
Developing Spectral Processing
Applications

Sound transformations in the
frequency domain

Victor Lazzarini
Music Technology Lab
NUIM, Ireland

Outline
• The Discrete Fourier Transform.
• Sound transformation with the DFT: convolution.
• The Discrete Short-Time Fourier Transform.
• STFT applications: time-varying filters and cross-synthesis.
• The Phase Vocoder.
• PV applications: timescale modifications and spectral

interpolation.
• The Instantaneous Frequency Distribution.
• Sinusoidal analysis & additive synthesis.
• The spectral classes suite in the Sound Object Library.

The DFT
a discrete-time discrete-frequency
version of the Fourier Transform.

∑
−

=

− −=×=
1

0

/2 1,...,2,1,0)(1)),((
n

n

Nknj Nkenx
N

knxDFT π

takes a sampled waveform and returns
a sampled spectrum.

transforms a sequence representing N equally-spaced time
points of a signal into a sequence of N equally-spaced
frequency points (the spectral components of that signal)

The magic revealed
the DFT uses N sinusoids to detect spectral components in a

waveform.

each sinusoid is tuned to each one of the N equally-spaced frequencies
between - and + Nyquist frequency

The DFT output
is made of N equally-spaced frequency points, starting from
0Hz and up to the Nyquist,

then from -Nyquist upwards back to, but not
including, 0Hz

0, 1, 2, ..., N/2

N/2, N/2+1,N/2+2,..., N/2+N/2 -1
using the sampling rate, these points are relative to

0, 1(sr/N), 2(sr/N),..., sr/2

-sr/2, (-N/2+1)(sr/N), (-N/2+2)(sr/N),..., -1(sr/N)

The IDFT
The DFT represents any time-domain signal as a set of complex
sinusoids at equally-spaced frequencies, between - and + Nyquist.

with the Inverse Discrete Fourier Transform

we can recompose the original signal exactly as
it was before the DFT.

∑
−

=

−=×=
1

0

/2 1,...,2,1,0)()),((
n

n

Nknj NnekXnkXIDFT π

Optimising the DFT/IDFT
• The spectrum of real signals is symmetric around 0Hz, so
(I)DFTs can be optimised to work only with positive
frequencies, half the points + Nyquist.

• The (I)DFT is generally computed with fast algorithms,
which rearrange the formula for faster calculations: the Fast
Fourier Transforms.

• FFT is, for all practical purposes, the same as the DFT (but
faster!)

•Radix-2 FFTs are the most common types (based on power-
of-two sizes).

DFT Summary
time-domain signal (waveform)

DFT

frequency-domain signal (spectrum)

N samples

N/2+1 frequency points

the output: N/2 complex pairs (cosine and sine components),
the positive side of the spectrum. Each complex number is

known as a spectral coefficient.
0Hz and Nyquist points only contain cosine components, so

the spectrum is squeezed into N values.

IDFT Summary

time-domain signal (waveform)

IDFT

frequency-domain signal (spectrum)

N samples

N/2+1 frequency points

the output: N samples representing the reconstituted
(real-valued) waveform.

Convolution
Time-domain convolution is an operation combining two signals:

impulse response input signal

convolution mixes delayed copies of the input
signal, scaled by each sample of the impulse
response.

Because of the delays involved, the output will be longer
than the input: (impulse length + input length - 1) samples

DFT implementation
Time-domain convolution is equivalent to spectral multiplication.
Using a fast algorithm, the DFT can be used to implement
convolution efficiently.

input

impulse

DFT

DFT

 complex
 product

IDFT output

We multiply the two spectra point by point (each one a complex
number) to obtain the spectrum of their convolution.

Implementation details
•One DFT of impulse and several of the input (time-sliced).

•Convolution output length determines the DFT size. Inputs are
zero-padded to the right length (the next power-of-two).

•The input is transformed and multiplied by the DFT of the
impulse.

•The IDFT output is overlap-added to properly reconstitute the
signal, by aligning the time-slices of the original signal.

Overlap-Add

The STFT
The DFT we have seen so far is a single-frame transform, a
single snapshot of a waveform at a particular time.

In order to process dynamic spectra, we will make the
DFT time-dependent: the discrete Short Time Fourier
Transform is born !

The STFT take several snapshots of the developing waveform
at different times. Each one of this, a spectral frame, will
describe the spectrum of the signal at a particular time.

Windows
Each frame is also known as a time window. Extracting the
samples imposes a rectangular window onto the signal.

Rectangular windows are not very satisfactory, for two reasons:

• They introduce discontinuities at the ends of the frame.
• Discontinuities affect the quality of the spectral analysis, which
in turn can compromise the result of the intended sound
transformations.

Windows for STFT
If we also impose an envelope on the extracted samples, we
will solve the discontinuities problem. There are several
window envelope shapes. Common ones are the inverted-
raised cosine shapes: Hamming and Hanning windows.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 256 512 768 1024

Hanning(x)
Hamming(x)

STFT summary
input:

waveform
starting at

time t
window DFT output:

spectrum at time t

We will hop the window along a certain number of samples
instead of moving it one sample at a time.

For Hamming/Hanning windows, we can hop it by ¼ of the
frame (DFT) size.

The STFT generates a frame-full of spectral coefficients for
each analysis time point t.

The ISTFT
The inverse operation takes the STFT frames and reconstitutes
the original waveform. An IDFT is performed, followed by
windowing and the time-domain frame is overlap-added to
correct align the time-slice of the original signal.

input:
spectrum at
time t

IDFT window
output:
overlap-add at
time t

Time-varying filters
By multiplying each spectral frame with the spectrum of
a filter, we can realise frequency-domain time-varying filters.

The discrete spectrum of a filter is found by evaluating its
transfer function for each DFT frequency point. The parameters
of the filter (eg. frequency, bandwidth...) can be varied frame-
by-frame.

In fact, any sound can be used as a ‘filter’: we can take its
STFT and multiply it by the STFT of the other sound. The
result will emphasise the common components of the two
sounds.

Amplitude
The STFT (DFT) output can be converted from its rectangular
format, as a set of cosine and sine coefficients, to reveal more
meaningful parameters.

The amplitude detected at each frequency point is given by the
magnitude of each complex coefficient:

22)]),(([)]),(([)),(()),((knxDFTimknxDFTreknxDFTknxamp +==

This reveals the amplitude spectrum of the signal

Phase
In addition, the coefficients can be converted into phase
information, which is equivalent to the angle of the complex
number:

)]),(([
)]),(([arctan)]),(([)),((

knxDFTre
knxDFTimknxDFTknxphase == θ

The phases relate to frequencies of the components present in
the sound. The phase spectrum contains that information in a
different format to what we are used to.

The conversion into amps & phases is known as polar conversion

Cross-synthesis
Using the amps & phases format we can perform transformations
on the amplitude and frequency contents of spectra, individually.

We can combine the amps of one sound with the phases of another:

input 1

input 2

STFT

STFT

amps

phases

polar to
rect ISTFT output

This is a type of cross-synthesis that is the spectral equivalent of
the well-known channel vocoder.

The Phase Vocoder
The phases obtained from a polar conversion of the STFT
output can be used to estimate the instantaneous frequencies
at each frequency point or bin.

The instantaneous frequency is the time derivative of the
phase. This can be estimated by taking the difference between
the phases of adjacent spectral frames.

From the phase differences, the actual frequencies in Hz can
be calculated. Amps & freqs will compose the Phase Vocoder
analysis output

Implementation Details
• The input to the STFT will have to be rotated according to its
time-point t modulus DFT size. This is to compensate a phase
shift that is introduced between adjacent frames.

More Details
•Phase differences are brought to the -π to π range, by taking
2π factors from them.

•The phase difference is actually how much the detected
frequency deviates from the centre frequency of the bin (the
frequency point). This is given in radians per hopsize samples.

• Conversion to Hz is then as follows:

phase
diffs

+ bin CF
(2π×k×hopsize/N) / 2π×hopsize × SR freqs (Hz)

Resynthesis
Resynthesis of PV data can be done in two ways:
Additive Synthesis: using a bank of sinewave oscillators

ISTFT: re-tracing the previous steps to convert PV data back
into spectral coefficients

ampsfreqs

Hz to phase diffs in rad per hopsize samples

integrate (add consecutive phase diffs)

polar to rectangular ISTFT

reverse-rotate output

Time-scaling
PV data describes a signal at a certain time points as a set of
sinusoids (in terms of their amps & freqs). Time-scaling is easily
performed by altering the period between the points when
converting back to the time-domain:

• changing the re-synthesis hopsize (but keeping to a minimum 4
overlapped frames when using Hamming/Hanning windows)

• keeping the hopsize, but changing the frame readout rate
(repeating frames for time-stretching, skipping for time-compression)

Morphing
A simple yet effective PV data transformation is the time-
varying interpolation of two spectra:

PV data 1

PV data 2

interpolate
bin-by-bin
frame-by-frame

morphed
PV data

amp interpolation factor

freq interpolation factor

The IFD
Another method of frequency estimation is given by the IFD,
which is formulated from the direct derivative of the phase
spectrum in terms of a ratio of DFTs:

+=
)),((
)),('(),),((

kmxDFT
kmxDFTimagtknxIFD

t

tω

where xt is a windowed signal and x’t is the signal multiplied
by the negative derivative of the window.
The frequencies are given in radians/sample, but can
be converted easily to Hz (×SR/2π).

Sinusoidal Analysis
The sinusoidal analysis method searches the spectrum for
peaks and creates tracks from successive matched peaks.
Tracks can contain amplitude, frequency and phase information.

Additive Synthesis
Sinusoidal analysis basically tracks spectral components, but
discard transient and ‘noise-like’ elements. Tracks can then
be resynthesised by using a bank of sinusoidal oscillators.

Track data are interpolated between hop-periods. Interpolation
of frequencies can be done using the phase information or not.

Spectral Classes in the SndObj
Library

Analysis/Resynthesis:

FFT STFT analysis
IFFT ISTFT resynthesis
PVA Phase Vocoder Analysis
PVS Phase Vocoder Synthesis
IFGram IFD + Amps (and phases) analysis
SinAnal Sinusoidal track analysis
SinSyn Sinusoidal synthesis (cubic interpolation)
AdSyn Sinusoidal synthesis (linear interpolation)
Convol FFT-based convolution

Spectral Modifications

PVMorph PV data interpolation
SpecMult spectral product
SpecCart polar-rectangular conversion
SpecSplit/SpecCombine split/combine amps & phases
SpecInterp Spectral interpolation
SpecPolar rectangular-polar conversion
SpecThresh thresholding
SpecVoc cross-synthesis

Input/Output

PVRead variable-rate PVOCEX file readout
SpecIn spectral input
SndPVOCEX PVOCEX file IO
SndSinIO sinusoidal analysis file IO

A Simple Example

A simple morphing class in PD can be created using the following
SndObj code (this is taken from the class constructor):

void *morph_tilde_new(t_symbol *s, int argc, t_atom *argv){
(...)
x->window = new HammingTable(1024, 0.5);
x->inobj1 = new SndObj(0, DEF_VECSIZE, sr);
x->inobj2 = new SndObj(0, DEF_VECSIZE, sr);
x->spec1 = new PVA(x->window, x->inobj1, 1.f, DEF_FFTSIZE, DEF_VECSIZE, sr);
x->spec2 = new PVA(x->window, x->inobj2, 1.f, DEF_FFTSIZE, DEF_VECSIZE, sr);
x->morph = new PVMorph(morphfr, morpha, x->spec1, x->spec2, 0,0,DEF_FFTSIZE, sr);
x->synth = new PVS(x->window, x->morph, DEF_FFTSIZE, DEF_VECSIZE, sr);
(...)
}

Perform Method
The class perform method will look like this:
t_int *morph_tilde_perform(int *w){
 t_sample *in1 = (t_sample *) w[1];
 t_sample *in2 = (t_sample *) w[2];
 t_sample *out = (t_sample *) w[3];
 t_int size = (t_int) w[4];
 t_morph_tilde *x = (t_morph_tilde *) w[5];

 int pos = x->inobj1->PushIn(in1, size);
 x->inobj2->PushIn(in2, size);
 x->synth->PopOut(out, size);

 if(pos == DEF_VECSIZE){
x->spec1->DoProcess();
x->spec2->DoProcess();

 x->morph->DoProcess();
x->synth->DoProcess();

}
 return (w+6);
}

Finis
Deo Gratia

