
Developing Spectral Processing Applications

Spectral processing techniques deal with frequency-domain representations of signals.
In order to transform the time-domain data into its spectral form (and vice-versa), we
will be using techniques of analysis and resynthesis based on the concepts of the
Fourier Transform. This text will explore different methods and approaches of
frequency-domain processing from basic principles. The discussion will be mostly
non-mathematical, focusing on the practical aspects of each technique. However,
wherever necessary, we will demonstrate the mathematical concepts and formulations
that underline the process. Several programming examples are offered to provide a
detailed insight into the signal processing concepts and operations.

1. The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is an analysis tool that is used to convert a
time-domain digital signal into its frequency-domain representation. It is a variation
on the original continuous-time/continuous-frequency Fourier Transform adapted for
discrete signals, so it is perfectly suited for digital audio applications. The underlying
principles of the DFT are similar to those of the Fourier Transform, which is, for all
our practical purposes, more of a theoretical tool. So we will concentrate on the DFT
and try to explore its potential for audio processing.

As stated before, the DFT transforms a signal into its frequency representation and a
complementary tool, the IDFT, does the inverse operation. In the process of
transforming the spectrum, we start with a real-valued signal, composed of the
waveform samples and we obtain a complex-valued signal, composed of the spectrum
samples. Each pair of values (that make up a complex number) generated by the
transform is representing a particular frequency point in the spectrum. Similarly, each
single (real) number that composes the input signal represents a particular time point.
The DFT is said to represent a signal at a particular time, as if it was a ‘snapshot’ of
its frequency components.

One way of understanding how the DFT works its magic is by looking at its formula
and trying to work out what it does:

∑
−

=

− −=×=
1

0

/2 1,...,2,1,0)(1)),((
n

n

Nknj Nkenx
N

knxDFT π
 (1)

The whole process is one of multiplying an input signal by complex exponentials and
adding up the results to obtain a series of complex numbers that make up the spectral
signal. The complex exponentials are nothing more than a series of complex
sinusoids, made up of cosine and sine parts:

)/2sin()/2cos(/2 NknjNkne Nknj πππ −=−
 (2)

2

The exponent j2πkn/N determines the phase angle of the sinusoids, which in turn is
related to its frequency. When k=1, we have a sinusoid with its phase angle varying as
2πn/N. This will of course complete a whole cycle in N samples, so we can say its
frequency is 1/N (to obtain a value in Hz, we just have to multiply it by the sampling
rate). All other sinusoids are going to be whole-number multiples of that frequency,
for 1 < k < N-1. The number N is the number of points in the analysis, or the number
of spectral samples (each one a complex number), also known as the transform size.
Now we can see what is happening: for each particular frequency point k, we multiply
the input signal by a sinusoid and then we sum all the values obtained (and scale the
result by 1/N). The DFT formula is very simple to program and can give us an insight
into how the calculation is performed:

const double twopi = 2*acos(-1.);

// dft takes an input signal *in of size N
// outputs spectrum *out with N pairs of
// complex values [real, imag]
void dft(float *in, float *out, int N){

for(int i=0,k=0; k<N; i+=2, k++){
 out[i]=out[i+1]=0.f;
 for(int n =0; n < N; n++){
 out[i] += in[n]*cos(k*n*twopi/N);
 out[i+1]-= in[n]*sin(k*n*twopi/N);
 }
 out[i] /= N;
 out[i+1] /= N;
 }
}

Consider the simple case where the signal x(n) is a sine wave with a frequency 1/N,
defined by the expression sin(2πn/N). The result of the DFT operation for the
frequency point 1 is

∑
−

=

=−×=
1

0

2 0.5j-)/2(sin)/2cos()/2sin(1)1),((
n

n
NnjNnNn

N
nxDFT πππ (3)

What happened was that the complex sinusoid has detected a signal at that frequency
and the DFT has output a complex value [0, -0.5] for that spectral sample (the
meaning of –0.5 will be explored later). This complex value is also called the spectral
coefficient for frequency 1/N. The real part of this number corresponds to the detected
cosine phase component and its imaginary part relates to the sine phase component.
The DFT operation for freq. 1/N can be seen graphically on fig.1. If we slide the
sinusoid to the next frequency point (k=2) we will obtain the spectral sample [0, 0],
which means that the DFT has not detected a sinusoid signal at the frequency (2n/N).

3

Figure 1. The DFT operation on frequency point 1, showing how a complex
sinusoid is used to detect the sine and cosine phase components of a signal.

This shows that the DFT uses the ‘sliding’ complex sinusoid as a detector of spectral
components. When a frequency component in the signal matches the frequency of the
sinusoid, we obtain a non-zero output. This is, in a nutshell, how the DFT works (and
by extension how the Fourier Transform also works). Nevertheless, this example
shows only the simplest analysis case, we will have to develop our understanding a bit
further to get a more general idea of how it can work for any signal (not just sinusoids
at frequency multiples of 1/N). In any case, the frequency 1/N is a special one, known
as the fundamental frequency of analysis. As mentioned above, the DFT will analyse a
signal as composed of sinusoids at multiples of this frequency.

Figure 2. Plot of sin(2π1.3n/N)

Consider now a signal that does not contain components at any of these multiple
frequencies, how would the DFT cope with this kind of input? We have already
spelled out the answer, it will simply analyse it in terms of the components it has at
hand, namely the multiples of the fundamental frequency of analysis. For instance,
take the case of a sine wave at 1.3/N, sin(2π1.3n/N) (fig.2). We can check the result
of the DFT on table 1. The transform was performed using the C++ code above with
N=16.

point (k) real part (re[X(k)]) imaginary part (im[X(k)])
0 0.127 0.000
1 0.359 0.221
2 -0.151 0.127
3 -0.071 0.056
4 -0.053 0.034

4

5 -0.046 0.022
6 -0.042 0.013
7 -0.041 0.006
8 -0.040 0.000
9 -0.041 -0.006
10 -0.042 -0.013
11 -0.046 -0.022
12 -0.053 -0.034
13 -0.071 -0.056
14 -0.151 -0.127
15 0.359 0.221

Table 1. Spectral coefficients for a 16-point DFT of sin(2π1.3n/N)
Although confusing at first, this result is what we would expect, since we have tried to
analyse a sine wave, which is 1.3 cycles long. We can, however, observe that one of
the two largest pairs of absolute values is found on points 1. From what we saw in the
first example, we might guess that the spectral peak is close to the frequency 1/N, as
in fact it is (1.3/N). Nevertheless, the result shows a large amount of spectral spread,
contaminating all frequency points (see also fig.3). This has to do with the
discontinuity between the last and first points of the waveform, something clearly
seen on fig.2.

1.1. Reconstructing the time-domain signal
The result in the table above can be used to reconstruct the original waveform, by
applying the inverse operation to the DFT, the Inverse Discrete Fourier Transform,
defined as:

∑
−

=

−=×=
1

0

/2 1,...,2,1,0)()),((
n

n

Nknj NnekXnkXIDFT π
 (4)

In other words, the values of X(k) are [complex] coefficients, which are used to
multiply a set of complex sinusoids. These will be added together, point by point, to
reconstruct the signal. This is, basically, a form of additive synthesis that uses
complex signals. The coefficients are the amplitudes of the sinusoids (cosine and sine)
and their frequencies are just multiples of the fundamental frequency of analysis. If
we use the coefficients in the table above as input, we will obtain the original 1.3-
cycle sine wave. The IDFT formula yields a very simple code, as shown below:

// idft takes an input spectrum *in as N complex pairs
// outputs real signal *out, consisting of N samples
void idft(float *in, float *out, int N){

for(int i=0,n=0; n<N; i+=2, n++){
 out[i]=0.f;
 for(int n =0; k < N; k++){
 out[i] += in[k]*cos(k*n*twopi/N) - in[k+1]*sin(k*n*twopi/N);
 }
 }
}

5

You might have noticed that we started with a complex spectrum and somehow ended
up with a real waveform. This is of course because we are only concerned with audio
signals that are real-valued. If we started up with such signal, when we recompose it,
it will return to its original form. How is that possible? First, I am assuming that the
output of the IDFT is real-valued, so its imaginary part is zero. So I only need to
program the real part of the operation. Now, if we check the imaginary part of the
IDFT output, we will see that it is, as expected, zero-valued. In addition, by looking
at the coefficients in the table above, we see that all absolute values of points 1-7 are
mirrored on points 9-15. This is one of the properties of real signals: half of the
spectrum will be a mirror of the other half.

This will be understood a bit better when we look at what frequencies the spectral
points refer to. We saw above that point 1 refers to the frequency 1/N, and point 2 to
2/N and so on. As mentioned before, the fundamental frequency of analysis in Hz will
depend on how many samples are representing our signal in a second, namely, the
sampling rate (SR). So our frequency points will be referring to kSR/N Hz, with
k=0,1,2,..., N-1.. So we will be able to quickly determine the frequencies for points 0
to N/2, ranging from the 0 Hz to SR/2, the Nyquist frequency, which is the highest
possible frequency for a digital signal. What about the other half of the coefficients, to
which frequencies do they belong?

The answer is inferred by looking at the table above and realising that points 9 to15
basically have the same complex values as 7 to 1 (except for the sign of the imaginary
part). It is reasonable to assume that they refer to the same frequencies, which is part
of the answer. The sign of the imaginary parts give the rest of the answer away: since
they refer to amplitudes of sine waves, they might refer to negative frequencies. This
is because a negative frequency sine wave is the same as positive one with negative
amplitude (or out-of-phase): sin(-x) = -sin(x). In addition, cos(-x) = cos(x), so the real
parts are the same for negative and positive frequencies.

The conclusion is simple, the second half of the points refer to negative frequencies,
from –SR/2 to –SR/N. It is essential to point out that the point N/2 refers to both SR/2
and –SR/2 (these two frequencies are indistinguishable). Also, it is important to note
that the coefficients for 0 Hz and the Nyquist are always purely real (no imaginary
part). If say that our SR is 32KHz, then, for N=16, the points will be at 0, 2, 4, 6, 8,
10, 12, 14, ±16, -14, -12, -10, -8, -6, -4 and -2 KHz. We can see then that the output
of the DFT then, splits the spectrum of a digital waveform in equally-spaced
frequency points, or bands. The negative and positive spectral coefficients only differ
in their imaginary part, so they are complex conjugates of each other. From looking at
this conclusion and the coefficients above, we can see that the negative side of the
spectrum can always be inferred from the positive side, so it is, in a way, redundant.

1.2. Rectangular and polar formats
In order to understand further the information provided by the DFT, we can convert
the representation of the complex coefficients, from real/imaginary pairs to one that is
more useful to us. One of the most useful aspects of the DFT analysis is that, by
breaking a waveform into components, we can determine how much energy (or, more
precisely, amplitude) each of these components have. This is given by the magnitude

6

of each complex spectral coefficient. The magnitude (or modulus) of a complex
number z is:

22][][zimzrez += (5)

This is the famous Pitagoras’ formula, which yields a real-valued number. The
magnitude will tell what the amplitudes of each component in the spectrum are.
However as a real signal is always split into positive and negative frequencies, the
amplitude of a point will be ½ the ‘true’ value. Recalling the first example above,
point 1 yields magnitude 0.5, but the original signal had amplitude 1.0 for the
frequency SR/N. If we look at point N-1, we will see that its coefficient will also have
magnitude 0.5. The same can be said for the second example here, where the
magnitudes at the second half of the table mirror the ones in the first half (fig.3). The
values obtained by the magnitude conversion are know as the amplitude spectrum of a
signal. The amplitude spectrum of a real signal is always mirrored at 0 Hz. It is a real-
valued function of the frequency.

The other conversion that complements the magnitude provides the phase angle (or
offset) of the coefficient, in relation to a cosine wave. This yields the phase offset of a
particular component, and it is obtained by the following relationship:

][
][arctan)(

zre
zimz =θ (6)

The result of converting the DFT result in this way is called the phase spectrum,
which is also a real-valued function of frequency. The phase spectrum of real signals
is always anti-symmetrical around 0 Hz.

The process of obtaining the magnitude and phase spectrum of the DFT is called
cartesian-to-polar conversion, because the original spectral coefficients are the
cartesian coordinates of complex numbers. The amplitude and phase representation is
called the polar form of a complex number. They refer to the modulus, the length of
the line from the centre of a cartesian plane to the point defined by the coordinates,
and the angle that this line makes with the horizontal axis, the amplitude and phase,
respectively.

If we take the first example and look at the two non-zero coefficients, which will be at
points 1 and N-1, we have [0, -0.5] and [0, 0.5]. These two complex pairs tell us that:

(1) At frequencies SR/N [point 1] and –SR/N [point N-1], the amplitude is 0.5.
(2) The phase offset of frequency SR/N is arctan (-0.5/ 0) = -π/2 (-90o), which means,

in relation to a cosine wave, that the wave is in the sine phase (cos(x-π/2) =
sin(x)). In complement, the phase of frequency –SR/N is arctan (0.5/0) = π/2
(90o), denoting an inverted sine wave.

(3) If we add these two components together, we obtain a sine wave at SR/N with
amplitude of 1 (or a sine wave at –SR/N with amplitude of –1):

7

x(n) = 0.5sin(2πn/N) + 0.5[-sin(-2πn/N)] = sin(2πn/N) = -sin(-2πn/N). This is of
course the signal we started with.

Figure 3. Magnitude spectrum from a 16-point DFT of sin(2π1.3n/N).
The plot shows the positive half of the spectrum from 0 Hz to the

Nyquist (points 0–8), followed by the negative side (8–15).
Similarly, if we take all the magnitude and phase of all components that were found in
the second example and used these parameters to do an additive synthesis operation as
above, we would obtain the original signal. The additive synthesizer could be defined
by the following formula:

])(of tscoefficien spectral [the)),(()(with

)])([2cos()()(
1

0

nxknxDFTkX

kX
N
knkXnx

N

k

=

+= ∑
−

=

θπ
(7)

We can see from fig.3 that the results are not always clear. In fact unless the signal
has all its components at multiples of the fundamental frequency of analysis, there
will be a spectral spread over all frequency points. However, if we plot the amplitude
spectrum values of a finer analysis (using more points) and smooth the curve between
the points, we will obtain a better representation of the spectral content. Although this
will not reveal the exact component frequencies of a sound, it will provide an idea of
the distribution of energy at the different frequency bands.

In addition to the problems identified above, the DFT in the present form, as a one-
shot, single-frame transform, will not be able to track spectral changes. This is
because it takes a single ‘picture’ of the spectrum of a waveform at a certain time. We
might conclude that in the present form, the DFT is almost useless as an analysis tool
for real-life applications. We will, nevertheless, be able to improve considerably on
this bare-bones method. However, before we look into tweaking it, it is important to
point out that the single-frame DFT is not completely useless for audio processing. In

8

fact, there are some interesting sound transformation applications that employ this
technique more or less in the format described in this section.

Finally, the discussion of this technique provided here tried to focus on the practical
aspects of the DFT. For this reason, the scope of the mathematical discussion of the
concepts involved in the DFT was limited. For a more thorough view of the theory,
please refer to (Jaffe, 1987a) and (Oppenheimer and Schafer, 1975).

2. Applications of the DFT: Convolution

The single-frame DFT analysis as explored above has one important application, the
convolution of time-domain signals through spectral multiplication. Before we
proceed to explore this technique, it is important to note that the DFT is very seldom
implemented in the direct form shown above. More usually, we will find optimised
algorithms that will calculate the DFT much more efficiently. These are called the
Fast Fourier Transform (FFT). Their result is in all aspects, equivalent to the DFT as
described above. The only difference is in the way the calculation is performed. Also,
because the FFT is based on specialised algorithms, they will only work with a certain
number of points (N, the transform size). For instance, the standard FFT algorithm
uses only power-of-two (2,4,..., 512, 1024...) sizes. The technique of fast convolution
uses the DFT implemented with FFT algorithms, as the direct form calculation does
not provide any advantage to ordinary time-domain convolution. From now on, when
we refer to the DFT, we will imply the use of a fast algorithm for its computation.

Convolution is an operation with signals, just like multiplication or addition, defined
as:

∑
=

−=∗=
n

m
mnxmynxnynw

0
)()()()()((8)

The simplest way to look into this operation is to examine some simple examples of
it:

1. First, consider the convolution of two signals x(n) and u(n), where u(0) = 1 and
u(n) = 0 for all other values of n. This is sometimes called the unit sample
function or unit impulse. The result is the original signal x(n), unchanged:

}0,0,1,0,1,2,3,1,0{}1,0,1,2,3,1,0{}0,0,1{)()(−=−∗=∗ nxnu

2. If we create a third signal s(n)= u(n-d), a delayed version of u(n) and we convolve
it with x(n), we will obtain x(n-d), a delayed version of x(n):

}1,0,1,2,3,1,0,0,0{}1,0,1,2,3,1,0{}0,1,0,0{)()(−=−∗=∗ nxns

3. If we create a scaled version of u(n), g(n) = au(n) and we convolve it with x(n),
we will obtain a scaled version of it, ax(n):

}0,0,2,0,2,4,6,2,0{}1,0,1,2,3,1,0{}0,0,2{)()(−=−∗=∗ nxng

9

4. Combining examples 2 and 3, f(n) = au(n-d), and convoluting with x(n), we have
a delayed, scaled version of x(n), ax(n-d):

}3,0,3,6,9,3,0,0,0,0{}1,0,1,2,3,1,0{}3,0,0,0{)()(−=−∗=∗ nxns

5. If we use apply these ideas more explicitly, we can consider any arbitrary signal as
sequence of scaled and delayed unit sample functions added together. We can
therefore apply this method to the convolution of any two signals. Take the
example of two signals f(n)={1, 2, 3} and g(n)={5, 9, 6, 2, 3}. The first signal can
be considered the sum of three functions: (1) unit sample function u(n) = {1, 0, 0};
(2) same as (1) but delayed by 1 sample and scaled by 2 {0,2,0}; and (3) same as
(1), but delayed by 2 samples and scaled by 3. We can convolve the second signal
by these three signals separately and add together the result:

 5 9 6 2 3 [slide by 0 positions, scale by f(0) = 1]
 10 18 12 4 6 [slide by 1 position, scale by f(1) =2]

 + 15 27 18 6 9 [slide by 2 positions, scale by f(2) = 3]
5 19 39 41 25 12 9

As we can see, convolution can be seen, in terms of signal processing, as a tapped
delay-line, with a gain multiplier applied to each tap. In fact, direct convolution is in
fact achieved via that method. It is also fair to conclude that one of the applications of
convolution is in the modelling of reverberation.

One important aspect of time-domain convolution is that it is equivalent to the
multiplication of spectra (and vice-versa). In other words, if y(n) and h(n) are two
waveforms whose fourier transforms are Y(k) and H(k), then:

)()()]()([and)()()]()([kHkYnhnyDFTkHkYnhnyDFT ∗==∗ (9)

This means that if the DFT is used to transform two signals into their spectral domain
and the two spectra can be multiplied together, the result can be transformed back to
the time-domain as the convolution of the two inputs. In this type of operation, we
generally have an arbitrary sound that is convoluted with a shorter signal, called the
impulse response. The latter can be thought of as a mix of scaled and delayed unit
sample functions and also as the list of the gain values in a tapped delay-line. The
convolution operation will impose the spectral characteristics of this impulse signal
into the other input signal. There are three basic applications for this technique:

(1) Early reverberation: the impulse response is a train of pulses, which can be
obtained by recording room reflections in reaction to a short sound.

(2) Filtering: the impulse response is a series of FIR filter coefficients. Its amplitude
spectrum determines the shape of the filter.

(3) Cross-synthesis: the impulse response is an arbitrary sound, whose spectrum will
be multiplied with the other sound. Their common features will be emphasized
and the overall effect will be one of cross-synthesis.

10

Depending on the application, we might use a time-domain impulse response, whose
transform is then used in the process. On other situations, we might start with a
particular spectrum, which is directly used in the process. The advantage of this is that
we can define the frequency-domain characteristics that we want to impose on the
other sound.

2.1. A DFT-based convolution application
We can now look at the nuts and bolts of the application of the DFT in convolution,
with some programming examples. The first thing to consider is that, since we are
using real signals, there is no reason to use a DFT that outputs both the positive and
negative sides of the spectrum. We know that the negative side can be extracted from
the positive, so we can use FFT algorithms that are optimised for the real signals. The
discussion of specific aspects of these algorithms is beyond the scope of this text, but
whenever we refer to the DFT, we will imply the use of a real input transform. There
are several programming libraries that provide FFT routines, like the FFTW library
(“the Fastest Fourier Transform in the West”). They will also provide a variety of FFT
algorithms, for different transform sizes. As stated above the most common of these is
the one for the power-of-two size. In our discussion, we will assume the use of
existing routines for forward and inverse FFT, which work on the basis of that
algorithm with real signals. We will assume that the spectral output of the forward
DFT will be in the following form:

(1) A sequence of N/2 pairs of numbers (N values).
(2) The first pair will contain the real parts of the 0Hz and Nyquist frequency points,

respectively.
(3) The following pairs will be complex numbers (re, im) for all other frequency

points, from 1 to N/2 -1.

The inverse DFT will assume its input to be in the same format. Let’s then say that
our routines are defined as:

void fft(float *sig, float *spec, int N);
void ifft(float *spec, float *sig, int N);

The time-domain signal is held in the sig vector, the spectrum is placed in the spec
vector, the number of points in the transform is N (always a power-of-two). Any real-
signal FFT/IFFT library routines can replace these with a little adaptation.

Basically, the central point of the implementation of convolution with the DFT is the
use of the overlap-add method after the inverse transform. Since our impulse response
will be of a certain length, this will determine the transform size (we will capture the
whole signal in one DFT). The other input signal can be of arbitrary length, all we
will need to do is to keep taking time slices of it that are the size of the impulse
response. Now, because we know that the resulting length of the convolution of two
signals is the sum of their lengths minus one, this will determine the minimum size of
the transform (because the IDFT output signal, as a result of the convolution, will
have to be of that length).

11

The need for an overlap-add arises because, as the length of the convolution is larger
than the original time-slice, we will need to make sure the tail part of it is mixed with
the next output block. This will align the start of each output block with the original
start of each time-slice in the input signal. So, if the impulse response size is S, we
will slice the input signal in blocks of S samples. The convolution output size will be
2S – 1, and the size of the transform will be the first power-of-two not less than that
value.

The inputs to the transform will be padded to the required size. After the
multiplication and the IDFT operation, we will have a block of 2S – 1 samples
containing the signal output (the zero padding will be discarded). All we need to do is
to time-align it with the original signal, by overlapping the first S – 1 samples of this
block with the last S –1 samples of the previous output. The overlapping samples then
are mixed together to form the final output. Fig.4 shows the input signal block sizes
and the overlap-add operation.

Figure 4. Convolution input and output block sizes and the overlap-add
operation.

Now it is just a matter of putting these ideas into code. The following example takes
two signals, an impulse response and an arbitrary input, of any sizes (but we expect
the impulse response to be the smaller of the two). It outputs the convolution of these
two signals. The length of the output, as discussed above, will be the sum of the two
input sizes minus one, so we expect an output vector that is at least of that size.

The code is quite simple and commented throughout. However we will highlight its
main structure:

1. The signal vectors are allocated and we take the DFT of the impulse response
(which only needs to be calculated once).

12

2. In the processing loop, we first fill a vector that will hold one time-slice of the
input.

3. When the vector is ready, we copy the overlapping samples from the output block
and we zero-pad the vector holding the input time-slice. This is followed by the
DFT of that signal, the complex multiplication of the two spectra and the IDFT of
that product.

4. As soon as the first convolution operation is performed, we start to overlap-add
the signal blocks to obtain the output. The processing loop will run until the last
sample of the convolution is output.

void
convol(float* impulse, float* input, float* output,
 int impulse_size, int input_size){

float *impspec, *inspec, *outspec; // spectral vectors
float *insig, *outsig, *overlap; // time-domain vectors
int fftsize=1, convsize; // transform and convolution sizes
int overlap_size; // overlap size
int count, i, j; // counter and loop variables

overlap_size= impulse_size - 1;
convsize = impulse_size + overlap_size;

while(fftsize < convsize) fftsize *= 2;

impspec = new float[fftsize]; // allocate memory for
inspec = new float[fftsize]; // spectral vectors
outspec = new float[fftsize];

insig = new float[fftsize];
outsig = new float[fftsize];
overlap = new float[overlap_size];

// get the impulse into the FFT input vector
// pad with zeros
for(i = 0; i < fftsize; i++){
 if(i < impulse_size) insig[i] = impulse[i];
 else insig[i] = 0.f;
 }

// Take the DFT of impulse
fft(insig, impspec, fftsize);

// processing loop
for(i = count = 0; i < input_size+convsize; i++, count++){

 // if an input block is ready
 if(count == impulse_size && i < (input_size+impulse_size)){

// copy overlapping block
 for(j = 0; j < overlap_size ; j++)
 overlap[j] = outsig[j+impulse_size];

 // pad input signal with zeros
 for(j = impulse_size; j < fftsize; j++)

 insig[j] = 0.f;

13

// Take the DFT of input signal block
 fft(insig, inspec, fftsize);

// complex multiplication
 // first pair is re[0Hz] and re[Nyquist]
 outspec[0] = inspec[0]*impspec[0];
 outspec[1] = inspec[1]*impspec[1];

 // (a+ib)*(c+id) = (ac - bd) + (ad + bc)i
 for(j = 2; j < fftsize; j+=2){
 outspec[j] = inspec[j]*impspec[j]
 - inspec[j+1]*impspec[j+1];
 outspec[j+1] = inspec[j]*impspec[j+1]

 + inspec[j+1]*impspec[j];
 }

 // IDFT of the spectral product
 ifft(outspec, outsig, fftsize);

 // zero the sample counter
count = 0;

 }
 // get the input signal
 // stop when the input is finished
 if(i < input_size)
 insig[count] = input[i];

 // overlap-add output starts only
 // after the first convolution operation
 if(i >= impulse_size)
 output[i-impulse_size] = outsig[count] +
 (count < overlap_size ? overlap[count] : 0);
}
// de-allocate memory
delete[] overlap;
delete[] outsig;
delete[] insig;
delete[] outspec;
delete[] inspec;
delete[] impspec;
}

The code expects the impulse, input and output signal vectors to be allocated
externally. This function, in the present format, will not serve for realtime
purposes..However, it can be modified for this kind of application, by processing one
FFT block at a time and leaving the overlap-add to be performed by the invoking
code. The only caveat is that, as we can observe, there is an implicit delay in this
process, which is determined by the length of the impulse response. So with longer
responses, the realtime use is somewhat compromised.

3. The Short-Time Fourier Transform

So far we have been using what we described as a single-frame DFT, one ‘snapshot’
of the spectrum at a specific time point. In order to track spectral changes, we will
have to find a method of taking a sequence of transforms, at different points in time.

14

In a way, this is similar to the process we used in the convolution application: we will
be looking at extracting blocks of samples from a time-domain signal and transform
them with the DFT. This is known as the Short-Time Fourier Transform. The process
of extracting the samples from a portion of the waveform is called windowing. In
other words, we are applying a time window to the signal, outside which all samples
are ignored.

Figure 5. Rectangular window and discontinuities in the signal.
Time windows can have all sorts of shapes. The one we used in the convolution
example is equivalent to a rectangular window, where all window contents are
multiplied by one. This shape is not very useful in STFT analysis, because it can
create discontinuities at the edges of the window (fig.5). This is the case when the
analysed signal contains components that are not integer multiples of the fundamental
frequency of analysis. These discontinuities are responsible for analysis artifacts, such
as the ones observed in the above discussion of the DFT, which limit the its
usefulness.

Figure 6. Windowed signal, where the ends tend towards 0.
Other shapes that tend towards 0 at the edges will be preferred. As the ends of the
analysed segment meet, they eliminate any discontinuity (fig.6). In fact, except for the
rectangular case, the windowing process will always involve the application of an
envelope to the extracted samples.

15

Figure 7. Graphic convolution of two amplitude spectra. The thicker lines
represent the components of each spectra.

The effect of a window shape can be explained by remembering that, as seen before in
(9), when we multiply two time-domain functions, the resulting spectrum will be the
convolution of the two spectra. This is of course, the converse case of the convolution
of two time-domain functions as seen in the section above. The effect of convolution
in the amplitude spectrum can be better understood graphically. As we saw before, it
is the shifting and scaling of the samples of one function by every sample of the other.
This operation can be as seen in fig.7, where the spectrum of the ring modulation of
two sinusoids is shown. When we use a window function in the DFT, we are
multiplying the series of complex sinusoids that compose it by that function. Since
this process results in spectral convolution, the resulting amplitude spectrum of the
DFT after windowing will be imposition of the spectral shape of a window function
on every frequency point of the DFT of the original signal (fig.8). A similar effect will
also be introduced in the phase spectrum.

As we have already said, windowing always happens when we apply the DFT to an
arbitrary segment of a signal. In all our previous cases, since we had only extracted
samples from the signal, a rectangular window was used. The spectral shape of that
window is not very suitable for attenuating analysis artifacts, such as the leakage
observed when analysing non-integral wave periods (see the spectral plot of the
rectangular window on fig.10). However, when we choose a window that has an
amplitude spectrum that have a peak at 0 Hz and dies away quickly to zero as the
frequency rises, we will have a more reasonable result. This is case of the ideal shape
in fig.8, where each analysis point will capture components around it and ignore
spurious ones away form it.

16

Figure 8. A simplified view of the amplitude spectrum of a windowed DFT as a
convolution of the DFT sinusoids and the window function. The dotted lines

mark the position of each DFT frequency point.
In practice, several windows with such low-pass characteristics exist. The simplest
and more widely-used are the ones based on raised inverted cosine shapes, the
Hamming and Hanning windows (figs. 9 and 10), defined as:

Hammingfor .540 and Hanningfor 0.5 where

0
1

2cos1

==

<≤
−

−−=

αα

Nn)
N

nπ(α)(αw(n)
(10)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 256 512 768 1024

Hanning(x)
Hamming(x)

Figure 9. Time-domain plots of Hanning and
Hamming windows.

In order to perform the STFT, we will apply a time-dependent window to the signal
and take the DFT of the result. This will mean also that we are making the whole
operation a function of time, as well as frequency. Here is a definition for the discrete
STFT of an arbitrary-length waveform x(n) at a time point t:

∑
∞

−∞=

− −=−=
n

Nknj Nkenxtnw
N

tknxSTFT 1,...,2,1,0)()(1),),((/2π
 (11)

17

This of course implies the use of a window function w(n), such as, which is defined in
the range 0 ≤ n < N and is zero elsewhere. When implementing the STFT as given
above, we will be initially simple-minded, by just using the real-signal DFT (as
implemented by the FFT algorithm) on N-sized slices of the input signal. This will not
be, in reality, the exact implementation of (11). However, it will, for the moment,
suffice.

Figure 10 . Spectral plots for rectangular, Hamming and Hanning
windows (positive frequencies only).

The STFT provides a full spectral frame for each time point, in the form of
overlapped measurements, so we can view each one of the these as the result of an
ordinary DFT applied to the windowed signal. For each time point, we will generate N
values (N/2 complex pairs), so the amount of data generated by this operation is very
large. However, we do not need to compute the DFT for each sample of a waveform,
we can hop the window along a certain number of samples before extracting the next
sample frame. The space between each frame is referred to as the hopsize and this will
determine the time resolution of the analysis. Often it is possible to take as little as
four overlapped transforms (hopsize = N/4) to have a good resolution. Effectively,
when using the STFT output for signal processing, the smallest hopsize will be
determined by the type of window used (N/4 is the actual value for Hamming and
Hanning windows). This will guarantee that we are able to reconstruct the original
signal in resynthesis.

The overlapped spectral frames can be transformed back into the time-domain by
performing an inverse DFT on each signal frame. In order to smooth any possible
discontinuities introduced when processing the signal in the spectral domain, we will
also apply a window to each transformed signal block. The waveform is reconstituted
by applying an overlap-add method that is very similar to the one employed in the
convolution example. Here we will overlap each sample block by hopsize samples,
adding them together to get the output signal. Each sample will be the sum of
N/hopsize samples, one from each overlapping block.

18

With these ideas in mind, we can program the forward and inverse STFT:

int stft(float *input, float *window, float *output,
 int input_size, int fftsize, int hopsize){

int posin, posout, i;
float *sigframe, *specframe;
sigframe = new float[fftsize];
specframe = new float[fftsize];

for(posin=posout=0; posin < input_size; posin+=hopsize){
// window a signal frame

 for(i=0; i < fftsize; i++)
 if(posin+i < input_size)
 sigframe[i] = input[posin+i]*window[i];
 else sigframe[i] = 0;
 // transform it
 fft(sigframe, specframe, fftsize);
 // output it
 for(i=0; i < fftsize; i++, posout++)
 output[posout] = specframe[i];

}
delete[] sigframe;
delete[] specframe;
return posout;
}

int istft(float* input, float* window, float* output,
 int input_size, int fftsize, int hopsize){

int posin, posout, i, output_size;
float *sigframe, *specframe;
sigframe = new float[fftsize];
specframe = new float[fftsize];
output_size = input_size*hopsize/fftsize;

for(posout=posin=0; posout < output_size; posout+=hopsize){
 // load in a spectral frame from input
 for(i=0; i < fftsize; i++, posin++)
 specframe[i] = input[posin];
 // inverse-transform it
 ifft(specframe, sigframe, fftsize);
 // window it and overlap-add it
 for(i=0; i < fftsize; i++)
 if(posout+i < output_size)
 output[posout+i] += sigframe[i]*window[i];
}
delete[] sigframe;
delete[] specframe;
return output_size;
}

These two example functions show the process again in a non-realtime form, but are
easily adaptable to any application. The forward transform takes the whole signal and
outputs overlapped spectral frames. The input, output and window signal vectors are
expected to be allocated externally. Every fftsize block of floats in the output signal

19

composes a spectral frame relative to consecutive time points. The size of the output
is determined by the number of overlaps (fftsize/hopsize) times the input size, but it
can exceed it by a little if the input size is not an integral multiple the hop period. The
function returns the length of the output. The inverse transform takes a sequence of
overlapped frames, transforms and overlap-adds them.

4. Spectral Transformations: Manipulating STFT data

Each spectral frame can be considered as a collection of complex pairs relative to the
information found on equally-spaced frequency bands at a particular time. These
bands are sometimes called DFT bins. They will contain information on the amplitude
and frequency contents detected at that band. The rectangular, or cartesian, format that
is the output of the transform packs these two aspects of the spectrum in the real and
imaginary parts of each complex coefficient. In order to separate them, all we need to
do is to convert the output into a polar representation. The magnitudes will give us the
amplitude of each bin and the phases will be indicative of the detected frequencies. A
single STFT frame can give us the amplitudes for each band, but we will not be able
to obtain proper frequency values for them. This would imply extracting the
instantaneous frequency, which is not really possible with one STFT measurement.
Instead, the phases will contain the frequency information in a different form.
Nevertheless, we will be able to transform the amplitude and frequency aspect of a
sound, by manipulating the magnitudes and phase values of each bin.

4.1. Cross-synthesis of frequencies and amplitudes
The first basic transformation that can be achieved in this way is cross-synthesis.
There are different ways of crossing aspects of two spectra. The spectral
multiplication made in the convolution example is one. By splitting amplitude and
frequency aspects of spectra, we can also make that type of operation separately on
each aspect. Another typical cross-synthesis technique is to combine the amplitudes of
one sound with the frequencies of another. This is a spectral version of the time-
domain channel vocoder. Once we have the STFT spectra of two sounds, there could
not be an easier process to implement:

1. Convert the rectangular spectral samples into magnitudes and phases.
2. Take the magnitudes of one input and the phases of the other and make a new

spectral frame, on a frame-by-frame basis.
3. Convert the magnitudes and phases to rectangular format. This is done with the

following relationships:

)sin(][and)cos(][zzzz PhaMagzimPhaMagzre ×=×= (12)

The resulting spectral frames in rectangular format can then be transformed back to
the time-domain using the ISTFT and the overlap-add method. This three-step
procedure yields the following code, which processes one STFT frame at a time:

void crosspec(float *maginput, float *phasinput, float *output,
 int fftsize){

20

int i;
float mag, phi;

// take care of real-valued points at 0Hz and Nyquist
output[0] = maginput[0];
output[1] = maginput[1];

for(i=2; i< fftsize; i+=2){

 // get the magnitudes of one input
 mag = (float)
 sqrt(maginput[i]*maginput[i]+maginput[i+1]*maginput[i+1]);
 // get the phases of the other
 phi = (float)
 atan2(phasinput[i+1], phasinput[i]);
 // combine them and convert to rectangular form
 output[i] = (float) (mag*cos(phi));
 output[i+1]= (float) (mag*sin(phi));
}
}

The code for the function above (and the following ones) expects the inputs and
output to exist externally as N-sized arrays of floats. In fact, the output signal could be
the same as one of the inputs, for an ‘in-place’ process.

4.2. Spectral-domain filtering
If we manipulate the magnitudes separately, we might also be able to create some
filtering effects by applying a certain contour to the spectrum. For instance, to
generate a simple low-pass filter we can use the ¼ of the shape of the cosine wave and
apply it to all points from 0 to N/2. The function used for shaping the magnitude will
look like this:

2/0)
2

cos(][Nk
N
kkmag ≤≤=

π
 (13)

Here’s the code for this simple filter, which, again, processes one frame at a time:

void simplp(float *input, float *output, int fftsize){

int i,k;
float mag, magin, phi;

// The low-pass contour is 1 at 0Hz
// and 0 at the Nyquist
output[0] = 1.f;
output[1] = 0.f;

for(i=2, k=1; i < fftsize; i+=2, k++){

 // get the magnitudes of input
 magin = (float) sqrt(input[i]*input[i]+input[i+1]*input[i+1]);
 // apply the spectral contour
 mag = (float) cos((twopi*k)/(4*fftsize))*magin;
 // get the phases
 phi = (float) atan2(input[i+1], input[i]);
 // convert to rectangular form

21

 output[i] = (float) (mag*cos(phi));
 output[i+1]= (float) (mag*sin(phi));
}
}

A high-pass filter could be designed by using a sine function instead of cosine in the
example above. In fact, we can define any filter in spectral terms and use it by
multiplying its spectrum with the STFT of any input sound. This leads us back into
the convolution territory. Consider the typical 2-pole resonator filter design, whose
transfer function is:

221
0

cos21
)(−− +−

=
zRzR

AzH
θ (14)

Here, θ is the pole angle and R its radius (or magnitude), parameters that are related
to the filter centre frequency and bandwidth, respectively. The scaling constant A0 is
used to scale the filter output so that it does not run wildly out-of-range. Now if we
evaluate this function for evenly-spaced frequency points z = e j2πk/N, we will reveal
the discrete spectrum of that filter. All we need to do is to do a complex multiplication
of the result with the STFT of an input sound.

The mathematical steps used to obtain the spectrum of the filter are based on Euler’s
relationship, which splits the complex sinusoidal e jω into its real and imaginary parts,
cos(ω) and jsin(ω)†. Once we obtained the spectral points in the rectangular form A0(a
+ ib)-1, all we need is to multiply them with the STFT points of the original signal.
This will in reality turn out to be a complex division:

lyrespective output, andfilter
 signal,input theof spectra theare and , where

]][[]][[
]][[]][[

]])[[]][[(]])[[]][[(][

1
0

0

1
0

Y[k]F[k]AX[k]

kFimkFre
kXimkXreA

kFimkFreAkXimkXrekY

-









+
+

=

=+×+= −

(15)

Here is a code that takes the pole angle, radius of a filter and applies it to an input
signal. The scaling constant A0 is also taken as an argument. These three parameters
can be calculated from a centre frequency and bandwidth description of a band-pass
filter. This C++ function operates on a single-frame basis; thus the filter parameters
can be varied dynamically every hop period.

† By setting z = ejω , with ω = 2πk/N, we obtain the DFT of the filter impulse response:

ωω
ω

θ 22
0

cos21
)(jj

j

eReR
AeH −−

−

+−
=

Using Euler’s relationship ejω = cosω + jsinω, we obtain the spectrum of the filter in rectangular
format:

()[] 122
0 cos2cos2sincoscoscos21)(−

−++−= ωθωωωθ RRjRRAeH jw

22

void specreson(float *input, float *output, float scale,
 double angle, double radius, int fftsize) {

int i, k;
double sinw, cosw, cos2w, w, costheta, radsq, rad2;
float re, im, div, rout, imout;

costheta = cos(angle);
radsq = radius*radius;
rad2 = 2*radius;

// 0 Hz and Nyquist taken care of
output[0] = (float)((scale*input[0])/(1. - rad2*costheta + radsq));
output[1] = (float)((scale*input[1])/(1. + rad2*costheta + radsq));

for(i=2, k=1; i <fftsize; i+=2, k++){

 w = (twopi*k)/fftsize;
 sinw = sin(w);
 cosw = cos(w);
 cos2w = cos(2*w);

 // real and imag parts of filter spectrum
 re = (float) (1. - rad2*costheta*cosw + radsq*cos2w);
 im = (float) (sinw*(rad2*costheta - 2*radsq*cosw));

 // complex division
 div = re*re + im*im;
 rout = (input[i]*re + input[i+1]*im)/div;
 imout = (input[i+1]*re - input[i]*im)/div;

 output[i] = scale*rout;
 output[i+1] = scale*imout;
}
}

Similarly, we can implement a spectral comb filter, by multiplying the filter transfer
function, evaluated as above, by the input signal. The comb filter transfer function
depends on the delay D (in samples) and the pole radius R:

1,...2,1,0
 1

)(/2

/2
/2 −=

−
= −

−

Nk
eR

eeH NkjD

NkjD
Nkj

π

π
π

 (16)

The following code implements the comb filter, which can be used for instance, in
flanging and filtering applications. As in the delay-line version, the amplitude
spectrum will resemble an upside-down comb, with the reciprocal of the delay
parameter determining the spacing of the spectral peaks. The maxima and minima of
the curve will depend on the pole radius. In this code, delay is expected to be in
seconds.

void specomb(float *input, float *output, float scale, float delay,
 double radius, int fftsize, float sr) {

23

int i, k;
double sinw, cosw, w, radsq, rad2;
float re, im, div;
radsq = radius*radius;
rad2 = 2*radius;
delay *= sr;

// 0 Hz and Nyquist taken care of
output[0] = (float)(input[0]*(1.-radius)/(1. - rad2 + radsq))*scale;
output[1] = (float)(input[1]*-(1+radius)/(1. + rad2 + radsq))*scale;

for(i=2, k=1; i <fftsize; i+=2, k++){

 w = (delay*twopi*k)/fftsize;
 sinw = sin(w);
 cosw = cos(w);

 // real and imag parts of filter spectrum
 div = (float) (1. - rad2*cosw + radsq);
 re = (float) (cosw - radius)/div;
 im = (float) (sinw - rad2*cosw*sinw)/div;

 // complex multiplication
 output[i] = (input[i]*re - input[i+1]*im)*scale;
 output[i+1]= (input[i+1]*re + input[i]*im)*scale;
}
}

In fact, the use of a delay parameter here is somewhat misleading, as the output does
not contain the full length of all of the delayed signals. Since the STFT process
effectively cuts off the decay tail of the sound, this implementation cannot be used for
reverb applications. For these, we would need to use a method similar to the DFT-
based convolution discussed previously. In that case, we would use a suitably long
transform size to accommodate the expected impulse response.

There are many more processes that can be devised for transforming the output of the
STFT. Two spectra can be interpolated, for instance, to generate a sound with
characteristics that are mid-way from both. Convolution can be performed as the two
input sounds evolve in time. Noise suppression can be implemented via a variety of
methods, eg. using a simple amplitude thresholding mechanism. The examples given
here are only the start. They represent some classic approaches, but several other,
more radical techniques can be explored.

5. Tracking the Frequency: the Phase Vocoder.

As we observed, although we can manipulate the frequency content of spectra,
through their phases, the STFT does not have enough resolution to tell us what
frequencies are present in a sound. We will have to find a way of tracking the
instantaneous frequencies in each spectral band. A well-known technique known as
the Phase Vocoder (PV) (Flanagan and Golden, 1966) can be employed to do just
that. The PV analysis process is sometimes described in the time-domain as the use of
a bank of filters tuned to equally-spaced frequencies, from 0 Hz to the Nyquist. The
filterbank outputs are made up of values for amplitudes and frequencies at each band..

24

Here, we will take a frequency-domain approach, starting with the STFT and adapting
it to fit the PV output characteristics.

In fact, it turns out that the STFT followed by a polar conversion can also be seen as a
bank of parallel filters. Its output is composed of the values for the magnitudes and
phases at every time-point or hop period for each bin. The first step in transforming
the STFT into a Phase Vocoder is to generate values that are proportional to the
frequencies present in a sound. This is done ideally by the taking the time derivative
of the phase, but we can approximate it by computing the difference between the
phase value of consecutive frames, for each spectral band. This simple operation,
although not yielding the right value for the frequency at a spectral band, will output
one that is proportional to it.

In fact, just with these small changes will be able to process sound in a way that was
not possible before. By keeping track of the phase differences, we can time-stretch or
compress a sound, without altering its frequency content (in other words, its pitch).
We can perform this by repeating or skipping spectral blocks, to stretch or compress
the data. Because we are keeping the phase differences between the frames, when we
accumulate them before resynthesis, we will reconstruct the signal back with the
correct original phase values. We are keeping the same hop period between frames,
but because we use the phase difference to calculate the next phase value, the phases
will be kept intact, regardless of the frame readout speed. The code below takes a
rectangular STFT input and converts it to magnitudes and phase differences
(conversion in place):

const double pi = twopi/2.;

void deltaphi(float *spec, float *lastphs, int fftsize){
int i, k;
float mag, phi;

for(k=0, i=2; i < fftsize; i+=2, k++){

mag = (float) sqrt(spec[i]*spec[i]+spec[i+1]*spec[i+1]);
phi = (float) atan2(spec[i+1], spec[i]);
spec[i] = mag;
spec[i+1] = phi - lastphs[k];
lastphs[k] = phi;

// bring the diffs to the -pi and pi range
while(spec[i+1]> pi) spec[i+1] -= (float) twopi;
while(spec[i+1]< -pi) spec[i+1] += (float) twopi;
}
}

The inverse tangent function outputs the phase in the range of –π to π. When the
phase differences are calculated, they might exceed this range. In this case, we have to
bring them down to the expected interval (known as principal values). This process is
sometimes called phase unwrapping.

25

The next function does the inverse operation, as it integrates the values to calculate
the current phase value for each frequency point. This operation is complemented by a
polar to rectangular conversion:

void sigmaphi(float *spec, float *lastphs, int fftsize) {

int i, k;
float mag, phi;

for(k=0, i=2; i < fftsize; i+=2, k++){
mag = spec[i];
phi = spec[i+1] + lastphs[k];
lastphs[k] = phi;
spec[i] = (float)(mag*cos(phi));
spec[i+1] = (float)(mag*sin(phi));
}
}

This is a definite improvement on the basic STFT, but it does not provide much
flexibility even for timescale modifications, as we have to keep the same hopsize for
analysis and resynthesis. Therefore, depending on the length of the hop period, fine
changes in timescale will not be possible. Nevertheless, there is much more that can
be achieved. We can, for instance, scale the phase difference to match the change in
the hopsize from analysis to resynthesis. For instance, if we start with a hopsize of D
samples and resynthesize the sound using a hopsize of I samples, the ratio I:D will
give us the appropriate scaling figure. This idea will be incorporated in the
implementation of the phase vocoder.

Figure 11. Signal frame rotation, according to input time point

26

5.1. Frequency estimation
So far we have been working with values that are proportional to the frequencies at
each analysis band. In order to obtain the proper values in Hz, we will have to first
modify the input to the STFT slightly. We will rotate the windowed samples inside
the analysis frame, relative to the time point n (in samples and taken modulus N) of
the input window. If our window has 1024 samples and we are hopping it every 256
samples, the moduli of the successive time-points n will be 0, 256, 512, 768, 0, 256....
The rotation will imply that for time point 256, we will move samples from positions
0 – 767 into positions 256 to 1023. The last 256 samples will be moved to the first
locations of the block. A similar process is applied to the other time points (fig. 11).

The mathematical reasons for this input rotation are somewhat complex, but the
graphic representation shown on fig. 11 goes some way on helping us understand the
process intuitively. As we can see the rotation process has the effect of aligning the
phase of the signal in successive frames. This will help us obtain the right frequency
values, but we will better understand it after seeing the rest of the process. In fact, the
input rotation renders the STFT formulation mathematically correct, as we have been
using a non-rigorous and simpler approach (which so far has worked for us).†

After the rotation, we can take the DFT of the frame as usual and convert the result
into polar form. The phase differences for each band are then calculated. This now
tells us how much each detected frequency deviates from the centre frequency of its
analysis band. The centre frequencies are basically the DFT analysis frequencies
2πk/N, in radians. So, to obtain the proper detected frequency value, we only need add
the phase differences to the centre frequency for each analysis band, scaled by the
hopsize. The values in Hz can be obtained by multiplying the result, which is given in

† The STFT was defined above in (11) as:

∑
∞

−∞=

− −=−=
n

Nknj Nkenxtnw
N

tknxSTFT 1,...,2,1,0)()(1),),((/2π

Since the windowed signal is non-zero in the range 0 – N-1, we can re-write it as:

∑
−+

=

−−=
1

/2)()(1),),((
Nt

tn

Nknjenxtnw
N

tknxSTFT π

Now, we will change the summation index n, using n=m+t, so that we can bring the formula in to the
0 – N-1 range, in the right format for DFT evaluation:

∑

∑
−

=

−−

−

=

+−

+

=+=

1

0

/2/2

1

0

/)(2

)()(1

)()(1),),((

N

m

NkmjNktj

N

m

Ntmkj

etmxmw
N

e

etmxmw
N

tknxSTFT

ππ

π

Multiplication by a complex exponential is the same as shifting the input samples circularly according
to the input time t mod N. This is due to the so-called shift theorem of the DFT (Oppenheimer and
Schafer, 1975) (Jaffe, 1987b). Thus, by rotating the input signal we avoid the complex multiplication in
the spectral domain.

27

radians per hopsize samples, by SR/[2π x hopsize] (SR is, of course, the sampling rate
in samples/sec).

Now we can go back to the rotation and understand the process. Fig.6 shows a very
simple case, a sine wave with the same period as the analysis window. After we rotate
the signal and obtain the phase-aligned result, there is no phase difference between the
successive frames. Accordingly, when we take STFT of this signal, we will detect
most energy on the first frequency band and the phase difference for that band will be
null. This is what we expect, since this particular wave has the same frequency as the
first frequency point. Now if we proceed by converting this phase difference in Hz,
we will of course obtain SR/1024 Hz, the expected result (43.07 Hz at 44.1KHz). If
the input were not rotated, we would detect a phase difference of π/2, which would
result in an 86.14 Hz, twice the right value. This intuitive understanding can be
extrapolated to more complex signals.

Here is a summary of the steps involved in phase vocoder analysis:

1. Extract N samples from a signal and apply an analysis window.
2. Rotate the samples in the signal frame according to input time n mod N.
3. Take the DFT of the signal.
4. Convert rectangular coefficients to polar format.
5. Compute the phase difference and bring the value to the -π to +π range.
6. Add the difference values to 2πkD/N, and multiply the result by SR/2πD, where D

is the hopsize in samples.
7. For each spectral band, the result from 6 yields its frequency in Hz, and the

magnitude value, its peak amplitude.

The following C++ code implements the algorithm outlined above. You will see that a
lot of it was already in place in the stft() code.

int pva(float *input, float *window, float *output,
 int input_size, int fftsize, int hopsize, float sr){

int posin, posout, i, k, mod;
float *sigframe, *specframe, *lastph;
float fac, scal, phi, mag, delta, pi = (float)twopi/2;

sigframe = new float[fftsize];
specframe = new float[fftsize];
lastph = new float[fftsize/2];

fac = (float) (sr/(hopsize*twopi));
scal = (float) (twopi*hopsize/fftsize);

for(posin=posout=0; posin < input_size; posin+=hopsize){
 mod = posin%fftsize;

// window & rotate a signal frame
 for(i=0; i < fftsize; i++)
 if(posin+i < input_size)
 sigframe[(i+mod)%fftsize]
 = input[posin+i]*window[i];
 else sigframe[(i+mod)%fftsize] = 0;

28

 // transform it
 fft(sigframe, specframe, fftsize);

 // convert to PV output
 for(i=2,k=1; i < fftsize; i+=2, k++){

 // rectangular to polar
 mag = (float) sqrt(specframe[i]*specframe[i] +
 specframe[i+1]*specframe[i+1]);
 phi = (float) atan2(specframe[i+1], specframe[i]);
 // phase diffs
 delta = phi - lastph[k];
 lastph[k] = phi;

 // unwrap the difference, so it lies between -pi and pi
 while(delta > pi) delta -= (float) twopi;
 while(delta < -pi) delta += (float) twopi;

 // construct the amplitude-frequency pairs
 specframe[i] = mag;

specframe[i+1] = (delta + k*scal)*fac;

 }

 // output it
 for(i=0; i < fftsize; i++, posout++)
 output[posout] = specframe[i];

}
delete[] sigframe;
delete[] specframe;
delete[] lastph;

return posout;
}

5.2. Phase vocoder resynthesis
Phase Vocoder data can be resynthesised using a variety of methods. Since we have
blocks of amplitude and frequency data, we can use some sort of additive synthesis to
playback the spectral frames. However, a more efficient way of converting to time-
domain data for arbitrary sounds with many components is to use an overlap-add
method similar to the one in the ISTFT. All we need to do is retrace the steps taken in
the forward transformation:

1. Convert the frequencies back to phase differences in radians per I samples by
subtracting them from the centre frequencies of each channel, in Hz, kSR/N, and
multiplying the result by 2πI/SR, where I is the synthesis hopsize.

2. Accumulate them to compute the current phase values.
3. Perform a polar to rectangular conversion.
4. Take the IDFT of the signal frame.
5. Unrotate the samples and apply a window to the resulting sample block.
6. Overlap-add consecutive frames.

29

int pvs(float* input, float* window, float* output,
 int input_size, int fftsize, int hopsize, float sr){

int posin, posout, k, i, output_size, mod;
float *sigframe, *specframe, *lastph;
float fac, scal, phi, mag, delta;

sigframe = new float[fftsize];
specframe = new float[fftsize];
lastph = new float[fftsize/2];

output_size = input_size*hopsize/fftsize;

fac = (float) (hopsize*twopi/sr);
scal = sr/fftsize;

for(posout=posin=0; posout < output_size; posout+=hopsize){

 // load in a spectral frame from input
 for(i=0; i < fftsize; i++, posin++)
 specframe[i] = input[posin];

 // convert from PV input to DFT coordinates
 for(i=2,k=1; i < fftsize; i+=2, k++){
 delta = (specframe[i+1] - k*scal)*fac;
 phi = lastph[k]+delta;
 lastph[k] = phi;
 mag = specframe[i];

 specframe[i] = (float) (mag*cos(phi));
 specframe[i+1] = (float) (mag*sin(phi));

}
 // inverse-transform it
 ifft(specframe, sigframe, fftsize);

 // unrotate and window it and overlap-add it
 mod = posout%fftsize;
 for(i=0; i < fftsize; i++)
 if(posout+i < output_size)
 output[posout+i] += sigframe[(i+mod)%fftsize]*window[i];
}
delete[] sigframe;
delete[] specframe;
delete[] lastph;

return output_size;
}

There are several advantages of PV analysis over the straightforward STFT. The first
one is independence of time- and frequency-scale, already discussed above. Another
one is the flexibility of the representation, which can be used in many applications.
The fact that we are dealing with amplitude and frequency has more musical meaning,
if compared to raw spectral coordinates. In addition, all of the already discussed
STFT-data processing techniques are also available to the PV format, with a little
adaptation. This makes the phase vocoder a more versatile tool for spectral processing
than the STFT. However, it must be pointed out that conversion to PV format

30

involves a little more computation. Thus, for certain applications, if the STFT is
sufficient, there is no need to look beyond it.

As a word of caution, it is important to point out that all DFT-based algorithms will
have some limits in terms of partial tracking. The analysis will be able to resolve a
maximum of one sinusoidal component per frequency band. If two or more partials
fall within one band, the phase vocoder will fail to output the right values for the
amplitudes and frequencies of each of them. Instead, we will have an amplitude-
modulated composite output, in many ways similar to beat frequencies. In addition,
because the DFT splits the spectrum in equal-sized bands, this problem will mostly
affect lower frequencies, where bands are perceptually larger. This also implies that
the phase vocoder is more suitable to the analysis of harmonic spectra. Nevertheless,
there are many different types of manipulations of phase vocoder data to which these
problems are not relevant. In general, the phase vocoder is a powerful tool for
transformation of arbitrary signals.

5.3. Spectral morphing
A typical transformation of PV data is spectral interpolation, or morphing. It is a more
general version of the spectral cross-synthesis example discussed before. Here, we
interpolate between the frequencies and amplitudes of two spectra, on a frame-by-
frame basis. The code below implements this operation by interpolating linearly
between the frequencies and exponentially between the frequencies. The arguments
morpha and morphfr define the amount of interpolation and should be in the range
of 0 – 1.

void pvmorph(float* input1, float *input2, float *output,
 float morpha, float morphfr,
 int fftsize, float sr){
int i;
float amp1, amp2, fr1, fr2;

for(i=0; i< fftsize; i+=2){

 // interpolate amps
amp1 = input1[i];

 amp2 = input2[i];
output[i] = amp1 + (amp2-amp1)*morpha;
if(i){

 // interpolate frs
 fr1 = input1[i+1];
 fr2 = input2[i+1];
 output[i+1] = fr1*(float)pow(abs(fr2/fr1), morphfr);

}
else {
// this is the nyquist frequency band
amp1 = input1[i+1];
amp2 = input2[i+1];
output[i+1] = amp1 + (amp2-amp1)*morpha;
}

}
}

31

Spectral morphing can produce very interesting results. However, its effectiveness
depends very much on the spectral qualities of the two input sounds. When the
spectral data does not overlap much, interpolating will sound more or less like cross-
fading, which can be achieved in the time-domain for much less trouble. There are
many more transformations that can be devised for modifying PV data. In fact, any
number manipulation procedure that generates a spectral frame in the right format can
be seen as a valid spectral process. Whether it will produce a musically useful output
is another question. Understanding how the spectral data is generated in analysis is the
first step in designing transformations that work.

We have explored the phase vocoder from the DFT perspective, as a modification of
more basic spectral analysis algorithms. However, it is important to remember that the
original theory also involves a time-domain interpretation of the process, as the use of
a bank of overlapping band-pass filters. Each of these filters, in that interpretation, is
constructed using a heterodyne algorithm, which consists in the multiplication of the
signal by cosine and sine waves (in parallel), followed by low-pass filtering. This, of
course, turns out to be the same as the STFT operation (windowing works as low-pass
filtering). The frequency-domain interpretation of the technique seen here is,
nevertheless, very important as it has more practical implementations (because of the
availability of FFT algorithms). For a more detailed look into this alternative view of
the phase vocoder, please refer to the James Flanagan’s original article on the
technique. Other descriptions of the technique, both in terms of its time-domain and
spectral perspectives, are also found in (Dolson, 1986) and (Moore, 1990).

6. The Instantaneous Frequency Distribution

An alternative method of frequency estimation is given by the instantaneous
frequency distribution (IFD) algorithm proposed by Toshihiko Abe (Abe et al, 1997).
It uses some of the principles already seen in the phase vocoder, but its mathematical
formulation is more complex. The basic idea, which is also present in the PV
algorithm, is that the frequency, or more precisely, the instantaneous frequency
detected at a certain band is the time derivative of the phase. We saw in (6) how to
obtain the phase output from rectangular coordinates. Using Euler’s relationship, we
can also define the output of the STFT in polar form. This is shown below, using ω =
2πk/N:

),(),(),),((tjetRtknxSTFT ωθω ×= (17)

The phase detected by band k at time-point t is θ(2πkn/N, t) and the magnitude is
R(2πkn/N, t). The Instantaneous Frequency Distribution of x(n) at time t is then the
time derivative of the STFT phase output:

),(),),((t
t

tknxIFD ωθ
∂
∂

= (18)

This can be intuitively understood as the measurement of the rate of rotation of the
phase of a sinusoidal signal. In the phase vocoder, we estimated it by crudely taking
the difference between phase values in successive frames. The IFD actually calculates

32

the time derivative of the phase directly, from data corresponding to a single time-
point. The downside is that it will require the calculation of two DFTs per frame.
Also, there is the need for some mathematical muscle in the outlining of the process.
We will start by using the STFT, taken as a series of DFTs of a rotated and windowed
input signal:

)),((

)()(1),),((

/2

1

0

/2/2

kmxDFTe

etmxmw
N

etknxSTFT

t
Nktj

N

m

NkmjNktj

π

ππ

−

−

=

−−

=

=+= ∑
 (19)

Each DFT is taken from xt(m)=w(m)x(m+t), the windowed input signal at time-point
t. The multiplication by the complex exponential can be done in the time domain as a
rotation of the input . Now we proceed by isolating the phase from the magnitude
spectrum. This can be done by first taking the logarithm of the DFT output in polar
form:

πk/N)ω (withtjtR
etRkmxDFT tj

t

2),()],(ln[
]),(ln[)]),((ln[),(

=+=
=×=

ωθω
ω ωθ

 (20)

It is clear from the above that the phase is the imaginary part of the natural logarithm
of the DFT, imag{ln(DFT)}. This is in fact an alternative way of obtaining the phase
output of a transform, to the one seen in (6). Now we can put the derivative of the
phase in terms of the DFT of the signal:

{ }









∂
∂

×=

=








∂
∂

×
∂
∂

=

=
∂
∂

=
∂
∂

)),((
)),((

1

)),(()]),((ln[

)),((ln[),(

kmxDFT
tkmxDFT

imag

kmxDFT
t

kmxDFT
t

imag

kmxDFTimag
t

t
t

t
t

tt

tωθ

 (21)

All we need is to find the derivative of the DFT. This can be done by changing the
summation variable of the transform, using r = m+ t, so that the only function of the
time variable t left inside the summation is the window:

∑

∑∑
−

=

−

−

=

−−
−

=

−

−=

=−=+=

1

0

1

0

)(
1

0

)()(1

)()(1)()(1)),((

N

r

rjjwt

N

r

trj
N

m

mj
t

etrwrx
N

e

etrwrx
N

emwtmx
N

kmxDFT

ω

ωω

 (22)

33

Now we are left with the simple matter of taking the derivative of the above product.
This is easier, because the derivative of the complex exponential is trivial and we are
left only with the derivative of the window function:

∑∑

∑∑

∑

−

=

−
−

=

−

−

=

−
−

=

−

−

=

−







 −

∂
∂

+−=

=×








−
∂
∂

+−×
∂
∂

=

=








−
∂
∂

=
∂
∂

1

0

1

0

1

0

1

0

1

0

)()(1)()(1

)()(1)()(1

)()(1)),((

N

r

rjtj
N

r

rjtj

tj
N

r

rj
N

r

rjtj

N

r

rjtj
t

etrw
t

rx
N

eetrwrx
N

ej

eetrwrx
Nt

etrwrx
N

e
t

etrwrx
N

e
t

kmxDFT
t

ωωωω

ωωωω

ωω

ω

 (23)

Reverting to the previous formulation of the DFT (using the converse of (22), with m
= r – t):

))()()(' ()),('()),((

)(
)(

)(1)()(1

)),((

1

0

1

0

tmxmw
m

mxwithkmxDFTkmxDFTj

emw
mr

tmx
N

emwtmx
N

kmxDFT
t

ttt

N

r

mj
N

r

mj

t

+
∂
∂

−=+=

=








−∂
∂

+++=

=
∂
∂

∑∑
−

=

−
−

=

−

ω

ωω
(24)

Substituting back in (21), we obtain:

)]),('()),(([
)),((

1),(








+×=
∂
∂ kmxDFTkmxDFTj

kmxDFT
imagt

t tt
t

ωωθ (24)

Using the definition of the IFD given in (18), we arrive at its final formulation, as a
quotient of two DFTs. The top one is taken from the signal windowed by the negative
derivative of the window and the bottom one from the ordinarily windowed signal:









+=
)),((
)),('(

),),((
kmxDFT
kmxDFT

imagtknxIFD
t

tω (25)

The mathematical steps involved in the derivation of the IFD are quite involved. Since
they show a newer alternative path to the well-known phase vocoder algorithm, it was
necessary to spell them out in detail. However, if we want to implement the IFD, all
we need is to employ its definition in terms of DFTs, as given above. We can use the
straight DFT of a windowed frame to obtain the amplitudes and use the IFD to
estimate the frequencies. Also, because we are using the straight transform of a
windowed signal, there is no need to rotate the input, as in the phase vocoder. If we
look back at the DFT as defined in (19), we see that it, in fact, does not include the
multiplication by a complex exponential (as does the STFT). Finally, the derivative of

34

the analysis window is generated by computing the differences between its
consecutive samples.

6.1. An IFD analysis application
The following steps can be used to implement IFD + magnitude (amplitude or
spectrogram) analysis from overlapped time-domain signal blocks:

1. On each hop period, take N samples from a signal, multiply them by a window
and its negative derivative. Generate the derivative by taking the differences
between its samples.

2. Take the DFT of the two windowed signals.
3. Calculate the magnitude of rectangular output of the DFT of the windowed signal.

This, as we have seen, is the square root of the sum of the squared real and
imaginary parts. This will give us the output amplitudes.

4. Calculate the frequencies by first taking the imaginary part of the quotient of the
two DFTs, as in (25). This gives the amount of detected frequency deviation (in
radians per sample) from the channel centre frequency. Convert this value into Hz
by multiplying it by the SR/2π. Now we just add it to the channel centre frequency
in Hz (ωSR or 2πkSR/N).

Here is the code implementing the IFD in similar fashion to previous analysis
algorithms, with the window, input and output allocated/defined externally:

int ifd(float *input, float *window, float *output,
int input_size, int fftsize, int hopsize, float sr){

int posin, posout, i, k;
float *sigframe, *specframe1, *specframe2, *diffwin;
double a,b,c,d,powerspec;
float fac = (float)(sr/twopi), fund = sr/fftsize;
sigframe = new float[fftsize];
specframe1 = new float[fftsize];
specframe2 = new float[fftsize];
diffwin = new float[fftsize];

for(i=0; i < fftsize; i++){
diffwin[i] = (i ? window[i-1] : 0.f) - window[i];

}

for(posin=posout=0; posin < input_size; posin+=hopsize){
// multiply an extracted signal frame
// by the derivative of the window
for(i=0; i < fftsize; i++)

if(posin+i < input_size)
sigframe[i] = input[posin+i]*diffwin[i];

else sigframe[i] = 0;
// transform it
fft(sigframe, specframe1, fftsize);
// multiply the same signal frame
// by the window
for(i=0; i < fftsize; i++)
if(posin+i < input_size)

sigframe[i] = input[posin+i]*window[i];
else sigframe[i] = 0;

35

// transform it
fft(sigframe, specframe2, fftsize);
// take care of 0Hz and Nyquist freqs
 output[posout++] = specframe2[i];
 output[posout++] = specframe2[i+1];
for(i=2, k=1; i < fftsize; i+=2, k++, ut+=2){

a = specframe1[i];
b = specframe1[i+1];
c = specframe2[i];
d = specframe2[i+1];
powerspec = c*c+d*d;

 // compute the amplitudes
 output[posout] = (float) sqrt(powerspec);

 // compute the IFD
 if(powerspec)
 output[posout+1] =

 (float) ((b*c - a*d)/powerspec)*fac + k*fund;
 else output[posout+1] = k*fund;

}
}
delete[] diffwin;
delete[] sigframe;
delete[] specframe2;
delete[] specframe1;
return posout;
}

The output of the IFD is very similar to the phase vocoder. However, the inverse
transformation is not defined for it. So, in order to resynthesise the frequency-domain
data, we would ideally use some sort of additive synthesis method, with a bank of
oscillators. Alternatively, an ISTFT-based algorithm can be formulated, by integrating
the successive frequency values for each time-point and converting them to get the
current phases in radians. This is the process used in the phase vocoder. However, due
to the fact that phase vocoder resynthesis is not exactly the reverse process of the IFD,
for some sounds, the reconstituted waveform will not match the original very well.

The additive synthesis method of signal reconstruction is not always as
computationally efficient as the inverse DFT-based algorithms. However it is a little
bit more flexible when it comes to certain processes, such as pitch-shifting and other
frequency modifications. One way of making the resynthesis more efficient is to only
employ oscillators to resynthesise the components that have a significant presence in
the spectrum. This will require some method of partial tracking. One such technique
will be explored in the next section.

7. Tracking spectral components: Sinusoidal Modelling

Sinusoidal modelling techniques are based on the principles that we have held all
along as the background to what we have done so far: that time-domain signals are
composed of the sum of sinusoidal waves of different amplitudes, frequencies and
phases. The number of sinusoidal components present in the spectrum will vary from
sound to sound, and also can vary dynamically during the evolution of a single sound.
As we have pointed out before, since we are still using STFT-based spectral analysis,

36

at any point in time, the maximum resolution of components will depend on the size
of each analysis band. Partial tracking will, therefore, not be suitable for spectrally
dense sounds. However, there will be many musical signals that can be manipulated
through this method.

7.1. Sinusoidal Analysis
The principle behind sinusoidal analysis is very simple, although its implementation is
somewhat involved. Using the magnitudes from STFT analysis, we will identify the
spectral peaks at the integral frequency points (STFT bins or bands). The identified
peaks will have to be above a certain threshold, which will help separate the detected
sinusoid components from transient spectral features. The exact peak position and
amplitude can be estimated by using an interpolation procedure based on the
magnitudes of the bins around the peaks. With the interpolated bin positions we can
then find the exact values for the frequencies and phases obtained originally from the
IFD/STFT input, again through interpolation. These will then, together with the
amplitude, form a ‘track', linked to each detected peak (fig. 12). However the track
will only exist as such if there is some consistency in consecutive frames, ie. if there
is some matching between peaks found at each time-point. When peaks are short-
lived, they will not make a track. Conversely, when a peak disappears, we will have to
wait a few frames to declare the track as finished. So most of the process becomes one
of track management, which accounts for the more involved aspects of the algorithm.

As seen in fig.12, the sinusoidal analysis will output tracks made up of frequencies,
amplitudes and phases. This in turn can be used for additive re-synthesis of the signal
or of portions of its spectrum. One typical method involves the use of the phase and
frequency parameters to calculate the varying phase used to drive an oscillator. This
uses the two parameters in a cubic interpolation, which is not only mathematically
involved, but also computationally intensive. A simpler version can be formulated that
would employ only the frequency and amplitudes interpolated linearly. This is
simpler, more efficient and for many applications sufficiently precise. Also, since we
do not require the phase parameter, we can simplify the analysis algorithm to
calculate only frequencies and amplitudes for each track. This version could employ
either the IFD (as shown in fig.12) or the Phase Vocoder, as discussed in the previous
sections, to provide the magnitude and frequency inputs.

Figure 12. Sinusoidal analysis and track generation from a
time-domain signal x(n).

37

The sinusoidal analysis algorithm used here is based on the McCaulay/Quatieri model
(McCaulay & Quatieri, 1986). The C++ code presented here is partly based on a
MatLab implementation by Dan Ellis. Here is the outline of the analysis algorithm:

1. From either IFD or PV analysis, we will obtain the magnitudes and frequencies.
2. Using the logarithm of the magnitude, peaks are detected and their integral bin

positions are found. The peaks will also be put through a threshold test and only
the ones above it will be kept. A quadratic interpolation procedure is used to
obtain the exact position and height of each spectral peak. This will generate
interpolated magnitude and bin (frequency-point) position outputs.

3. We will then check whether the peaks that were found match existing tracks. The
ones that match are set as the continuation of a track. This is done by finding the
smallest difference between the position of a new peak and an existing track. If
this difference is smaller than 1 (the distance between bins), we will match it. We
will also check whether the change in magnitude between the matched peaks is
not too big (if it is, we will make this peak into a new track, as it might indicate an
onset).

4. We will determine which tracks are dead, by checking that they did not have any
continuing/matching peaks. We will not kill the track straight away, but only after
a few hop periods have elapsed and a match has not been found.

5. For each new peak without any match, we will determine if it has existed for a
minimum number of points. If so, we will create a new track.

6. Once we have all the bin positions and magnitudes for each track, we can use
them to obtain the interpolated frequencies from the spectral analysis input.

7. Tracks will be output in creation time order. Tracks that have been created at the
same time are ordered in ascending frequency. The output will contain a sequence
of track frames, each one respective to a STFT time-point

The algorithm would easier to implement if we could have an ever-expanding bi-
dimensional array, where we would put our output tracks. However, since we cannot
have this in a reasonably efficient implementation, we will have to include a few extra
housekeeping elements.

We will start by setting the maximum number of tracks per frame to something
between 1 and N/2+1, which is the number of frequency points in a real DFT frame
(N is of course the transform size). This assumes that a signal will not have more than
N/2+1 tracks at any given time, which is reasonable for many types of sounds. The
maximum number of tracks will determine the size of each frame and the output
vector. We will also have to move the tracks to the left of each output frame, so that it
never overflows as tracks die and new ones are created. Because the position of the
tracks in the frame will change as old tracks die, we will use an index to identify a
particular track in a frame. These track IDs will be output together with the
amplitudes and frequencies for each track. So each analysis frame will be composed
of a series of n tracks, each one containing three values: ID, amplitude and frequency.
At a particular frame, we might not have the maximum number of tracks. The empty
tracks are marked by a special ID code (-1) and the amplitude and frequency are set to
0.

38

The code for this algorithm is by far most complex one in this text. Because of the
entire track matching operations and housekeeping, we will need to define a large
dataspace which will contain all the vectors and variables used in the code. Many
operations will involve comparing data from the previous hop-period to current data.
We will use a method of double-buffering for it, so some of the data vectors will be
bi-dimensional (double-sized, with one dimension having size 2).

The data structure used in the algorithm is shown below, with a description for each
component:

struct sindata {

float sr;
float** bndx; // bin indexes
float** pkmags; // peak mags
float** adthresh; // thresholds
unsigned int** tstart; // start times
unsigned int** lastpk; // end times
unsigned int** trkid; // track ids

float* phases; // phases
float* freqs; // frequencies
float* mags; // magnitudes
float* bins; // track bin indexes
int* trndx; // track IDs

float* binmax; // peak bin indexes
float* magmax; // peak mags
float* diffs; // differences

int* maxix; // max peak locations
bool* contflag; // continuation flags

int numbins; // number of bins
int maxtracks; // max number of tracks
float thresh; // threshold
int tracks; // tracks in a frame
int prev; // previous hop-period
int cur; // current hop-period
int accum; // ID counter
unsigned int timecount; // hop period counter
int minpoints; // minimun number of points in track
int maxgap; // max gap (in points) between consecutive points
int fftsize; // transform size

};

We will also define a separate function that will allocate the memory for all the data
vectors that are defined above and initialise it. A de-allocating function will also be
defined to free the memory:

void
sin_init(sindata *d, int fftsize, float threshold, int maxtracks,

 int minpoints, int maxgap, float sr)
{

39

d->fftsize = fftsize;
d->minpoints = (minpoints > 1 ? minpoints : 1) - 1;
d->thresh = threshold;
d->maxtracks = maxtracks;
d->tracks = 0;
d->prev = 0; d->cur =1; d->accum = 0;
d->maxgap = maxgap;
d->numbins = fftsize + 1;

d->bndx = new float*[2];
d->pkmags = new float*[2];
d->adthresh = new float*[2];
d->tstart = new unsigned int*[2];
d->lastpk = new unsigned int*[2];
d->trkid = new unsigned int*[2];
int i;
for(i=0; i<2; i++){

d->bndx[i] = new float[d->maxtracks];
d->pkmags[i] = new float[d->maxtracks];
d->adthresh[i] = new float[d->maxtracks];
d->tstart[i] = new unsigned int[d->maxtracks];
d->lastpk[i] = new unsigned int[d->maxtracks];
d->trkid[i] = new unsigned int[d->maxtracks];

}

d->bins = new float[d->maxtracks];
d->trndx = new int[d->maxtracks];
d->contflag = new bool[d->maxtracks];

d->phases = new float[d->numbins];
d->freqs = new float[d->numbins];
d->mags = new float[d->numbins];

d->binmax = new float[d->numbins];
d->magmax = new float[d->numbins];
d->diffs = new float[d->numbins];

d->maxix = new int[d->numbins];
d->timecount = 0;

d->phases[0] = 0.f;
d->freqs[0] = 0.f;
d->phases[d->numbins-1] = 0.f;
d->freqs[d->numbins-1] = sr/2;

for(i = 0; i < d->maxtracks; i++)
 d->pkmags[d->prev][i] =
 d->bndx[d->prev][i] = d->adthresh[d->prev][i] = 0.f;
}

void
sin_free(sindata *d){
// de-allocate memory
delete[] d->phases;
delete[] d->freqs;
delete[] d->mags;
delete[] d->binmax;
delete[] d->magmax;

40

delete[] d->diffs;
delete[] d->maxix;
delete[] d->bndx;
delete[] d->pkmags;
delete[] d->adthresh;
delete[] d->tstart;
delete[] d->lastpk;
delete[] d->trkid;
delete[] d->trndx;
delete[] d->contflag;
delete[] d->bins;
}

Finally, we will use a driver function to get the data from the input on a frame-by-
frame basis and call the analysis code. This will generate a frame of track data at a
time and the driver function will put that frame in the output vector. This code expects
the input and output signal vectors to be defined externally. The output vector will
need enough space to accommodate maxtracks*3 floats per hop period (the output
data size is returned by the function).

int
sinmodel(float* input, float* output, int inputsize,
 int fftsize, int hopsize, float threshold,
 int maxtracks, int minpoints, int maxgap, float sr){

 int posin, posout,k, i, tracks;
 sindata d;

 // initialise data and allocate memory
 sin_init(&d, fftsize, threshold, maxtracks,
 minpoints, maxgap, sr);

 for(posin=posout=0; posin < inputsize; posin +=hopsize){

 // get the magnitudes and frequencies
 for(i=2,k=0; i < fftsize; k++, i+=2){
 d.freqs[k] = input[posin+i];

d.mags[k] = input[posin+i+1];
 }
 d.mags[0] = input[posin];
 d.mags[fftsize/2] = input[posin+1];

 // sinusoidal analysis
 // returns number of non-empty tracks
 tracks = sinanalysis(&d);

 // each track holds [ID, AMP, FREQ]
 // the output is composed of maxtracks*3 floats
 // per frame
 float a,b, frac;
 for(i=0, k=0; i < maxtracks; i+=3, k++) {
 // these are the existing tracks at each hop period
 // they are placed at the left of the frame
 // sorted by start-time, frequency
 if(i < tracks){
 output[posout+i] = (float) d.trndx[k];
 output[posout+i+1] = d.mags[k];

41

 frac =(d.bins[k] - (int)d.bins[k]);
 // freq Interpolation
 a = d.freqs[(int) d.bins[k]];
 b = (d.bins[k] < d.numbins-1 ?
 (d.freqs[(int)d.bins[k+1]]- a) : 0);
 output[posout+i+2] = a + frac*b;

}
 // these are the empty tracks at right of the frame
 else{
 output[posout+i] = - 1.f; // ID = -1.f means empty track
 output[posout+i+1] = output[posout+i+2] = 0.f;
 }
 }
}
// de-allocate memory
sin_free(&d);
return posout;
}

The business end of the algorithm is laid out in the sinusoidal analysis function. This
takes the magnitudes and performs the peak-picking plus track allocation as described
before. The code is fully commented, so the various steps outlined in the algorithm
can be easily seen in it.

int
sinanalysis(sindata *d){

float startupThresh, logthresh;
int bestix, count=0, i =0, n = 0, j = 0;
float max = 0.f,dbstep;
float y1, y2, a, b, ftmp;

for(i=0; i<d->numbins;i++)
 if(max < d->mags[i]) max = d->mags[i];

startupThresh = d->thresh*max;
logthresh = (float)log(startupThresh/5.f);

// Quadratic Interpolation for peak estimation
// obtains bin indexes and magnitudes
// d->binmax & d->magmax respectively

bool test1 = true, test2 = false;

// take the logarithm of the magnitudes
for(i=0; i<d->numbins;i++)
d->mags[i] = (float)log(d->mags[i]);

// find the peaks
for(i=0;i < d->numbins-1; i++) {
 if(i)
 test1 = (d->mags[i] > d->mags[i-1] ? true : false);
 test2 = (d->mags[i] >= d->mags[i+1] ? true : false);

 if((d->mags[i] > logthresh) && (test1 && test2)){

42

 d->maxix[n] = i;
 n++;

 }
}

// we have the peaks, so all we need is to find the
// interpolated values for amplitude and bin indexes
// this is the actual quadratic interpolation
for(i =0; i < n; i++){
 int rmax;
 rmax = d->maxix[i];
 y1 = d->mags[rmax] –
 (ftmp = (rmax ? d->mags[rmax-1] : d->mags[rmax]))
 + 0.000001f;
 y2 = (rmax < d->numbins-1 ? d->mags[rmax+1] : d->mags[rmax])
 - ftmp + 0.000001f;

 a = (y2 - 2*y1)/2.f;
 b = 1.f - y1/a;

 d->binmax[i] = (float) (rmax - 1. + b/2.);
 d->magmax[i] = (float) exp(ftmp - a*b*b/4.);

}

// end quadratic interpolation
// now we have interpolated peak mags and bin indexes

// Peak-picking + track allocation

// reset allowcont flags
for(i=0; i<d->maxtracks;i++){

d->contflag[i] = false;
}

// loop to the end of tracks (indicate by the 0'd bins)
// find continuation tracks

for(j=0; d->bndx[d->prev][j] != 0.f && j < d->maxtracks; j++){

int foundcont = 0;
 // check for peaks; n will be > 0

if(n > 0){
 // F is the previous bin index in track j

float F = d->bndx[d->prev][j];
for(i=0; i < d->numbins; i++){

 // find the smallest difference between F
 // and all newly detected peaks in binmax[]

 d->diffs[i] = d->binmax[i] - F;
 d->diffs[i] = (d->diffs[i] < 0 ? -d->diffs[i] : d->diffs[i]);
}
// find the best index using the smallest difference

 // this will match new peaks with existing tracks
bestix = 0;
for(i=0; i < d->numbins; i++)
 if(d->diffs[i] < d->diffs[bestix]) bestix = i;

// take the absolute bin difference
float tempf = F - d->binmax[bestix];

43

tempf = (tempf < 0 ? -tempf : tempf);

 // check if that difference is smaller than 1 bin
if(tempf < 1.){
// check if amp jump is too great

 if(d->adthresh[d->prev][j] < (dbstep = (float)
 (20*log10(d->magmax[bestix]/d->pkmags[d->prev][j])))){

// mark track for discontinuation;
d->contflag[j] = false;
} else {

 // This is a continuing track
 // get the peak bndx and magnitudes
 d->bndx[d->prev][j] = d->binmax[bestix];
 d->pkmags[d->prev][j] = d->magmax[bestix];

 // set the continuation flag
d->contflag[j] = true;
// take matched peak of the newly found list
d->binmax[bestix] = d->magmax[bestix] = 0.f;
// set the time mark for the last found peak
d->lastpk[d->prev][j] = d->timecount;
// found continutation
foundcont = 1;
// count tracks
count++;

 // update the adaptive mag threshold
 float tmp1 = dbstep*1.5f;
 float tmp2 = d->adthresh[d->prev][j] -
 (d->adthresh[d->prev][j] - 1.5f)*0.051271096f;
 d->adthresh[d->prev][j] = (tmp1 > tmp2 ? tmp1 : tmp2);

 } // else [continuing track]
 } // if [difference < 1]

 } // if n > 0

 // if we did not find a continuation
 // we'll check if the magnitudes around it are below
 // a certain threshold. Mags[] holds the logs of the magnitudes
 // Check also if the last peak in this track is
 // more than d->maxgap hop periods old
 if(!foundcont){
 if((exp(d->mags[int(d->bndx[d->prev][j]+0.5)])
 < 0.2*d->pkmags[d->prev][j]) ||
 ((d->timecount - d->lastpk[d->prev][j]) >
 (unsigned int) d->maxgap)){
 // mark for discontinuation

 d->contflag[j] = false;
 }
 else {

 // keep the track for another hop period
 d->contflag[j] = true;
 count++;
 }
 }
} // end for loop [peak matching]

// Now we will create new tracks for the remaining peaks
// only if there is space in the frame
if(count < d->maxtracks){

 // if we have not exceeded available tracks.

44

 // compress the arrays
 for(i=0, n=0; i < d->maxtracks; i++){
 if(d->contflag[i]){

 d->bndx[d->cur][n] = d->bndx[d->prev][i];
 d->pkmags[d->cur][n] = d->pkmags[d->prev][i];

 d->adthresh[d->cur][n] = d->adthresh[d->prev][i];
 d->tstart[d->cur][n] = d->tstart[d->prev][i];
 d->trkid[d->cur][n] = d->trkid[d->prev][i];
 d->lastpk[d->cur][n] = d->lastpk[d->prev][i];

 n++;
 }
 // ID == -1 means zero'd track
 else d->trndx[i] = -1;
 }

 // now current arrays are the compressed previous
 // arrays
 // create tracks for all new peaks provided that they
 // are above the start threshold
 for(j=0; j< d->numbins && count < d->maxtracks; j++){

if(d->magmax[j] > startupThresh){
 d->bndx[d->cur][count] = d->binmax[j];
 d->pkmags[d->cur][count] = d->magmax[j];

 d->adthresh[d->cur][count] = 400.f;
 // track ID is a positive number in the
 // range of 0 – maxtracks*3
 // it is given when the track starts
 // used to identify and match tracks
 d->tstart[d->cur][count] = d->timecount;
 d->trkid[d->cur][count] = ((d->accum++)%d->maxtracks*3);
 d->lastpk[d->cur][count] = d->timecount;
 count++

 } // if(mags > start thresh
 } // end new tracks loop

for(i = count; i < d->maxtracks; i++){
 // zero the right-hand size of the current arrays
 if(i >= count)
 d->pkmags[d->cur][i] =
 d->bndx[d->cur][i] = d->adthresh[d->cur][i] = 0.f;
 }
}
// count is the number of continuing tracks + new tracks
// now we check for tracks that have been there for more
// than minpoints hop periods and output them
d->tracks = 0;
for(i=0; i < count; i++){
 if(d->tstart[d->cur][i] <= d->timecount-d->minpoints){

d->bins[i] = d->bndx[d->cur][i];
d->mags[i] = d->pkmags[d->cur][i];
d->trndx[i] = d->trkid[d->cur][i];
d->tracks++;

 }
}
// end peak-picking and track allocation
// current arrays become previous
int tmp = d->prev;
d->prev = d->cur;
d->cur = tmp;

45

d->timecount++;
return d->tracks;
}

7.2. Additive resynthesis
The additive resynthesis procedure will take the track frames and use a frame-by-
frame interpolation of the amplitudes and frequencies of each track to drive a bank of
sinewave oscillators (fig.13). We will only need to be careful about using the track
IDs to perform the interpolation between the frames. Also, when a track is
created/destroyed, we will create an amplitude onset/decay so that we do not have
discontinuities in the output signal. We will be using interpolating lookup oscillators,
with a table size of 1024 points to generate the signal for each track. Each sine wave
component will be then mixed into the output.

Figure 13. The additive synthesis process.

The C++ additive synthesis function shown below will take three additional signal
modifier parameters: pitch, scale and speed. The first is a transposition ratio, the
second is an amplitude gain and the third a time-scale control. The process can effect
independent pitch and time-scale modifications on the resynthesised signal. As with
previous examples, the code expects the input and output to be allocated externally. It
is important, therefore, when time-stretching a sound, to allocate an output signal
vector that is large enough to accommodate all the samples generated by the
resynthesis.

int
addsyn(float* input, float* output, int inputsize,
 int hopsize, int maxtracks, float pitch,
 float scale, float speed, float sr) {

float ampnext,amp,freq,freqnext,phase, ratio;
int n, i3, i, ID, track, output_hop, posin, posout;
int notcontin = 0;
bool contin = false;
int oldtracks, curtracks;
float *tab, *amps, *phases, *freqs, *outsum;

46

int* trackID;

output_hop = (int)(hopsize*speed);

outsum = new float[output_hop];
amps = new float[maxtracks];
freqs = new float[maxtracks];
phases = new float[maxtracks];
trackID = new int[maxtracks];
tab = new float[1024];

ratio = 1024/sr;
for(n=0; n<1024; n++) tab[n] = (float)sin(n*twopi/1024);

oldtracks = maxtracks;

for(posin=posout=0; posin < inputsize; posin+=hopsize){

 // zero outsum vector
 for(n=0; n<output_hop; n++) outsum[n] = 0.f;

 // for each track
 for(i=0; i < maxtracks*3;){
 i3 = i/3;
 //if ID is -1, we reached the end of the tracks
 if(ID = (int)input[posin+i]) == -1) break;
 ampnext = input[posin+i+1]*scale;
 freqnext = input[posin+i+2]*pitch;

 track = i3+notcontin;
 if(i3 < oldtracks-notcontin){
 if(trackID[track]==ID){
 // if this is a continuing track
 contin = true;
 freq = freqs[track];
 phase = phases[track];
 amp = amps[track];
 }
 else {
 // if this is a dead track
 // create a decay
 contin = false;
 freqnext = freq = freqs[track];
 phase = phases[track];
 amp = amps[track];
 ampnext = 0.f;
 }
 }
 else{
 // new tracks
 // create onset
 contin = true;
 freq = freqnext;
 phase = 0.f;
 amp = 0.f;
 }

 // interpolation & track synthesis loop
 for(n=0; n < output_hop; n++){

47

 float interp,a,f;
 interp = n/(float)output_hop;

 // linear interp
 a = amp + (ampnext - amp)*interp;
 f = freq + (freqnext - freq)*interp;

 // table lookup oscillator
 float frac, val;
 phase += (f*ratio);
 while(phase < 0) phase += 1024;
 while(phase > 1024) phase -= 1024;
 frac = (val = tab[(int)phase]) - tab[(int)phase+1];
 outsum[n] += a*(val + (val - tab[(int)phase+1])*-frac);
 }

 // keep amp, freq, and phase values for next time
 if(contin){
 amps[i3] = ampnext;
 freqs[i3] = freqnext;
 phases[i3] = phase;
 trackID[i3] = ID;
 i += 3;
 curtracks++;
 } else notcontin++;
 }

 oldtracks = curtracks;
 curtracks=0;
 for(i=0; i<output_hop; i++)
 output[posout++] = outsum[i];
}
delete[] amps;
delete[] phases;
delete[] freqs;
delete[] trackID;
delete[] tab;
return posout;
}

The main point about this type of analysis is that it is designed to track the sinusoidal
components of a signal. Some sounds will be more suitable for this analysis than
others. Distributed spectra will not be tracked very effectively, since its complexity
will not suit the process. However, for certain sounds with both sinusoidal content and
some more noise-like/transient elements, we could in theory obtain these ‘residual’
aspects of the sound by subtracting the resynthesised sound from the original. That
way, we would be able to separate these two elements and perhaps process them
individually. A more precise method of resynthesis, using the original phases is
required for the residual extraction to work. This idea is developed in the Spectral
Modelling Synthesis (SMS) technique (Serra, 1997).

8. Conclusion

The techniques of spectral processing are very powerful. We have seen that they in
fact have a multitude of applications, of which we saw the classic and most important

48

ones. The standard DFT is generally a very practical spectral analysis tool, mostly
because of its simplicity and elegance, as well as the existence of fast computation
algorithms for it. There are adaptations and variations of it, which try to overcome
some of its shortcomings, with important applications in signal analysis. Nevertheless
their use in sound processing and transformation is still somewhat limited. In addition
to Fourier-based processes, which have so far been the most practical and useful ones
to implement, there are other methods of spectral analysis. The most important of
these is the Wavelet Transform (Meyer, 1991), which so far has had limited use in
audio signal processing.

9. Bibliography

Abe T, et al (1997). “The IF spectrogram: a new spectral representation,” Proc. ASVA
97: 423-430.
Dolson, M (1986). “The Phase Vocoder Tutorial” . Computer Music Journal, 10(4):
14-27. MIT Press, Cambridge, Mass.
Flanagan, JL, Golden RM (1966). “Phase Vocoder”. Bell System Technical Journal
45: 1493-1509.
Jaffe, D (1987a). “Spectrum Analysis Tutorial, Part 1: The Discrete Fourier
Transform”. Computer Music Journal, 11(2): 9-24. MIT Press, Cambridge, Mass.
Jaffe, D (1987b). “Spectrum Analysis Tutorial, Part 2: Properties and Applications of
the Discrete Fourier Transform”. Computer Music Journal, 11(2): 17-35. MIT Press,
Cambridge, Mass.
McCaulay, RJ, Quatieri, TF (1986). “Speech Analysis/Synthesis Based on a
Sinusoidal Representation”. IEEE Trans. On Acoustics, Speech, and Signal
Processing, ASSP-34 (4).
Meyer, Y (ed.)(1991). Wavelets and applications. Springer-Verlag, Berlin,1991
Moore, FR (1990). Elements of Computer Music. Prentice-Hall, Englewood Cliffs,
N.J.
Openheim, AV, Schafer, RW (1975). Digital Signal Processing. Prentice Hall,
Englewood Cliffs, N.J.
Serra, X. (1997). “Musical Sound Modelling with Sinusoids plus Noise”. in: G.D. Poli
et al (eds.), Musical Signal Processing, Swets & Zeitlinger Publishers, Amsterdam
Steiglitz, K (1995). A Signal Processing Primer. Addison-Wesley Publ., Menlo Park,
Ca.

	The DFT
	Rectangular and polar formats
	Reconstructing the time-domain signal

	Convolution
	A DFT-based convolution application

	The STFT
	Spectral Transformations
	Cross-synthesis
	Spectral-domain filtering

	The Phase Vocoder
	Frequency estimation
	Phase vocoder resynthesis
	Spectral Morphing

	The IFD
	An IFD analysis application

	Sinusoidal Modelling
	Sinusoidal Analysis
	Additive Synthesis

	Conclusion
	Bibliography

