Application of Wave Field Synthesis in electronic music and sound installations

M.A.J. Baalman
Electronic Studio
Communication Sciences
Technical University Berlin
Berlin, Germany
Overview

- Introduction
 - Spatialisation in electronic music
 - Theory of Wave Field Synthesis
- System setup
- Interface Software
- Application in composition & sound installations
- Outlook & discussion
Spatialisation in EM

- Since early development of electronic music an interest in spatial sound
- Standards are quadraphonic or octaphonic setups, with or without ambisonic techniques
- A lot of examples of setups with a lot of loudspeakers for one specific piece or as a way of interpreting a work
- Overview in Malham’s article in Computer Music Journal, winter 1996

Application of wave field synthesis in electronic music and sound installations
Spatialisation in EM

- Since early development of electronic music an interest in spatial sound
- Standards are quadraphonic or octaphonic setups, with or without ambisonic techniques
- A lot of examples of setups with a lot of loudspeakers for one specific piece or as a way of interpreting a work
- Overview in Malham’s article in Computer Music Journal, winter 1996

Wave Field Synthesis could be an interesting technique in EM

Application of wave field synthesis in electronic music and sound installations
Wave Field Synthesis

- Principle of Huygens
- Principle of Wave Field Synthesis
- Possibilities with Wave Field Synthesis
- Limitations
- Practical applications

Application of wave field synthesis in electronic music and sound installations
Principle of Huygens

Application of wave field synthesis in electronic music and sound installations
Application of wave field synthesis in electronic music and sound installations
Application of wave field synthesis in electronic music and sound installations
Principle of Wave Field Synthesis

Application of wave field synthesis in electronic music and sound installations
Possibilities

- Synthesize sound sources on specific places, even in front of the loudspeakers
- Moving sound sources
- Simulate acoustics of a room, by synthesizing reflections
- No sweet spot, but a large listening area!
Limitations

- Frequency limitations
 - Low frequencies limited by size of speakers
 - \(\rightarrow \) subwoofers!
 - High frequencies limited through spatial aliasing: the further apart the speakers, the lower the high frequency limit
- Computation: for each speaker a signal needs to be calculated
- A lot of speakers are needed!
Limitations

- Frequency limitations are inherent to the theory and characteristics of loudspeakers
- Computation seems to be a matter of time; cpu power increases
- Loudspeaker panels are becoming available, as well as multi-exciter flat panel loudspeakers, partly with built-in computation units for wave field synthesis
Applications

- Direct sound enhancement
- Virtual reality
- Cinema
- Teleconferencing
- Simulation
- Research
- Electronic music

Application of wave field synthesis in electronic music and sound installations
System of the TU Berlin

- 24 speakers (FOSTEX personal monitor 6301B)
- PC with RME Hammerfall soundcard running Linux
- Interface software:
 * graphical interface
 * calculates the delays and attenuations
 * Controls the convolution engine (BruteFIR) that makes the convolutions in real time and feeds the soundcard with the output sound
 * Is controllable via OpenSoundControl

Application of wave field synthesis in electronic music and sound installations
Interface software: WONDER

- Created to provide an interface for composers and sound artists of electronic music
- Has to be usable without the user needing to worry about the actual calculations
- Has to be flexible with regard to the actual setup of the system
Interfacesoftware: WONDER

3 parts:
- Composition tool
- Grid definition tool
- Play engine

- Control possible via OpenSoundControl

Application of wave field synthesis in electronic music and sound installations
WONDER - composition

- For each source:
 * Type
 * Movement
 * Reflections, also variable rooms
 * Division in time sections
 * Possible to loop movements
- Positions and paths can be entered graphically or typed
- WONDER calculates points on the path and a score that can be played.

Application of wave field synthesis in electronic music and sound installations
Application of wave field synthesis in electronic music and sound installations
WONDER - grid definition

- Allows the user to set a grid of points that can be used for live control of the system.
- Grid can consist of different ‘segments’, of different shapes and spacing and characteristics (high frequency damping, room characteristics).
- Input is graphical or typed.
- WONDER calculates the points and the necessary filters.

Application of wave field synthesis in electronic music and sound installations.
Application of wave field synthesis in electronic music and sound installations
WONDER - grid definition

Application of wave field synthesis in electronic music and sound installations
WONDER - play engine

- The play engine consists of:
 * Convolution engine BruteFIR, which is run as a child process
 * Communication with BruteFIR via the “command line interface” to control the movement of sources (switching between filters)
 * Control over the movements by the user, either graphically via WONDER or by sending OSC messages to WONDER
Application of wave field synthesis in electronic music and sound installations
WONDER - Open Sound Control

The OpenSoundControl server* of WONDER allows external control over the program

* Over sources: “/WFS/source/” with messages for position, type, etc.
* Over a score: “/WFS/score/” with messages for play, record, pause, stop, save, time
* Over the engine: “/WFS/” with messages for init (initialisation), start, stop

* OSC-server created by Daniel Plewe

Application of wave field synthesis in electronic music and sound installations
Work with composers

- Done in December 2002/January 2003 in preparation for Club Transmediale Festival in February 2003 in Berlin
- After a general introduction in December, one to two days work with composer in studio for spatialisation
- Sound material was prepared elsewhere by each composer

Application of wave field synthesis in electronic music and sound installations
Ping Pong Ballet, Marc Lingk

- Sounds were created from ping pong ball sounds
- So: movements based on ping pong ball game
Application of wave field synthesis in electronic music and sound installations

Ping Pong Ballet, Marc Lingk

- Sounds were created from ping pong ball sounds
- so: movements based on ping pong ball game
Ping Pong Ballet, Marc Lingk

- Sounds were created from ping pong ball sounds
- So: movements based on ping pong ball game
Ping Pong Ballet, Marc Lingk

- Sounds were created from ping pong ball sounds
- so: movements based on ping pong ball game
- all loop movements
- composition moves from familiar ping pong game to dense vivid sound scape

Application of wave field synthesis in electronic music and sound installations
Restored to Life, Ilka Theurich

- Use of various movements
- Use of plane waves and point sources
- Use of virtual rooms
Restored to Life, Ilka Theurich
Application of wave field synthesis in electronic music and sound installations

Restored to Life, Ilka Theurich
Application of wave field synthesis in electronic music and sound installations

Restored to Life, Ilka Theurich
Beurskrach, M. Baalman

- Concept of an object of a fairly large size, modeled as 4 points on the object
- All points have the same source material, but filtered differently
- Cooperation with Julius Stahl, who made visuals

Application of wave field synthesis in electronic music and sound installations
Beurskrach, M. Baalman

Application of wave field synthesis in electronic music and sound installations
Application of wave field synthesis in electronic music and sound installations
Application of wave field synthesis in electronic music and sound installations
Application of wave field synthesis in electronic music and sound installations
Application of wave field synthesis in electronic music and sound installations
Beurskrach, M. Baalman

Application of wave field synthesis in electronic music and sound installations
Scratch

- Responsive sound installation, created in SuperCollider
- Concept: a virtual sonic creature that develops itself, depending on internal and external impulses
- Movement of the sound is controlled with OSC from SuperCollider

Application of wave field synthesis in electronic music and sound installations
Future

- Extending external control via OSC
- More complex source definition
 * size
 * frequency dependent directional characteristics
- More work with composers
Where can I hear it?

- Sound installation:
 * 13:00-14:00 and 19:00-20:00 each day of the LAD
 * today: 19:00-21:00
 * and on appointment
- Workshop on Saturday, starting at 15:00

“Kleine Studio”, next to the Kubus, First Floor
Application of wave field synthesis in electronic music and sound installations

More info

- Web:
 * http://www.nescivi.de
- Email:
 * marije@baalt.nl