the open
source notion as it reuses publicly available code
(frameworks) and tools, and allows open music
production, in a way as collective as open source
development.

Keywords

Music prototyping, cooperation, WWW, open
source, free music

1 Introduction

Music technology has undergone considerable
changes over the last decades, mainly with an
increasing use of the Internet. An outcome of these
changes is networked music [1] [2], which allows
experimental artists to explore the implications of
interconnecting their computers. Indeed, lately,
Internet-based networked music has attracted a
wider interest from the music technology
community, and the existing applications have
evolved towards more sophisticated projects and
concepts including, for example, real-time distance
performance systems, and various systems for
multi-user interaction and collaboration.

Cooperative music composition environments
are such a case, which early became an interest to
our computer music research group [3]. The
CODES project associates Computer Music with
concepts from the fields of Human-Computer

Interaction (HCI) and Computer Supported
Cooperative Work (CSCW), with the intent to
design interaction so that the system can be useful
and usable even to non-musicians. Besides
musicians, novices are also probably interested in
creating music and participating in musical
experiments, but they lack environments oriented
to their profile. On the other hand, musicians have
not yet developed the tradition of sharing their
musical ideas and collaborating while composing,
and so they would equally benefit from the
experience in a cooperative environment.

CODES – COoperative Music Prototype DESign
– is similar to other Internet-based systems for
music composition, such as those in a survey by
Weinberg [4]. They also enable users to contribute
their own material and to manipulate (listening,
altering, refining, etc.) others’ contribution, usually
through asynchronous interaction and off-line
material manipulation. But in addition to common
characteristics existing in other systems, CODES
addresses several other important aspects to be
considered in a collaborative environment for
music composition/prototyping, such as group
awareness, different levels of interaction,
capability to export/import alternative sound
formats, and support for music prototyping
rationale and for long prototyping sessions. With
this set of additional features, one can track back
some part of the music prototype and understand
the intention and the process followed by its author
to compose it, as an alternative way of learning by
example.

Also, since we want CODES to be used by
anyone, it should not rely on traditional music
notation, nor should demand knowledge of music
theory for its users to prototype music. So, we
developed mechanisms to represent sound patterns
as icons, and the option to intelligently suggest
them to the user, or to offer him an easier access to

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-121

those patterns which could fit well in his music
prototype.

Attributes such as these reflect the free/
libre/open-source philosophy we follow in this
project. This does not apply only to the software
being open-source, but extends throughout the
overall requirements of the project, such as for free
access, availability, accessibility to non-musicians,
portability, reuse of code, collective development
approach, support to a collective/cooperative
composition approach based on experimentation,
etc. Moreover, music is made within CODES in
the same collective/cooperative/prototyping way as
in open source development. This kind of music
will be the result of teamwork, will be a collective
product, will be available on the Web and may be
always open to further modifications. So, it cannot
be dealt with according to the usual authoring laws
of the traditional music market (for instance, we
must find alternative licensing mechanisms that
suit more in this case). It must be seen and treated
by us as what some communities are already
calling “free music” or “open music” [5] [6], and
thus CODES extends the open source notion all the
way to the music itself.

This paper is organized as follows. Our main
design decisions for the CODES project are
presented in section 2. Section 3 describes brief
details on the architecture and implementation of
the CODES environment. Some aspects of the
CODES user interface and of how it is used are
presented in section 4. Section 5 discusses briefly
why we believe that CODES extends the open
source notion beyond its source code development.
Finally, section 6 presents some conclusions and
future goals.

2 The CODES project: design decisions

The major motivation underlying our proposal is
allowing non-musicians to access a virtual space in
order to interact with each other, explore sounds
together, discuss about this exploration, and
retrieve all the discussed information anytime they
want. Therefore, we soon discussed some aspects
that could be essential to consider in the design of
such an environment, which we still use to guide
the development of CODES:

- It must run in a virtual space only, via Web
browser, to ensure that the barrier of
geographic distance among partners
(physical presence) does not become an
issue.

- It must run on a great diversity of platforms
and browsers (at least, all W3C compliant
[7]), minimizing requirements of use and
thus increasing accessibility.

- It should allow independence of a tutor, and

non-structured groups, despite the
possibility of supporting structured groups
with a tutor role, what is usually necessary in
learning situations.

- Due to the exploratory nature of how it is
used, a very important characteristic should
be the users’ possibility to perceive and
analyze group members’ actions on music
prototypes, and to know the reasons behind
each one of these actions. These are aspects
related respectively to awareness and to
prototyping rationale, for which CODES
then must provide support. The concept of
“awareness”, from the CSCW literature,
cannot be precisely and uniquely defined [8].
In the context of CODES, the adopted notion
of awareness is “the understanding of the
actions of other users, what provides for a
user a context for his own actions”.
Prototyping rationale is a mechanism which
allows each user to justify his actions, in
order to make clear to the others the idea or
reasons that guided him to make that
decision. As a result, collaborators in a
prototype will have access to an explicitly
recorded track of all steps that led to the
current prototype state.

- It must support long prototyping sessions: an
important mechanism in any design activity
is the ability to interrupt the session and to
resume it in order to continue the process
from the last break point. A music
prototyping session can take many days or
even weeks before a final result is reached.

- It should offer alternative music encoding
formats, making it easy for users to
export/import their music between different
systems, thus integrating CODES into a
wider context of music systems. Standard
MIDI was chosen here due to its easy
manipulation and compatibility. Although
the sounds of synthesized MIDI files played
on most PCs are still low quality, it yields
some future possibilities, like the conversion
from MIDI to conventional music notation.
We are investigating the use of some mark-
up languages for music – like MusicXML
[9], Music Mark-up Language (MML) [10],
and the Music Encoding Initiative (MEI)
[11] – as interesting alternatives to be
explored. We believe that in a near future
one of them (or some variation thereof) will
be the standardized format of choice for
music content on the Web.

As we can see, several design decisions for the
CODES project were targeted on allowing more
freedom and “openness”. We will discuss that

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-122

further on section 5. Next we will present briefly
some system implementation details.

3 Architecture and implementation of the
CODES environment

CODES implementation follows an open source
philosophy, aiming as well at providing easy
access to its software development and supporting
tools. We went after various publicly available
software frameworks and design patterns, to reuse
well-known solutions. As a consequence, we chose
to build CODES respecting the classic Model-
View-Controller (MVC) architectural model (see
Figure 1). On the server side, it is implemented
trough the WebWork framework (Java) [12]. As
Web server, CODES uses the Apache Tomcat
Servlet Container [13], a reference for Java
applications. Data persistence is done following
the DAO design pattern for data access,
implemented by the Hibernate framework [14],
which stores data in a MySQL database [15]. The
system is organized in a few modules (such as the
Prototype Manager, the Users Manager, and the
Cooperation Manager), and to coordinate them,
CODES implements a Façade design pattern, that
is an interface which provides modularity. Finally,
for the user interface on the client side we are
using AJAX (Asynchronous JavaScript and XML),
which is supported by this architecture, and we
implement it with the Dojo JavaScript framework
[16].

The Java Sound API allows us to focus system
development on both graphical user interface
(GUI) and cooperation aspects, making the sound
handling part easier because of its components that
already offer sound control.

4 The CODES user interface

The user interface was designed to meet
requirements related to interaction flexibility,
robustness, and easiness of use, as well as to

present adequate support when complex musical
information is displayed, thus providing an
effective interaction between users and the
environment. We wanted to reach a balance
between user interfaces that are so “easy” for the
user that they end up depleting his expressiveness,
and others that are so complicated that they
discourage beginners.

In music, some peculiarities make the creation
and conception processes different from those
carried out in other fields. Musical composition is
a complex activity where there is no general
agreement about what activities have to be done
and in which sequence: each person has his own
style and way of working. So, the process of music
composition is difficult to understand and,
therefore, also to learn.

“Prototype” is not a common expression in
music literature. In fact, a “composition” is known
to be the result of a composer’s creative activity.
But the emphasis of our work is mainly on the
process (prototyping), and not on the product
itself. The repetitive cooperation cycle in CODES,
where online partners refine a musical sketch until
its final form is reached, clearly resembles the
incremental prototyping cycle adopted in industry,
and thus we call its result a music prototype.

Music is like an “artistic product”, which can be
designed through prototyping. A musical idea
(notes, chord sequences, rhythms, etc.) is created
by someone (typically for a musical instrument),
and afterwards cyclically and successively
modified and refined according to his initial
intention or to ideas that come up during the
prototyping process.

We believe the experience of this prototyping
process is what’s most interesting in using
CODES. During such an experience, lots of
knowledge sharing will take place, by means of the
rich interaction and argumentation mechanisms
associated, in this environment, to each prototype
modification. So, the process itself will foster all

Figure 1: Architecture of the CODES environment

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-123

the participants’ learning about music and music
making, and that is exactly our main concern. It is
not important to us, at the moment, the quality of
the product (musical piece) that results from music
prototyping with CODES. We are now more
interested in enhancing the experience of music
making, so that non-musicians may also have
access to it, and we may get a better understanding
of how this process works.

In CODES, a musical prototype consists of Lines
(of instruments, arrangements, effects, etc. – see
Figure 2) that can be edited. Editing is typically
done by selecting sound patterns among many of
the predefined patterns made available in CODES.
Sound patterns are high-level musical structures
(small sections of music files in MIDI format),
which then make the processes of choosing sounds
and prototyping easier. It will be made possible, in
the near future of the project, for the user to edit
the sound patterns, as a deeper level of
composition.

A user can create more than one line, that is,
someone can be the “owner” of more than one line
(like user Jerome in Figure 2). By clicking the
“Play” (>) button, the Sound Manipulation
Manager starts the execution of all the lines
enabled for playback (option Mute unselected). All
patterns of the chosen lines, vertically grouped in

the same timeline, are mixed and played, under
complete user control, which can stop and restart at
any time with usual control buttons (Play, Stop,
Forward, Rewind, Pause).

User interaction, therefore, basically includes
actions such as selecting sonic patterns, dragging
and dropping them into lines (what is allowed
through AJAX coding) and playing them, and
combining them with other lines composed by his
“partners” (other users) in the same music
prototype. This combination can occur in different
ways: overlapping (simultaneous playing),
juxtaposition (sequencing), etc.

Cooperative music prototyping is herein defined
as an activity that involves people working
together in a musical prototype. Cooperation in
CODES is asynchronous, since it is not yet
necessary to manage the complexity of real-time
events, if the present goal is just to support the
development of musical prototypes. Users can
access the prototype, do their experiments and
write comments at different times.

In CODES, a musical prototype is initiated by
someone, the “prototype owner”. The prototype
owner uses CODES to elaborate an initial musical
prototype, and to ask the collaboration of other
partners by sending explicit invitations (typically
using an e-mail form from inside the system).

Figure 2: Elements of the CODES editing window

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-124

Partners who accept the invitation can participate
in the collaborative musical manipulation and
refinement of the prototype. The owner can also
leave his prototype in an “open” space, in which
interested users would discover it and then join the
collaboration, as new partners. This way, the group
of partners may evolve into a virtual community
and, therefore, CODES may be classified as
communityware [8].

For better support to cooperative musical
activities, we propose in CODES three kinds of
awareness mechanisms (see Figure 2) [17]:

1. Music Prototyping Rationale: to allow users
to link their explanations with their actions
on music prototypes;

2. Action Logging: to keep an explicitly
recorded track of the steps that led to the
current prototype state; and

3. Modification Marks: to indicate to a user that
a prototype has been modified by others.

Actually, awareness mechanisms offer several
advantages to music prototyping:

- keeping track of decisions;
- tracking progress in music prototyping and

identifying conflicts, which may initiate
negotiation processes between multiple
points of view;

- supporting the construction of cumulative
prototyping knowledge;

- assisting the integration of perspectives from
multiple members of a group;

- “understanding” of each prototype, as there
is no single answer or solution to a music
prototyping problem.

CODES uses icons to represent musical
information, as an alternative to the conventional
music notation (score). Icons allow users to rely on
both audio and visual clues more than on music
theory to choose the right sound patterns. The idea
here is to favor experimentation rather than
theoretical knowledge. Each pattern can be
individually listened to, before being selected and
incorporated into a line on the prototype. Each icon
traces its own sound pattern in a sort of “Cartesian
plane”, where the horizontal direction means
duration of notes and the vertical means pitch
variation. See an example in Figure 3, which
shows the CODES notation and the correspondent
musical staff.

This loose representation of pitch and duration is
inspired in the early “piano roll” metaphor, largely
used in music editing software. This way the user
has a visual feedback of the sound even without
listening to it in beforehand. In fact, we believe no
previous musical knowledge should be required
from any user to create music prototypes using
CODES. The user does not need to know

conventional music notation to create prototypes:
he may select, play and combine such patterns in
an interactive way, by direct manipulation and
experimentation, without taking into account the
formal representation format. However, the
capability to convert from musical prototype to the
score version is one of our next goals, in order to
better support pedagogical uses and further music
theory learning possibilities.

Figure 3: Musical representation in CODES

5 Beyond the open source music software

CODES is open-source from the beginning, since it
is a scientific/academic research, conducted at a
public university, and under public funding. But
we want our project to take this quality further
beyond the mere software that is being developed.
As we saw in sections 1 and 2, requirements and
design decisions such as reuse of code, free access
and availability even to non-musicians, cooperative
music prototyping approach, and alternative music
encoding formats, all show that the CODES project
is being entirely conducted under a free/libre/open-
source philosophy. In other words, the system is
being built to be itself a tool for open content
production.

Sure there will be certain parts in such a project
where achieving the desired freedom/openness will
not be entirely possible. But we believe that just
taking this open source notion as a principle is
already important.

Going further with the free philosophy of our
research, we are also studying alternative licensing
options for all the intellectual products of this
project: the software that forms the system; the
sound patterns available in the system; and even
for all music that will result from using CODES.
These more flexible intellectual work licensing
options are vital in the current global “information
age” context where, according to Esther Dyson,
“the Net dramatically changes the economics of
content” [18]. Traditional copyright or intellectual
property laws cease to be applicable, because they
are too limiting, or they simply do not manage to
survive.

Interesting alternatives may be those of the

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-125

Creative Commons initiative [19], and for the
software, the CC-GNU-GPL, which is being
suggested by government efforts in Brazil [20]. As
far as it concerns the users, it will be made clear
why they should “open their work to the world”, at
least to agree with the philosophy of the project.
This discussion will be an important part of the
CODES project website, contributing to increase
general consciousness about the “free/libre/open-
source work” issue, which is becoming more and
more important in present times.

6 Conclusion

CODES software is still under development, but
we have already conducted a number of small scale
studies with a partially functional prototype, in
order to evaluate its use, identify and correct
problems, and determine new requirements. The
most interesting result of this preliminary
assessment was that, in addition to the
“conventional” edit-listen-publish-cooperate-refine
procedure for which we have initially developed
CODES functions, users were able to find other
creative applications for it:

- as an effective support for music learning;
- as an entertainment tool (DJ-like perfor-

mance/experiments);
- as accompaniment system for human live

performance.
This flexibility to accept new uses, together with

several features to support the use by non-
musicians, indicate both that we are applying a
free/libre/open-source philosophy in all facets of
the whole CODES project (not just in open-
sourcing the software code), and that this notion
can indeed be extended to other fields besides
source code development. This discussion was our
aim with this paper, along with presenting briefly
the architecture, implementation and user interface
details of the CODES environment.

We have shown throughout this paper that the
open source notion can even be extended to the
very main purpose of a music software, and
equally to the music that will result from its use. In
this case, developers must care to treat such music
as “free music”, or open content, and to take the
proper measures to make it practicable (e.g.
dealing with alternative licensing options).

By allowing non-musicians to have access to a
musical creative experience, we are again
practicing a free philosophy, since we are “freeing”
users from the need to know music theory and to
know how to play a musical instrument. As in
open-source software philosophy, where source
code is available to the public, we believe music
should not be held exclusively by those who know
the “secrets” (theory) of how to make it.

We also want to make clear that, despite
focusing on non-musicians, we are not discarding
the use of CODES by actual musicians too. In fact,
it will be even of interest to assess, in the near
future, what kind of uses that experienced
musicians may find for this cooperative music
prototyping environment.

Another aspect remaining to be explored is the
implementation of real-time interaction in the
CODES architecture. Interaction among users in a
synchronous fashion may bring up new features
and properties not considered until now.

7 Acknowledgements

This project is being partially supported by the
Brazilian research funding councils CNPq and
CAPES.

References

[1] A. Barbosa. Displaced soundscapes: a survey
of network systems for music and sonic art
creation. Leonardo Music Journal 13: 53–60,
2003. MIT Press, Cambridge, Massachusetts.

[2] Organised Sound, 10(3) [issue on Networked
Music]. Cambridge University Press,
Cambridge, UK, Dec. 2005.

[3] UFRGS Computer Music Research Group.
LCM – Computer Music Lab.
http://www.inf.ufrgs.br/lcm/, accessed in Dec.
2006.

[4] G. Weinberg. The aesthetics, history, and
future challenges of interconnected music
networks. In Proceedings of the International
Computer Music Conference (Göteborg,
Sweden, 2002). ICMA, 2002.

[5] R. Samudrala. The Free Music Philosophy.
1998. http://www.ram.org/ramblings/philoso
phy/fmp.html, accessed in Dec. 2006.

[6] Free the sounds... and you free the music.
http://freethesounds.org/, accessed in Dec.
2006.

[7] W3C. World Wide Web Consortium.
http://www.w3.org/, accessed in Dec. 2006.

[8] O. Liechti. Awareness and the WWW: an
overview. ACM SIGGROUP Bulletin 21(3):
3–12, Dec. 2000.

[9] M. Good. MusicXML: an Internet-friendly
format for sheet music. In Proceedings of the
XML Conference and Exposition (Orlando,
2001).

[10] J. Steyn. Music Markup Language.
http://www.musicmarkup.info/, accessed in
Dec. 2006.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-126

[11] P. Roland. The Music Encoding Initiative
(MEI). In Proceedings of the International
Conference on Music Applications using XML
(Milan, Italy, 2002).

[12] OpenSymphony. WebWork. http://www.open
symphony.com/webwork/, accessed in Dec.
2006.

[13] The Apache Software Foundation. Apache
TomCat. http://tomcat.apache.org/, accessed in
Dec. 2006.

[14] Red Hat. Hibernate. http://www.hibernate
.org/, accessed in Dec. 2006.

[15] MySQL AB. MySQL: The world’s most
popular open source database.
http://www.mysql.com/, accessed in Dec.
2006.

[16] Dojo Foundation. Dojo, the Javascript toolkit.
http://dojotoolkit.org/, accessed in Dec. 2006.

[17] E. M. Miletto et al. CODES: supporting
awareness in a Web-based environment for
collective music prototyping. In Proceedings
of the Brazilian Symposium on Human
Factors in Computer Systems, IHC 2006
(Natal, Brazil, Nov. 2006).

[18] E. Dyson. Intellectual value. Wired 3(7): 136–
141 and 181–185, Jul. 1995. http://www.wired
.com/wired/archive/3.07/dyson.html, accessed
in Dec. 2006.

[19] Creative Commons. http://creativecommons
.org/, accessed in Dec. 2006.

[20] Technical Committee for the Implementation
of Free Software in the Federal Government.
Portal – Free software licenses.
http://www.softwarelivre.gov.br/Licencas/,
accessed in Dec. 2006. (In Portuguese.)

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-127

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-128

Audio on Linux: crashing into the 80/20 limit
Keynote by Paul Davis
It seems appropriate, five years after the first Linux Audio Conference, to review how much has changed, how much
has stayed the same, and where we, as a community of developers and users, are going. In particular it seems time
to talk about the way that a well known rule of software developer ("80% of the work takes 20% of the time, and the
remaining 20% of the work takes 80% of the time") seems to characterize the current state of audio on Linux. This
appears true for desktop audio, for music applications, for device drivers and more. This talk will review some of
the highlights of the 80%, but will also talk about how this situation has occured, and what could be done to move
forward.

Saturday: 11h00, H0104

Open Source as a Special Kind of Component-Based System Development
Keynote by Steffen Evers
Saturday: 11h30, H0104

Panel discussion “if (Linux Audio), then {...}, else {...}”
Moderated by Stefan Weinzierl
We have invited several speakers from various backgrounds, both from within the community and from outside of
the community, to shed their light on Linux Audio, and the future. Topic of discussion are the opportunities and
possibilities for Linux Audio in the industry, in research, in art and in education.

Saturday: 12h00, H0104

openSUSE JAD - Tutorials for installation and producing music
Michael Bohle and the JackLab Team
openSUSE JAD - how does it work? A user friendly installation with YaST and other tutorials from the Community
with the JackLab Team,

• How to upgrade a standard openSUSE 10.2 installation to a fully functional professional Digital Audio Work-
station in 3 easy steps using various sources including the JAD repository.

• A tutorial to show the advancement of linux audio and how to workaround things that are still problematical, for
example the limited ability to use VST plug-ins or missing "total recall".

• We will implement a virtual music production environment with real instruments, software-based realtime ef-
fects and tone generators.

• Basics of the following software will be covered: Jack, Ardour2VST (and how to compile Ardour2 with VST
support), energy XT2, Rosegarden, various VST plugins and how to get them working in Linux.

• The following will be covered in more detail: advanced Jack transport and routing, using several synced software
applications at the same time.

Introduction of 1 CD JAD Install (JackLab Audio Distribution) - first developers release We want to present the first
1-CD install of the openSUSE 10.2 based JackLab Audio Distribution and freely give away this CD to all participants.

Thursday: 15h15-16h15 and Saturday: 15h45-17h45, H0107

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-129

Integrating Documentation, End-User Support, and Developer Resources using *.linuxau-
dio.org
Ivica Ico Bukvic, Robin Gareus and Daniel James
In an ongoing mission to consolidate online resources Linuxaudio.org is currently working on integrating LA* mailing
lists as well as deploying a comprehensive end-user documentation, indexing, and developer support platform. With
Dave Phillips’ recent announcement to retire as the maintainer of the invaluable linux-sound.org online resource, this
project has become the top-priority initiative at Linuxaudio.org. At this year’s LAC we envision a talk to announce
ongoing work at *.linuxaudio.org in hopes to kick off a workshop and discussion (developers) as well as present the
results and user-aspects to a larger audience (users). This talk is primarily documentation-oriented and is intended
to serve as a catalyst for a community workshop and discussion (doc-editors, web-devel, artists, etc.). It is our hope
that the ensuing feedback as well as recruitment will assist in developing the next-generation online documentation,
indexing, and support platform for delivering comprehensive and tightly integrated content, incorporating most of
the current communication technologies and protocols (listserv, wiki, forum), and requiring minimal maintenance
overhead.

Thursday, 17h30-18h30, H0107 (for developers) and Saturday, 14h30-15h30, H0107 (for users)

Buzztard Music Production Environment
Stefan Kost and Thomas Wabner
The buzztard [1] project aims to provide a free, open source music studio that is based on the concept of the windows
only and closed source software buzz [2]. Characteristic for this software genre is that all audio is generated by virtual
instruments. The buzz software is not really further developed, as the main developer has lost his source code. In
comparison to buzz, we hope that our software will improve in usability and features in the future. To allow migration
for buzz users, we are providing song-file import and buzz-machine (plugins) reuse.

Keywords tracker, virtual music studio, GStreamer.
Architecture The software uses GStreamer as a media framework. The main UI is build using Gtk+ and optionaly

various other gnome technologies. The project consists of several modules, namely a core library, front-ends and
extensions.

Status The project has released a first version in the end of October 2006. Version 0.2 release is scheduled for
spring 2007.

References
[1] Stefan Kost et al. 2002-2006. Buzztard Music production Environment.

http://www.buzztard.org
http://en.wikipedia.org/wiki/Buzztard

[2] Oskari Tammelin. 1997-2000. Buzz (3rd Generation Tracker).
http://www.buzzmachines.com
http://en.wikipedia.org/wiki/Buzz_%28software%29

Thursday, 13h00-13h45, H0107

blue: a music composition environment for Csound
Steven Yi
blue is a music composition environment for Csound. It is written in Java and works anywhere a Java Virtual Machine
version 1.4 or higher is available. By using blue’s SoundObjects, Instruments, NoteProcessors, timeline, mixer, param-
eter automation, and other features, users are able to work quickly and intuitively to express and shape musical ideas.
With the tools provided in blue, the user is able to take advantage of all of the features of Csound in an environment
designed to make the compositional experience focused, productive, and enjoyable.

blue Homepage: http://www.csounds.com/stevenyi/blue
Thursday: 14h00-14h45, H0107

http://www.buzztard.org
http://en.wikipedia.org/wiki/Buzztard
http://www.buzzmachines.com
http://en.wikipedia.org/wiki/Buzz_%28software%29
http://www.csounds.com/stevenyi/blue

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-130

Firewire Audio on Linux
Pieter Palmers
Together with the "Firewire Audio on Linux" talk, this demo will provide an overview of the current status of Firewire
based audio and music on Linux. We will demonstrate some firewire audio interfaces, illustrating what we currently
can and can’t do. We’ll also show some more exotic features that make the Linux implementation stand out compared
to their Windows/MacOS counterparts.

Thursday: 16h30-17h15, H0107

Stereo, Multichannel and Binaural Sound Spatialization in Pure-Data
Georg Holzmann
The goal of this workshop is to show how to position sound in space (stereo, multichannel and binaural). This should
be done from a user point of view, without explaining the detailed mathematic behind the algorithms. Therefore
existing and open-source implementations in Pure-Data will be used and explained.

Topics:

• stereo-panning methods

• vector based amplitue panning (VBAP)

• ambisonic

• binaural ambisonic and 3D room simulation

To all topics I will explain the handling of the Pd implementations and the advantages/disadvantages of the specific
methods demonstrated on examples.

Friday, 13h30-14h30, LA Pool (H2038)

A Software-based Mixing Desk for Acousmatic Sound Diffusion
André Bartetzki
By commission of the Studio für elektroakustische Musik (SeaM) at the Musikhochschule in Weimar, I’m developing a
software-based mixing desk for acousmatic performances. The software is written in the SuperCollider3 language and
is therefore platform independant. Besides the necessary fast computer the hardware consists of multi-channel audio
interfaces (+24 in- an outputs) and a large MIDI-controller with 24 faders, rotary knobs etc. as well as a USB key pad
with assignable buttons. Within this project I try to overcome the usual difficulties with traditional analog or digital
mixers, which are barely suited for the concert diffusion of tape music. Mixing desk are well structured to reduce a
larger number of (mono) input signals to less outputs. But in concerts of electro-acoustic music we deal very often
with less source signals (sometimes multi-channel) to distribute them to a larger number of loudspeakers. There are
more than 48 speakers in some acousmatic setups, sometimes grouped together in order to get different layers of depth,
height, un/directivity etc. Classical mixing desks have special purpose outputs (direct out, aux, groups) which are not
flexible enough for acousmatic performances in terms of routing, accessability and controllability. The structure of
this software solution reflects these aspects among other things through two new layers in addition to the ususal input
and output channels: a layer of dynamically controllable routing matrices and a layer of in-between multi-channel
outputs. This concepts allows the user to mix one-to-one, many-to-many, one-to- many and many-to-one routing and
superimposing grouping principles according to the needs of the performance.

Saturday, 18h00-19h00, Tesla (before the concert)

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-131

From resistors to samples: Developing open hardware instruments using Arduino, Pure Data
and Processing
Recursive Dog collective (Dolo Piqueras, Emanuele Mazza and Enrique Tomás)
The advent of Arduino, a simple open-source hardware system for data acquisition and prototyping, has made it
possible for anyone to design musical instruments. No experience in electronics or programming is required and,
more importantly, there is no need to invest large sums of money in commercial interfaces.

By combining Arduino with Pure Data, a free audio and visual programming environment in real time, we have
the tools needed to make electronic musical instruments based on interacting with the physical world. Based on these
technologies, but also as part of the Experimental Music Instruments (EMI) project, RecursiveDog has designed some
complex instruments for live performance that you can download from our website (http://www.recursivedog.org).

In this workshop, the technical knowledge needed to design and produce electronic musical instruments will be
taught, using the free open-source tools mentioned above: Pure Data, Arduino and EMI. RecursiveDog will show you
how to become a digital luthier for some hours and design a small music instrument to perform with. Each one of the
instruments and prototypes produced will be used in the Sunday’s final jam session.

Thursday, 13h00-14h30, MacPool (H3014), at other times that the MacPool is open, work on the instruments can
be continued.

Developing Shared Tools: a Researchers Integration Medium
Fábio Furlanete and Renato Fabbri
The liNICS Computer Music dedicated Linux distribution Case Study.

The liNICS Linux distribution started as a tool for a doctoral research experiment in Computer Music. After that,
it has been widely used at the Interdisciplinary Nucleus of Sonic Communication (NICS), an institution based at the
University of Campinas, Brazil. From the beginning of 2006, liNICS has allowed a considerable interaction between
musicians, engineers and mathematicians by use and development at different levels of the system. Feature demand
guided feedbacks and how-to requests made salient how useful it is to count with each other’s knowledge. The result
of this strong interaction between artists and researchers has been the production of multi-author papers, new tools
learning, group study proliferation, music production, and the widening of interests. In such a way, it became clear the
capacity of intensifying people’s involvement with each other’s work by the development of a shared tool, and how
the open development format can be useful for an already established research institution. This workshop is meant to
be a BoF session. The initial issue established by a liNICS experience overview, some technical procedures and the
social phenomena involved.

Thursday, 15h00-17h00, MacPool (H3014)

Livecoding with SuperCollider
Alberto De Campo and Powerbooks Unplugged
Writing code as a performance style has become an underground trend (cf toplap.org). Among current interactive
programming environments, SuperCollider3 and its extension library JITLib offer particularly elegant support for
the expression of musical ideas as code, and rewriting in realtime. The ensemble ’powerbooks unplugged’ explores
this approach in its most communal form: playing on unamplified laptops, sharing both sound events and the code
that generates them, thus holding musical conversation by exchanging ideas. The workshop sessions will show the
basic concepts; participants are encouraged to bring their own laptops, with a current install of sc3 and WLAN card.
Participants are also invited to join the Live Coding session(s) on sunday.

More info: http://toplap.org, http://pbup.goto10.org
Thursday: 13h00-14h30, LA Pool (H2038) and Friday, 11h00-12h30, LA Pool (H2038)

http://www.recursivedog.org
http://toplap.org
http://pbup.goto10.org

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-132

,

Python for Sound Manipulation
Renato Fabbri and Fábio Furlanete
Python is an dynamically typed, interpreted and interactive programming language that uses automatic memory man-
agement and is able to easily import diverse libraries. Therefore, it is adequate for non-professional programmers
willing to use diverse functionalities, such as usual multimedia computer users. For audio manipulation, there is the
SndObj library, called upon Python by the PySndObj module, that integrates traditional audio tools such as filters,
syntethizers and signal mixers. On the other hand, we have Numerical Python, that adds fast multidimensional array
facilities to Python, and ctypes, a ffi (Foreign Function Interface) package for Python, that can wrap C libraries in
pure Python. In that way, we can create and modify simple and clean Python programms for audio and music creation
with basic SndObj library objects, and, progressively modifying the code, introduce array processing and the use of
external libraries for audio manipulation. Besides learning how to use Python for synthesis and audio manipulation,
the attenders will learn to load different file formats and output sound through Alsa and jack.

Friday, 11h00 - 13h00, LA Pool (H2038)

Canorus - a music score editor
Reinhard Katzmann and Matevž Jekovec
Canorus is a free next generation cross-platform music score editor. It could be called a sequel of a well-known KDE
music score editor, NoteEdit. Canorus was founded by NoteEdit developers mainly due to NoteEdit ’s poorly-designed
bases (like lack of developers documentation). Canorus means sweet, rich, deep, warm, friendly and gentle sound and
harmony. This is exactly what Canorus should present: A friendly user interface, deep and strong fundamentals, a
warm welcome to newcomers and a rich set of features. The workshop is intended for developers and end users. It
presents the current state of development, showing a demo of the program, last but not least presenting the roadmap
for the further development process.

For more information about Canorus please read http://canorus.berlios.de/wiki/index.php
Friday, 13h30-15h30, MacPool (H3014)

Stochastic Composition with SuperCollider
Sergio Luque
After starting with a general introduction to SuperCollider3: the programming language and the server architecture;
we will explore several ways of working with stochastic procedures to compose algorithmically and to synthesize
sounds. We will make use of SuperCollider’s powerful Patterns and Events framework to create musical structures
by combining random distributions, tendency masks and Markov chains. Also, we will read through the code of the
pieces that I will present during the Friday night concert. Note: this workshop is completely SuperCollider beginner
friendly.

More info: http://www.sergioluque.com
Sunday: 11h00-13h00, MacPool (H3014)

http://canorus.berlios.de/wiki/index.php
http://www.sergioluque.com

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-133

Compiling Simulink Models as SuperCollider UnitGenerators
Martin Carlé and Sönke Hahn
Simulink is a widely used modeling language for general purpose simulations and systems design. It extends the basic
matrix computational features of MatLab towards a compilable data- flow paradigm with a graphical interface similar
to MAX or PD. Our demonstration will show how functional models and simulations within Simulink can be tuned for
realtime execution and compiled as multichannel in-out SuperCollider UnitGenerators. It should be discussed how this
links or presents an alternative approach to Faust (Functional AUdio STreams) and Q. Further, the SimPowerSystems
Toolbox allows to simulate a variety of electrical circuits. We will demonstrate how simple vacuum tube models, tube-
amplifier circuits and ancient ENIAC flip-flops are to be set-up, compiled and installed within an automated research
and development circle. While Simulink is commercial software, sources and compiled UnitGenerators are not. Other
than for MatLab in Octave there is no free counterpart we know of. Since Simulink is a "quasi industry standard"
it offers enormous access to free (especially physical) models and signal processing knowledge. Our intents are to
explore them and to provide an easy and effective way of using them for musical purposes. The whole development
framework heavily depends on free and open source software (JACK, SuperCollider, Linux etc.) and our contributions
to the processes will be published under GPL.

Thursday, 17h30-18h30, LA Pool (H2038)

Video Editing with the Open Movie Editor
Richard Spindler
The Open Movie Editor is a simple video editing software that integrates with the Jack Audio Connection Kit and
provides synced editing with all audio applications that implement the jack transport control, like ardour for example.
It’s designed with usability in mind, therefore easy to use for the beginner, yet aims to be powerful enough for the
amateur film and video artist. The demo will start with a comprehensive yet compact overview of the available features
and how to use that functionality. It will conclude with a hands on experience and allow the audience to make its first
steps with the software. There will also be room for potential users to propose features that they would like to see in a
video editing tool for linux.

The Homepage of the software is http://openmovieeditor.sourceforge.net/
Friday, 14h30-15h30, LA Pool (H2038)

Faust Hands On Demo
Yann Orlarey and Albert Gräf
This hands on demo will give the audience the opportunity to discover and practice Faust (http://faust.grame.fr): an
easy and powerful audio programming language. It should be of interest for ALSA and Jack developers but also for
users of existing languages like PD, SC or Max.

As we will see, Faust offers an interesting alternative to C for the development of high performance audio applica-
tions and plugins. Faust is a very expressive language, programs can be typically 100 times shorter than the equivalent
C programs. It is the first audio language to be fully compiled. Faust programs are translated into highly optimized
C++ code. This code works at sample level without any overhead and can compete with hand written C code in
terms of efficiency. Finally Faust offers an easy deployment on multiple platforms. From a single Faust program, the
compiler can generate native implementations for Alsa, Jack, LADSPA, SC, PD, VST, MAX,...

As we will also see during this hands on demo, Faust is not aimed at replacing existing music languages, but at
offering a useful complement to them. We will show how easy it is to produce native plugins for various architectures.
In particular we will demonstrate the production of PD plugins and patches thanks to the powerful faust2pd utility
(http://q-lang.sourceforge.net/examples.html#Multimedia).

Saturday, 16h00-17h00, LA Pool (H2038)

Technical tour of the T-Labs
Sascha Spors
In collaboration with Berlin’s Technical University (TU Berlin), Deutsche Telekom Laboratories have been established
on the TU Berlin campus. Our mission is to conduct pioneering research into innovative information and telecommu-
nications technologies for the modern marketplace. Behind the scenes, Linux Audio is being used for the research and
development of audio applications, such as binaural technologies and wave field synthesis.

Friday: 13h00 till 15h00, meeting point 13h00 at the Info desk. Maximum of 30 persons can attend

http://openmovieeditor.sourceforge.net/
http://faust.grame.fr
http://q-lang.sourceforge.net/examples.html#Multimedia

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-134

Wave Field Synthesis compositions

For the Wave Field Synthesis system in lecture hall H0104, four compositions have been prepared, which were played
in a loop on all days of the conference.

East (from Atlas) (2007) 17:00
Christian Calon

Based on an idea of cartography, the Atlas project, in its final form will be a spatial installation. Musically, it is
an hommage to man’s creative enterprise which consists into probing the unknown with the help of sound making
instruments and then to turn ephemeral impressions into imperishable creations.

This part of Atlas, East, was realized first as a concert version. The composition and the spatialization followed the
concept of soundfield, which a WFS excels at reproducing. All sounds were generated as correlated multitrack objects
to be placed and spatialized as small constellations in this larger sound field, in order to create a multi-directional space
for the listener.

The music is based on the sounds of traditional music instruments from the Far Eastern regions of the Earth.
The realization of East was made possible with a commission from the Inventionen Festival/DAAD, Berlin, and

the Canada Council. I am very grateful to these institutions whom I warmly thank for triggering and supporting this
stage of the large Atlas project.

In its final spatial installation form, Atlas will stage several parallel maps:

• in sound, it is a tribute to the creative enterprises of man in probing the unknown with the help of his musical
instruments

• as a silent and virtual monument, the projected bodyscape images will present as another cartography, a surround
topography of skins and faces of mankind in its richness and diversity

• at the same time projected texts appearing on or around the bodyscapes, will draw and list an underlying world
map of Infamies, acts of hate, violence and power, perpetrated by man on his fellow man.

Biography
His first works emerged in Canada and soon brought him international attention. In 1989-90 he acted as vice-

president for the CEC. In 1991 he was appointed to the musical direction of the GMEM (France) and in 1995, as a
guest of the DAAD, he went to Berlin where he lived for several years.

His concert works, sound installation or radio projects have all in common the exploration of the listening experi-
ence. The conception of sound shapes projection and the importance of listening contexts are at the heart of his creative
research leading to a on-going process of investigation of new technologies. In parallel, he pursues his reflection on
the narrative forms through writing and composing for the radio medium.

His work is performed worldwide and received honors in major international competitions: 2006 - Prix Opus,
Quebec, 2004 - Represents Canada at the World New Music Days (Switzerland), 2003 - Distinction at the International
CIMESP competition (Brasil), Selection of the Confluencias International Competition (Spain); 2001 - Grand Prix
Phonurgia Nova International (France); 1999 - Grand Prix Marulic of the UER/EBU (European Broadcasting Union);
1997 - Distinction at Prix Ars Electronica (Austria); 1996 - Lynch-Staunton Prize, Canada Council (Canada); 1995
- Distinction at Prix Ars Electronica (Austria); 1995 - Berlin DAAD guest (Germany); 1994 - 2nd Prize, Bourges
International Competition (France); 1991 - 2nd Prize, NEWCOMP International Computer Music Competition (USA);
1989 - 1st Prize, Bourges International Competition (France); 1989 - Canada representation at the World Music Days
ISCM (France); 1988 - 2nd Prize, NEWCOMP International Computer Music Competition (USA); 1985 - 1st Prize,
Luigi Russolo International Competition (Italy)

His first solo CD « Ligne de vie » (IMED 9001) was proposed for the 1990 Grammy Awards (USA) and the second
CD « Les corps éblouis » (IMED 9838) was nominated for the album of the year at the 1998 Opus Awards (Canada).
His music is published on the Empreintes DIGITALes label (Montreal) and also appears on various labels (coming::
The Ulysses project, surround DVD).

A free-lance artist, he now lives in Montreal.
Part of the WFS-Loop

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-135

Rituale (2004) 15:00
Hans Tutschku
The 15 minute piece “Rituale” (2004) processes human voices and instrumental sounds from various cultures to a
sound ritual. It is a continuation of the work on “Rojo” and “object-obstacle”, which were both also concerned with
the theme of rituals. The composition uses extensively the possibility to place sound sources between the speakers and
the listeners - and so inside the listening room. In this way the sounds come very close to the listeners.

“Rituale” was originally (in 2004) created for the IOSONO Wave Field Synthesis system in the Ilmenauer Lin-
denkino, and was adapted for the lecture hall of the TU Berlin in 2007.

Biography Member of the "Ensemble for intuitive music Weimar" since 1982. He studied composition of elec-
tronic music at the college of music Dresde and had since 1989 the opportunity to participate in several concert cycles
of Karlheinz Stockhausen to learn the art of the sound direction. He further studied 1991/92 Sonology and elec-
troacoustic composition at the royal conservatoire in the Hague (Holland). 1994 followed a one year’s study stay at
IRCAM in Paris. He taught 1995/96 as a guest professor electroacoustic composition in Weimar. 1996 he participated
in composition workshops with Klaus Huber and Brian Ferneyhough. 1997-2001 he taught electroacoustic compo-
sition at IRCAM in Paris and from 2001 to 2004 at the conservatory of Montbéliard. In May 2003 he completed a
doctorate (PhD) with Professor Dr. Jonty Harrison at the University of Birmingham. During the spring term 2003 he
was the "Edgar Varèse Gast Professor" at the TU Berlin. Since September 2004 Hans Tutschku has been working as
composition professor and director of the electroacoustic studios at Harvard University (Boston). He is the winner of
many international composition competitions, among other: Bourges, CIMESP Sao Paulo, Hanns Eisler price, Prix
Ars Electronica, Prix Noroit and Prix Musica Nova. In 2005 he received the culture prize of the city of Weimar.

Part of the WFS-Loop

Streams (2007)
Victor Lazzarini
Streams is a multi-dimensional woodwind quartet, set in 3-D physical space and in the several dimensions of
frequency-space. The piece is roughly composed of three overlapping sections, starting with a slow continuous-sound
part where each of the four instruments get split in two and glide around the space eventually condensing back
together. The middle section starts with chord-forming lines that are spun around the space, continuing into brief
statements of melodic motives that eventually lead to interlocking ostinatos. These accellerate to an impossible tempo
and then slow down to the original speed. The third section is dominated by an ever-ascending canon (by tone),
played by slightly un-synchronised parts. A final coda is based on the ideas/texture of the first section. The piece
was composed mostly using software specially developed by the composer for spectral and time-domain processing.
This wavefield-synthesis version is dedicated to the TU-Berlin WFS team: Marije, Simon, Torben, Thilo, Daniel and
Eddie.

Biography Victor Lazzarini is a composer and researcher working mainly in the area of Computer Music. A grad-
uate of the Universidade Estadual de Campinas (UNICAMP) in Brazil, he completed his doctorate at the University
of Nottingham in 1996. His past musical activities also included movie soundtrack composition and performance as
jazz pianist and arranger. He is currently a Senior Lecturer at the Music Department, NUI Maynooth, Ireland, where
he also directs the Music Technology Laboratory.

Part of the WFS-Loop

Reale Existenz! (2007)
André Bartetzki
This piece is based on short fragments of a lecture by the Austrian physicist Schrödinger. Erwin Schrödinger, one of
the inventors of quantum physics, got very popular due to his thought experiment with a cat in a closed box in which
he tried to illustrate the superposition of quantum states. Coupled to the state of a decaying atom (via a Geiger counter
and a flask of acid) the cat is after a while both dead and still alive according to the superposition of the two possible
states of that unstable atom. Only a collapse of the wave function of this system - caused by an observer or by the
influence of the macroscopic environment - could the cat release of its indecisive state.

Biography André Bartetzki was born in Berlin in 1962. After a professional training and a few years of working
as sound technician at the East-German state broadcast station and recording studios he studied sound engineering
at the Hochschule für Musik "Hanns Eisler" in Berlin. During his studies, he began to set up a studio for electroa-
coustic music at the Hochschule, and between 1992 and 2002 he has lectured there and directed the studio. He has
also given lectures and workshops in sound synthesis and algorithmic composition at the Technical University in

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-136

Berlin, the Bauhaus-University Weimar, the Hochschule fuer Musik und Theater Rostock, the KlangArt festival in
Osnabrück and at the Academy of Arts in Berlin. Between 1999 and 2004 he worked at the electroacoustic studio at
the Musikhochschule "Franz Liszt" and at the Media Arts faculty of the Bauhaus-University in Weimar.

Besides teaching, he works frequently as a programmer, sound designer and sound engineer with ensembles,
soloists and composers of new music. His software CMask for algorithmic composition is being used by many com-
posers around the world.

Since the mid-nineties he has been developing and performing his own musical and media art projects: tape music,
performances with live-electronics, video and sound installations. His works were performed at international festivals
for contemporary and electroacoustic music such as the Kryptonale Berlin, the ICMC 2002 Gothenburg, the BIMESP
2002 Sao Paulo, the SICMF 2003 and 2004 in Seoul, the ACMC 2005 in Brisbane. He became Finalist at the Bourges
Festival and at the CIMESP Sao Paulo 2001. In 2004 he received a commission for the European Bell Festival by the
ZKM Karlsruhe.

Between 1997 and 2004 he was a member of the board of the German Association for Electroacoustic Music
(DEGEM), where he has worked as the editor of the DEGEM newsletter.

Part of the WFS-Loop

MODES OF INTERFERENCE / 3
Agostino Di Scipio
A small network of electric guitars and amplifiers, left free to resonate from high-gain feedback. A computer handles
this feedback system, preventing sustained saturation and soliciting various system resonances. The process remains
subject to perturbations from the environment (room, court, or else) mediated by the body of the guitars and the strings.
Overall, this work is also a comment on the electric guitar, today little more than a torn-out, consumed pop-culture
icon, whose elementary phallic symbolism is repeated myriads of times every day around us. But especially, the work
proposes a kind of deconstruction of the electric guitar sound: no violent act of performing is staged here to let it come
into existence, no dramatic gesture ("guitar hero") is needed to let the feedback system regulate its own unfolding in
time.

First presentation took place in the XVII century court of the Conservatory of Music of Naples, 23.02.2007.
Biography Agostino Di Scipio has been living in L’Aquila since 1985. Composer of a variety of sound works,

including tape music, sound installations and music scored for instrumentalists (soloists or ensembles) + interactive
computer systems. Many of his compositions develop from unconventional sound synthesis/processing methods in-
spired to phenomena of noise and turbulence, and recently focus on the "man-machine-environment" feedback loop
(for instance his live-electronics solos titled Ecosistemico Udibile). Currently full time Electronic Music Professor at
the Conservatory of Naples, and instructor in live electronics at Centre Creation Musicale Iannis Xenakis (CCMIX),
Paris. A former "visiting faculty member" at the Dept. of Communication and Fine Arts of Simon Fraser University
(Burnaby-Vancouver, 1993), and "visiting composer" at Sibelius Academy Computer Music Studio (Helsinki, 1995),
in 2004 Di Scipio was artist-in-residence for the DAAD Berliner Künstlerprogramm.

Thursday: 14h00-17h00, Friday, Saturday, Sunday: 12h00-17h00, H3021

Command Control Communications
Hanns Holger Rutz and Cem Akkan
Command Control Communications is an interactive installation with video by Cem Akkan and noises by Sciss. One
recipient at a time can choose the “categories” of movies to be shown. Brief loops of commerical hollywood movie
advertisement are used in a junk-art or arte povera fashion: making an aesthetic object out of trash. We are playing with
the stereotype point of view exhibited in practically all of the trailers, which is exaggerated by using a very low image
quality with typically eight frames per second, by sorting them in partly odd categories and mainly by confronting the
viewer with four simultaneous images.

While produced solely on the laws of entertainment of the mass taste and capitalist profit maximization, the themes
and stereotypes clearly reflect the sickness of a society which is the most violent in the western world. The excessive
use of violence and reference to the Christian symbolics (also reflected in the categories of “evil” and “mystery”) seem
to feed an already existing paranoia. When it comes to the “messages”, a surprising congruence with the political
debate as transported by the media democracy is revealed. While it is generally acknowlegded that countries at war
tend to have a cinema that serves as a psychological aid or distraction for the people, we rather gain the impression of
a permanent war.

Sciss aka Hanns Holger Rutz (b. 1977) began to create electronic and noise music around 1999. Between 1999
and 2004, he studied computer music at the Electronic Studio of the Technical University Berlin. Since 2004, he

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-137

is research associate at the Studio for electroacoustic Music (SeaM) in Weimar. His electroacoustic works include
CD-albums (e.g. “Residual” 2002) and E.P.’s (e.g. “Crosshatch” 2004), multichannel concert pieces (e.g. “Strahlung”
2006), works with video (“Achronie” 2002, with video by Cem Akkan), and installation pieces (“Zelle 148”, Erfurt
2006, “Rigid String Geometry” Weimar/Berlin 2006, among others). Live-electronic works encompass solo perfor-
mances, varying duo projects, the ChromaticField trio, and the quartet Hennig/Markowski/Sciss/Sienknecht. Since
1999, development of audio software. In 2003 co-organizing the Salon Bruit platform for experimental music.

Cem Akkan, born 1959 in Istanbul, Turkey. Occupation: photography, recording engineer. Studied communi-
cation sciences in Vienna, lives in Berlin and New York since the early 1990s. Studied audio engineering in NYC.
Various projects involving video and sound.

Thursday: 14h00-17h00, Friday, Saturday, Sunday: 12h00-17h00, H3008

fijuu
Julian Oliver and Steven Pickles
fijuu is a 3D, audio/visual installation. Using a PlayStation-style gamepad, the player(s) of fijuu dynamically manip-
ulate 3D instruments to make improvised music. fijuu is built using the open source rendering engine OGRE and
runs on Linux. in the future fijuu will be released as a Linux live CD project, so players can simply boot up their PC
with a compatible gamepad plugged in, and play without installing anything (regardless of operating system). This
effectively turns the domestic PC into a console for game based audio performances.

http://fijuu.com
Julian Oliver is a New Zealander, free-software developer, composer and media-theorist based in Berlin, Germany.
Julian has presented papers and artworks at major international electronic-art events and conferences worldwide

and, under the moniker ’delire’, has performed game based electroacoustic works at prominent venues throughout
North America, the EU, Japan and the South Pacific. Julian has given numerous workshops in game-design, inde-
pendent game-engine development, virtual architecture and open source development practices worldwide. Julian’s
work in games began in 1998 with the modification of popular 3D shooter engines in an effort to bring disciplines of
architecture and computer music to game design.

In 1998 Julian founded the game-based media laboratory Select Parks, which currently hosts over 120 game-based
artworks and developer resources.

Steven Pickles aka ’pix’ is an Australian artist, programmer and free software developer currently based in Berlin,
Germany.

He has collaborated on numerous projects with groups such as farmersmanual, FoAM, Select Parks and meso.
Steven completed his B.Sc in Computer Science at the University of Adelaide in 1999 and his generalist approach
has lead to research and experimentation in numerous technical fields including sound sythesis, computer animation,
visual programming, physical interfaces and embedded programming.

Thursday: 16h00-17h30, Sunday: 11h00-14h00, H2038

Yue
The Yue project started about three years ago in Reggio Emilia, Italy, and it’s composed by four musicians (Daniele
Torelli, Luca Piccinini, Luca Bigliardi, Sara Menozzi) and a video artist (Andrea Bagnacani) who want to use free
software only. Our activity is mainly live-oriented, and in the last two years we played many concerts all over Italy
ranging from discos to outdoor festivals to pubs, and at the LAC2006 in Karlsruhe. The software parts of our work
is realized with free software running on Debian GNU/Linux systems, the whole live setup includes Seq24, Ghostes,
DSSI plugins like Whysynth and Xsynth, samplers like Fluidsynth-DSSI and Specimen, Ardour, many LADSPA
effect, Freej and Effectv for the video part. We also use “normal” instruments, such as guitars, keyboards and Sara’s
beautiful female voice. Our music is all self-made and available under the Creative Commons Attribution-Share Alike
license.

Thursday: 21h00, C-Base

Video Piece
Jim Hearon
"Above-Under" is a free interpolation of the experimental film "Oben/Unten" (1967) by Luz Mommartz. The exper-
imental black and white film is available in the Prelinger Archives, an original collection of over 60,000 "ephemeral"
(advertising, educationl, industrial, and amateur) films, several of which are available via the current internet streaming
and downloading video site: «http://www.archive.org/details/prelinger». The original soundtrack was by the ICENI, a

http://fijuu.com

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-138

five-man group who are also shown in the film. My version, called "Above-Under", colorizes and processes the video,
and employs a new original digital soundtrack. In several instances the audio is created by the video, and at other
times it is a freewheeling improvisation in the spirit of the original soundtrack. I did not use, sample, or otherwise
employ the original soundtrack in anyway. I was also inspiried by a group of my students who are lately into glitch
music, and wanted to incorporate some of those aspects into the music.

Biography Jim Hearon is an improvisor, and electronic violinist working in multimedia and interactive graphical
environments. After working in the music industry for many years, and teaching part-time at a number of schools,
Jim moved to Honolulu in 2005 to work at the University of Hawaii at Manoa. Jim is an avid long board surfer,
frequently in the Pacific Ocean at Waikiki Beach, and is married to Yuki Horikiri, a Japanese jazz pianist working with
Educational Technology.

Thursday: 21h00, C-Base

Life coding over live coding
xxxxx

Life coding over live coding. Hardware and software construct active and highly audible circuits open to visible
re-configuration. Dramatic CPU and software acts are rendered brutally evident within constructivist, process perfor-
mance; an open laboratory. The symphonic rise of the attempt to piece together fugal systematics is played out against
the sheer noise of collapse and machine crash within a deserted borderland of control.

Biography
ap/xxxxx was founded by Martin Howse in 1998 to necessitate the code-terms expansion implied by a growing and

politically active free software movement. With wilfully avant-garde intent, and through intervention, performance,
staged events, seminars, hardware constructions and readily accessible software, ap interrogates in live descriptive
process software culture and history. Software is viewed as substance. Performances, lectures and large-scale curated
events range across international venues and festivals with further projects elaborating networked environmental code-
creation machines, a language for the streamed entry of endless cinema and the development of promiscuOS, a totally
untethered and highly promiscuous operating system.

Thursday: 21h00, C-Base

faltig
Frank Barknecht

FrankBarknecht is my name. I like PureData.
http://footils.org - http://goto10.org
Thursday: 21h00, C-Base

Linux Cound Night - Plug ’n’ Chill
As usual the club concert is concluded with a Plug ’n’ Chill session, where you can plug in your laptop and join in
with the others to play.

If you want to participate, please let us know at the info desk.
Thursday: 21h00, C-Base

“De la incertidumbre” for computer (2005)
Sergio Luque

Translation: (From the uncertainty)
I.- Y fue que le pareció convenible y necesario (And that was that he fancied it was right and requisite) -

Duration: 9:28
This piece is loosely based on the first chapter of Don Quixote:
“In short, his wits being quite gone, he hit upon the strangest notion that ever madman in this world hit upon, and

that was that he fancied it was right and requisite, as well for the support of his own honour as for the service of his
country, that he should make a knight-errant of himself, roaming the world over in full armour and on horseback in
quest of adventures, and putting in practice himself all that he had read of as being the usual practices of knights-
errant; righting every kind of wrong, and exposing himself to peril and danger from which, in the issue, he was to reap
eternal renown and fame. Already the poor man saw himself crowned by the might of his arm Emperor of Trebizond

http://footils.org
http://goto10.org

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-139

at least; and so, led away by the intense enjoyment he found in these pleasant fancies, he set himself forthwith to put
his scheme into execution.”

II.- Interludio - Duration: 11:28
An interlude (only synthetic sounds were used in this piece).
III.- ¿Qué gigantes? - Duration: 6:00
This piece takes as its point of departure the concept of uncertainty present in the book Don Quixote. Uncertainty

about all things, nothing is sure nor permanent.
In this book, the events, the persons and the objects are perceived in very different ways by all the characters:

Milan Kundera affirms that this book has no characters at all, but egos.
“Fortune is arranging matters for us better than we could have shaped our desires ourselves, for look there, friend

Sancho Panza, where thirty or more monstrous giants present themselves, all of whom I mean to engage in battle and
slay, and with whose spoils we shall begin to make our fortunes; for this is righteous warfare, and it is God’s good
service to sweep so evil a breed from off the face of the earth. ’What giants?’ said Sancho Panza.”

Biography Born in Mexico City in 1976. He is currently pursuing a PhD in Composition at the University of
Birmingham. He received a Master’s Degree in Sonology (with distinction) at the Royal Conservatory in The Hague,
studying with Paul Berg and Kees Tazelaar. He received a Master’s Degree in Composition from the Conservatory of
Rotterdam, studying with Klaas de Vries and René Uijlenhoet. He has a Bachelor’s Degree in Composition from the
Musical Studies and Research Centre (CIEM, Mexico), and has been admitted Associate in Musical Theory, Criticism
and Literature by the Trinity College London.

His music has been performed in Mexico, Germany, the United Kingdom, the Netherlands, France, the United
States, Chile, Spain, Australia, Switzerland and Cuba.

Thursday: 21h00, Cervantes

RecursiveDoor
Recursive Dog collective (Dolo Piqueras, Emanuele Mazza and Enrique Tomás)
Aldous Huxley´s The Doors of Perception was first published in Great Britain in 1954. The book was inspired by
William Blake´s words If the doors of perception were cleansed everything would appear to man as it is, infinite. For
man has closed himself up, till he sees all things through’ narrow chinks of his cavern. Huxley´s book is considered to
be one of the more profound studies of the effects of mind-expanding drugs and what they teach about how the mind
works. As in Huxley´s essays, RecursiveDoor functions as an examiner and critic of social mores, societal norms
and ideals concerning art perception using real time generative audio and visuals controlled by our non- traditional
interfaces. Using Huxley´s words, in RecursiveDoor space and dimension become irrelevant, and perceptions seem to
be enlarged and at times even overwhelming.

Recursive Dog is a Spanish artists collective providing recursive ideas and hacktivism around generative art and
free culture. Recursive Dog uses open source software and hardware like Arduino, Processing and Pure Data or
Csound to develop genetic structures that also depend on the sound activity produced by our performance or by the
audience. You can also join us in our open workshops and become an electronic gypsy like us.

More info: http://www.recursivedog.org
Thanks to Facultad de Bellas Artes de Valencia, Laboratorio de Luz and Facultad de Bellas Artes de Cuenca, Art

Department, IndEvol Group
Friday: 19h00, Cervantes

CYT (2007) 8:00 / DUX (2006) 7:45 / TAU (2005) 5:40
Edgar Barroso
CYT Cyt is the greek root for cell, the human body is a system made up of discrete organs and tissues, however,
individual cells that compose these essential tissues are often short-lived. The skin covering our body today is not
really the same skin we had a month ago. The piece follows this principle in the sense that it is constructed with
"sound cells" that have specific functions and are constantly regenerating to sustain "life". The sounds are classified
depending on the potential of self-renewal, proliferation potential and the degree of differentiation. In addition, the
numerical balance of this sounds, will determine the way in which musical ideas interact, and the variations that
could emerge if that fragile balanced is changed.

DUX From Latin "leader", four sounds conforms the leaders of their legions of sub-sounds. The piece begins
with a single sound, that "hauls" to a series of others that are forming and connecting the music ideas throughout the
piece. The form is determined by this same criteria, is a piece divided in four clear sections, in which each dux sound
has a protagonist role, these sounds are formed by two recordings, cello and contact microphone and the other two

http://www.recursivedog.org

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-140

are generated by synthesis. The creation of sub-sounds are mainly done by re-synthesis and audio processing changing
their location within the space.

TAU The piece is based on the metaphoric idea of one of the six components that form leptons, called Tau. This
particle, in spite of being considered as a lepton, that literately means "slight mass" has more than three thousands
times more mass than an electron. From that idea I wanted it to make an analogy with the sounds, to represent isolated
elements that can exist with no need of other particles, but that will possibly have much more weight than another
phenomena, which at first, would seem dominant, and perhaps represent sound particles. (Not every thing is the way
it "sounds").

Biography Born in Mexico in 1976. Edgar Barroso is at the present time a composer in residence at the PHONOS
Foundation. His education includes a Master in Digital Arts, a Postgraduate Diploma in Composition and Contempo-
rary Technologies and a Bachelor in Music Composition. His music has been interpreted in important forums in North
America, Ibero-America, Asia and Europe. He recently gained the 1st Grand Prize of the Harvard University Live
Electronics International Composition Competition (USA), and is a finalist of the International Composition Compe-
tition "Ensemblia 2007" (Germany). In addition he is dedicated to instrumental practice as a cello player, exploring
diverse techniques of improvisation with/out live electronics.

Thanks to PHONOS Foundation, MTG Music Technology Group, Universitat Pompeu Fabra
Friday: 19h00, Cervantes

Kitchen <-> Miniature(s)
Fernando Lopez-Lezcano
A good quality sound recorder and a kitchen. Humanity tuned to common shapes and sizes that create shared reso-
nances I have come to recognize everywhere there is a kitchen. These tightly chained miniatures explore a few of the
many kitchen utensils and small appliances that I recorded (that is, anything that would fit with me inside my bedroom
closet). Featured prominently through the piece is the mechanical timer of a toaster oven, as well as cookie sheets,
plates, trivets, the klanging sound and inner resonances of the lid of a wok and many more kitchen instruments. More
than 3000 lines of Common Lisp code are used to create large scale forms and detailed sound processing. Without Bill
Schottstaedt’s CLM (Common Lisp Music), Juan Pampin’s ATS (Analysis, Transformation and Synthesis) and Rick
Taube’s Common Music this piece would not have existed. Grani (a granular synthesis software instrument) and other
old software friends I have created over the years helped as well.

Biography Master Degrees in Electronic Engineering (Faculty of Engineering, University of Buenos Aires, Ar-
gentina) and Music (Carlos Lopez Buchardo National Conservatory, Buenos Aires). He has been working in the
field of electroacoustic music since 1976 (instrument design, composition, performance). Has also worked in indus-
try for almost 10 years as a microprocessor hardware and software design engineer for embedded real-time systems,
and taught computer music at Keio Universiy, Japan. He created and maintains the Planet CCRMA at Home Open
Source package collection of music and sound applications for Linux systems. Currently keeps computers and users
at CCRMA happy (most of the time), teaches courses at CCRMA, makes music when time allows, and enjoys the
company of good friends. His music has been released on CD and played in the Americas, Europe, and East Asia.

Friday: 22h00, Tesla

schnitt//stelle
Orm Finnendahl
Version 2.0

In the cooperation with the ensemble Mosaik a composition for flute, oboe and piano will be created. This cycle
explores the possibilities of improvisation and composition in the context of the current state of the art of computer
technology. The sound material from the musicians is automatically transformed in various ways by the computer.
These transformations are realised in realtime, so the musicians can react to these transformations and influence them.

An important aspect of the collaboration with the ensemble is the procedural creation process, in which the musi-
cians can experiment on their own with the programs that have been developed and optimised for them. The results
of these experiments then influence the computer programs during the various stages of the rehearsals, so that the
end result is developed in a process of getting closer to each other. This way of working is prompted by the way of
development of open source, as seen in the creation of software, as well as in projects like the online lexicon Wikipedia.

Biograpy Born in Düsseldorf in 1963, Orm Finnendahl studied Composition, Musicology and Computer Music in
Berlin after some involvement in the Berlin experimental music scene. 1988/89 scholarship at the California Institute
of the Arts in Los Angeles. 1995-98 continuing studies with Helmut Lachenmann in Stuttgart. Collaborations with
ensembles specializing on contemporary music (Ensemble Modern, recherche, Mosaik, Champ d’action, etc.) as well

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-141

as with video and multi media artists, dancers and soloists (Palindrome, AlienNation, Burkhard Beins, etc.). Numerous
awards and prizes, among them Kompositionspreis Stuttgart, Busoni Prize Berlin, CYNETart Award Dresden and Prix
Ars Electronica Linz. A portrait CD for the "Edition Zeitgenössische Musik" of WERGO Records is in preparation.

Currently Orm Finnendahl is Professor of Electronic Composition and Head of the Electronic Studio at the
Musikhochschule Freiburg.

Friday: 22h00, Tesla

Strahlung (2006) 9:54
Hanns Holger Rutz
Strahlung (german for radiation) is a kind of atmospheric landscape that - albeit not conceived as program music - bor-
rows from the uncanny immateriality of radiation. It picks up the occasional but recurring dream motif of radioactive
contamination. The Czernobyl catastrophe twenty years ago is stuck in my mind as a psychic object, a lucid mnemonic
island, and is connected to a paradoxical simultaneity of both attraction by and fear of an invisible nature - or a kind
of animism as is described for example by the Strugatzki Brothers and in Tarkowskij’s ”Stalker“.

Tape music 8-channels, studio: SeaM, Weimar.
(See the installation ”Command Control Communication“ for a biography)
Friday: 22h00, Tesla

North (from Atlas) (2006) 15:00
Christian Calon
The first part of Atlas, North is presented today in a concert version. The music is based on the sounds of traditional
music instruments from the north-western regions of the Earth, pre-dominantly Europe, the Arctic, North America
and the Near-East. The realization of North was made possible with a commission from Sonic Arts Network and a
residency at SARC. I am very grateful to both organizations whom I warmly thank for triggering and supporting the
first stage of this large project.

(See also ”East“ in the WFS-Loop)
Friday: 22h00, Tesla

”Expression“ for 8 loudspeakers (2006) 11:30
André Bartetzki
”Expression“ is the title of the last piece on the last record of the same name that John Coltrane has recorded together
with his quartet shortly before he died in 1967. This title was chosen by himself. When he was asked to add explanatory
texts about the pieces on that album he answered: ”with absolutely no notes. (...) By this point I don’t know what else
can be said in words about what I’m doing. Let the music speak for itself.“

(See ”Reale Existenz¡‘ in the WFS-Loop for a biography)
Saturday: 19h00, Tesla

”Gebrochene Klanggestalten“ for 4-channel tape (2004) 4:20
Weiwei Lan
The German title ”gebrochene Klanggestalten“ means ”broken sound -figure“. This composition processes sound
materials from the everyday life: sound of a slamming door, howling vacuum cleaner, rubbing sounds generated with
a tea-ball on a cooking pot. Using transformation and montage-technical sounds become sound-figures, which are
fractured in multiple ways, for example jumping movements in spacing into small grains.

The synthetic sounds are generated by granular synthesis and phase vocoding. The sound synthesis is implemented
by the programming language Csound. The Csound score is generated with the language Scheme.

Biography Weiwei Lan was born in 1977 in Dandong, China
She started learning the piano at the age of 9. From 1996 until 2001 she studied composition in Peking (graduated

from the China Conservatory of Music in composition with a Bachelor’s degree). Her teachers include Wanchun Shi,
Kunshen Ruan, Weijie Gao, Yibing Cheng.

Since 2002 she has studied electronic composition at the Institut für Computermusik und Elektronische Medien
(ICEM) at the Folkwang-Hochschule in Essen (Germany) with Prof. Dirk Reith. Since 2005 her compositions and
performances have been heard in Europe.

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-142

In 2006, Lan was awarded first prize at the China III Electronic Music composition competition
”MUSICACOUSTICA-Beijing 2006“.

Currently she concerns herself with Live-Electronics, Live-Performance and Sound-Poetry in speech-composition.
Saturday: 19h00, Tesla

The Electronic Unicorn "das elektronische einhorn" (2006)
Georg Holzmann
audio performance with the unicorn interface

The unicorn is the only fabulous beast that does not seem to have been conceived out of human fears. In even the
earliest references he is fierce yet good, selfless yet solitary, but always mysteriously beautiful. He could be captured
only by unfair means, and his single horn was said to neutralize poison. (Marianna Mayer)

An unicorn skeleton found at Einhornhöhle ("Unicorn Cave") in Germany’s Harz Mountains in 1663 proves that
the so-called unicorn had only two legs, one white "magic" hand and four mysterious plates out of metal. The skeleton
was examined by Leibniz, who had previously doubted the existence of the unicorn, but was convinced thereby.

the interface
The unicorn interface consists of 3 main parts: a glove with contacts on the fingertips, a board with 4 contact plates

and a potentiometer on the forehead, the unicorn. The goal of the interface is, to be able to control various parameters
at the same time.

If you touch one of the four contact plates, you can control a specific parameter with the unicorn, relative to
it’s current value. Here it is important, with which finger you touch a plate, because each finger corresponds to one
(musical) voice. For instance plate1 controls volume and plate2 pitch. If you have now finger1 on plate1 and finger2
on plate2 and turn the unicorn, you will change the volume of voice1 and the pitch of voice2.

Additionally there are two buttons on the board to change between presets.
technical realization
A microcontroller (arduino board - an open-source physical computing platform) is used to communicate with the

computer and all sound synthesis is implemented in Pure Data under Linux.
Biography Georg Holzmann, geboren 1982 in Graz, Austria
since 2002 study of audio engineering (focus in computer music and signal processing) at the institute of electronic

music (IEM), Graz
development of audio and video open source software (mainly for Pure Data)
various audio-visual performances and installations at various places, e.g.: Logos Foundation (Gent, Belgium),

NIME06 (IRCAM Paris, France), Museumsquartier (Vienna, Austria), pixxelpoint Festival (Nova Gorica,
Italy/Slovenia), art@radio (Baltimore, USA), piksel (Bergen, Norway), Radio OE1 (Vienna, Austria), Musikprotokoll
(Graz, Austria), ZKM Karlsruhe (Germany), KIBLA (Maribor, Slovenia), Kunsthaus Graz (Graz, Austria),
Porgy&Bess (Vienna, Austria).

more information: http://grh.mur.at
Saturday: 19h00, Tesla

ODD (2006) 10:35
Edgar Barroso
Commissioned by DAAD (Deutscher Akademischer Austauschdienst) to be premiered at the Inventionen Festival
2006.

ODD was conceived based on the SMS tools, which is a set of techniques and software implementations for the
analysis, transformation and synthesis of musical sounds, developed by Xavier Serra an his team at MTG (Music
Technology Group). One of the main processes the SMS offers is the separation of stable pitch components from the
noise elements, naming them "residuals". The textures of the piece are made from this components, that after a process
of constant transpositions creates very dense no-pitch sound masses. In a sense, ODD is a trio, having threes
recognizable sound sources, a violin, a set of percussions and a female voice, which are surrounded and interrupted
by this residual permanently moving textures. Also the morphing and transformation processes are constantly used
to get "variations" ans "transitions" of this instruments. As a metaphor, the spazialization of sound was founded on
the geometrical concept of odd functions that are symmetric with respect to the origin, meaning that its graph remains
unchanged after rotation of 180 degrees about the origin. The idea was to create a permanent moving sonorous space in
which the trajectories of sounds were applied equally to different sounds, but the resulting effect have totally different
semanthic meanings. The meaning of space and distance is determine by a complex system of amplitude layers.
The work´s structure is based in four clear moments define mainly by its background sonic textures, in its internal

http://grh.mur.at

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-143

construction it is also the result of selecting graphic information given by the SMS analysis and subjectively interpret
it as a "score" of the incoming musical events. ODD used the SMS tools as a "prism" that can disperse a "light"
(sound) wave.

(See the Cervantes concert for a biography)
Saturday: 19h00, Tesla

Distance Liquide (2007) 13:00
Hans Tutschku
8-channel electroacoustic composition / commissioned by INA-GRM 2007 / studio : GRM Paris
first performance : January 13, 2007, Maison de la Radio France Paris

To my mother
The picture of liquid, moving and fast dissolving forms became in this composition the metaphor for sound spa-

tialisation in the electroacoustic space. Each musical gesture is bound to a specific space movement, which underlines
its character. On the basis of recorded sequences with a gong and percussion instruments, trumpet, flute and vocal
fragments, these rather distant sound elements develop a common musical discourse. Their very different spectra are
reduced occasionally to the loudest harmonic components, keeping just pure pitches and melodies: their differences
disappeared.

(See ”Rituale“ in the WFS-Loop for a biography)
Saturday: 19h00, Tesla

NTSC - NotTheSameColor (Video Sound Duo)
Dieb13 (Turntables/Computer/Devices) and Billy Roisz (Videomixers/Audiomixer/Videosynthesizer)
The question of a synthesis between image and sound has interested composers and artists from the early days of
Modernism. The 20th century was full of experiments trying to translate one medium into the other, to synchronise
the missions of image and sound. With the rise and development of musical electronics another challenge has arisen
that aims beyond a simple synchronisation of image and sound: the merging of the two media in such a way that
an image-producing medium will generate music and/or a sound-producing medium images. The ensembles Video
Sound Duo Dieb 13 und Billy Roisz and Team Farmersmanual will give an insight into their experiments in this area
at Sonic Arts Lounge.

The setup of NTSC consists of various audio and video instruments, connected in a way that allows multiple ways
of feedback and physical interaction. Audio and video signals leave their domain to get a new function and meaning.
Sound causes images and video signal can be heard. The speaker and the screen finally define whether a signal will
appear audible or visible. Thus, signal routing becomes an integral element of the creative process. The instruments
are partly self built (e.g. ultrasonic sound-/video- synthesizer and ”embedded” mini-computer). The linux-based sound
software is self-written. NTSC is a continuously developing project about interactions between sound and video off
the well beaten paths of computer analysis and synthesis in a live context.

http://ntsc.klingt.org
Saturday: 22h00, MaerzMusik - Sonic Arts Lounge - Haus der Berliner Festspiele

rf (gophgonih) | Total Automation vs. Human Interaction Farmersmanual
With the help of acoustic feedbacks Farmersmanual will weave sound, light and radio frequencies into an endless
loop that spreads slowly but continuously and then dissolves again; the process will be supported by a selection of
tailor-made as well as standardised hard and software.

http://web.fm
A co-production of Elektronisches Studio der TU Berlin, TESLA im Podewils’schen Palais, Berliner Künstlerpro-

gramm des DAAD and MaerzMusik | Berliner Festspiele With support of the Österreichisches Kulturforum Berlin
Saturday: 22h00, MaerzMusik - Sonic Arts Lounge - Haus der Berliner Festspiele

Livecoding
Alberto De Campo and Powerbooks Unplugged
PBUP Latento
The laptop is the next guitar, i.e. the new folk instrument
The laptop is a complete instrument as is

http://ntsc.klingt.org
http://web.fm

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-144

The laptop can also be the entire interface
The laptop in its current physicality is best used while it historically exists - now
Code and music belong to everyone

Sunday: 16h00, Lichthof

Open Hardware Jam
Recursive Dog
The musical results from the workshop on Thursday.

Sunday: 16h30, Lichthof

Unplugged Jam
Livecode vs. Open Hardware
Starting with a jam between the livecoders and the Arduino based sensor driven music, everyone will be able to join
into this unplugged jam.

Sunday: 17h00, Lichthof

Proc. of the 5th Int. Linux Audio Conference (LAC07), Berlin, Germany, March 22-25, 2007 LAC07-145

Index of Authors

A
Adriaensen, Fons 64
Akkan, Cem 136
Amatrinain, Xavier 88
Arumi, Pau 88

B
Baalman, Marije 76
Barknecht, Frank 138
Barroso, Edgar 37, 139, 142
Bartetzki, André . . 130, 135, 141
Blechmann, Tim 55
Bohle, Michael 128
Bukvic, Ivica Ico 129

C
Cabrera, Andrés 70
Calon, Christian 134, 141
Capela, Rui Nuno 43
Carlé, Martin 133
Clüver, Kai 13

D
Davis, Paul 128
De Campo, Alberto 131, 143
Di Scipio, Agostino 136
Dieb13 . 143

E
Evers, Steffen 128

F
Fabbri, Renato 131, 132
Farmersmanual 143
Finnendahl, Orm 140
Flores, Luciano Vargas 121
Furlanete, Fábio 131, 132

G
Galanopoulos, Antonios 104
Garcia, David 88

Gareus, Robin 129
Gräf, Albert 24, 133
Gulden, Jens 1, 49, 96

H
Haag, Christoph 84
Hahn, Sönke 133
Hearon, Jim 137
Hohn, Torben 76
Holzmann, Georg 130, 142

J
JackLab Team 128
James, Daniel 129
Jekovec, Matevž 132

K
Katzmann, Reinhard132
Koch, Thilo 76
Kost, Stefan 129
Kuck, Daniel Eugenio 121
Kumar, Jaya 108

L
Lan, Weiwei 141
Lazzarini, Victor 18, 60, 135
Lee,Chun 104
Lopez-Lezcano, Fernando. . .140
Luque, Sergio 132, 138

M
Mansoux, Aymeric 104
Mazza, Emanuele131, 139
Miletto, Evandro Manara . . . 121

N
Noack, Hartmut 32
NTSC. .143

O
Oliver, Julian 137
Orlarey, Yann 133

P
Palmers, Pieter 113, 130
Perez, Alfonso 37
Pickles, Steven137
Pimenta, Marcelo Soares 121
Piqueras, Dolo 131, 139
Powerbooks Unplugged.143

R
Recursive Dog 131, 139, 144
Roisz, Billy143
Rumori, Martin 84
Rutily, Jerome 121
Rutz, Hanns Holger . 1, 136, 141

S
Schampijer, Simon 76
Sikora, Thomas 13
Spindler, Richard 133
Spors, Sascha 133

T
Tomás, Enrique 131, 139
Tutschku, Hans 134, 143

W
Wabner, Thomas 129
Walsh, Rory 60
Weil, Jan 13
Weinzierl, Stefan 128
Windisch, Franziska 84

X
xxxxx . 138

Y
Yi, Steven 129
Yue . 137

Z
Zeller, Ludwig 84

	Preamble
	Cover
	Publishing informations
	Preface
	LAC 2007 Organisation Team
	Partners
	Review committe
	Music Jury
	Addresses

	Contents
	Thursday - March 22 - Papers
	Proposal for an XML format for Time, Positions and Parts of Audio Waveforms
	Jens Gulden
	Hanns Holger Rutz

	Real-Time Multiple-Description Coding of Speech Signals
	Jan Weil
	Kai Clüver
	Thomas Sikora

	Musical Signal Scripting with PySndObj
	Victor Lazzarini

	Interfacing Pure Data with Faust
	Albert Gräf

	Getting Linux to produce Music fast and powerful
	Hartmut Noack

	Music Composition through Spectral Modeling Synthesis and Pure Data
	Edgar Barroso
	Alfonso Perez

	Friday - March 23 - Papers
	Qtractor - A Audio/MIDI multi-track sequencer
	Rui Nuno Capela

	JJack: Using the JACK Audio Connection Kit with Java
	Jens Gulden

	pnpd/nova, a new audio synthesis engine with a dataflow language
	Tim Blechmann

	Developing LADSPA Plugins with Csound
	Rory Walsh
	Victor Lazzarini

	A Tetrahedral Microphone Processor for Ambisonic Recording
	Fons Adriaensen

	Audio Metering and Linux
	Andrés Cabrera

	Saturday - March 24 - Papers
	Renewed architecture of the sWONDER software for Wave Field Synthesis on large scale systems
	Marije Baalman
	Torben Hohn
	Simon Schampijer
	Thilo Koch

	Offener Schaltkreis, An interactive Sound Installation
	Christoph Haag
	Martin Rumori
	Franziska Windisch
	Ludwig Zeller

	Visual prototyping of audio applications
	David Garcia
	Pau Arumi
	Xavier Amatrinain

	Model Driven Software Development with SuperCollider and the UML
	Jens Gulden

	Sunday - March 25 - Papers
	pure-dyne
	Aymeric Mansoux
	Antonios Galanoopoulos
	Chun Lee

	The One Laptop Per Child (OLPC) Audio Subsystem
	Jaya Kumar

	Firewire Audio on Linux
	Pieter Palmers

	Further Papers
	Beyond open source music software: extending open source philosophy to the music with CODES
	Evandro Manara Milleto
	Luciano Vargas Flores
	Daniel Eugenio Kuck
	Marcelo Soares Pimenta
	Jerome Rutily

	Keynotes and panel discussion
	Audio on Linux: crashing into the 80/20 limit
	Paul Davis
	Open Source as a Special Kind of Component-Based System Development
	Steffen Evers

	Panel Discussion - ``if (Linux Audio), then {...}, else {...}''
	Stefan Weinzierl

	Tutorials
	openSUSE JAD - Tutorials for installation and producing music
	Michael Bohle
	JackLab Team
	Integrating Documentation, End-User Support, and Developer Resources using *.linuxaudio.org
	Ivica Ico Bukvic
	Robin Gareus
	Daniel James

	Demos
	Buzztard Music Production Environment
	Stefan Kost
	Thomas Wabner
	blue: a music composition environment for Csound
	Steven Yi

	Firewire Audio on Linux
	Pieter Palmers

	Stereo, Multichannel and Binaural Sound Spatialization in Pure-Data
	Georg Holzmann

	A Software-based Mixing Desk for Acousmatic Sound Diffusion
	André Bartetzki

	Workshops
	From resistors to samples: Developing open hardware instruments using Arduino, Pure Data and Processing
	Recursive Dog
	Dolo Piqueras
	Emanuele Mazza
	Enrique Tomás
	Developing Shared Tools: a Researchers Integration Medium
	Fábio Furlanete
	Renato Fabbri

	Livecoding with SuperCollider
	Alberto De Campo

	Python for Sound Manipulation
	Renato Fabbri
	Fábio Furlanete

	Canorus - a music score editor
	Reinhard Katzmann
	Matevž Jekovec

	Stochastic Composition with SuperCollider
	Sergio Luque

	Hands On Demos
	Compiling Simulink Models as SuperCollider UnitGenerators
	Martin Carlé
	Sönke Hahn
	Video Editing with the Open Movie Editor
	Richard Spindler

	Faust Hands On Demo
	Yann Orlarey
	Albert Gräf

	Technical Tour
	Technical tour of the T-Labs
	Sascha Spors

	Wave Field Synthesis compositions
	East (from Atlas)
	Christian Calon

	Rituale
	Hans Tutschku

	Streams
	Victor Lazzarini

	Reale Existenz!
	André Bartetzki

	Installations
	MODES OF INTERFERENCE / 3
	Agostino Di Scipio
	Command Control Communications
	Hanns Holger Rutz
	Cem Akkan

	fijuu
	Julian Oliver
	Steven Pickles

	Club Concert at C-Base
	Live performance
	Yue
	Video Piece
	Jim Hearon

	Life coding over live coding
	xxxxx

	faltig
	Frank Barknecht

	Linux Cound Night - Plug 'n' Chill

	Concert at Cervantes
	De la incertidumbre (2005)
	Sergio Luque
	Live audiovisual performance
	Recursive Dog
	Dolo Piqueras
	Emanuele Mazza
	Enrique Tomás

	CYT / DUX / TAU
	Edgar Barroso

	Concert I at Tesla
	Kitchen <-> Miniature(s)
	Fernando Lopez-Lezcano
	Schnitt // Stelle
	Orm Finnendahl

	Strahlung
	Hanns Holger Rutz

	North (from Atlas)
	Christian Calon

	Concert II at Tesla
	Expression
	André Bartetzki
	Gebrochene Klanggestalten
	Weiwei Lan

	The Electronic Unicorn
	Georg Holzmann

	Odd
	Edgar Barroso

	Distance Liquide
	Hans Tutschku

	Sonic Arts Lounge at MaerzMusik
	NTSC - NotTheSameColor
	NTSC
	Dieb13
	Billy Roisz
	rf (gophgonih) | Total Automation vs. Human Interaction
	Farmersmanual

	Unplugged Concert - Lichthof
	Livecoding
	Alberto De Campo
	Powerbooks Unplugged
	Open Hardware Jam
	Recursive Dog

	Live Code vs. Open Hardware

	Index of Authors

